UTAH GROUNDWATER DISCHARGE PERMIT APPLICATION

BRUIN POINT MINE CARBON COUNTY, UTAH

April 2015

PREPARED FOR: Green River Resources, Inc. 201 South Main Street, Suite 1800 Salt Lake City, Utah 84111

PREPARED BY: URS 756 East Winchester Street, Suite 400 Salt Lake City, Utah 84107 URS Job No. 24585638 This page intentionally left blank.

1	Administrative Information	1
2.	Introduction	2
3.	Background Information	2
4.	Facility Classification and Type	4
4.1	Facility Classification	4
4.2	2 Type of Facility	4
4.3	B SIC/NAICS Codes	4
4.4	Project Facility Life	4
5.	Green River Resources, Inc. Oil Sands Mine and Operation Description	4
5.1	Site Development	4
5.2	2 Overall Operation Description	4
5.3	B Extraction Process	6
6.	Issued and Pending Permits	9
6.1	Permit History	9
6.2	2 Issued and Potential Permits and Plans	9
7.	Water Information	9
7.1	Well and Spring Identification	9
7.2	2 Surface Water Body and Drainage Identification	12
7.3	Well-head Protection Area Identification	13
7.4	Drinking Water Source Identification	13
7.5	5 Well Logs	13
8.	General Identification	13
8.1	Location Identification	13
8.2	2 No Planned Discharges	13
8.3	No Potential Discharges	14
8.4	No Means of Discharge	14
8.5	5 Treatment Processes and Technology	17
8.6	No Discharge Effluent Characteristics	17
9.	Hydrology Report	17
9.1	Regional Geology and Landform	17
9.2	2 Area Specific Geology	17
9.3	Area Surface Water	18
9.4	Area Groundwater	18
	9.4.1 Area Groundwater Setting	18

9.	4.2	Affected Area Hydrology	19
9.	4.3	Area Surface and Groundwater Quality	19
9.5	Affe	cted Area Groundwater Investigation	21
9.	5.1	Seep and Spring Inventory	21
10.	Ground	dwater Discharge Control Plan	22
11.	Compli	iance Monitoring Plan	26
12.	Reclam	nation and Closure Evaluation	27
13.	Conting	gency Plan	28
14.	Certific	cation	28
15.	Referen	nces	29

List of Tables

Table 7.1.1	Water Rights
Table 7.1.2	Dry Tailings Impoundment Land Status
Table 9.4.3.1	General Water Chemistry and Nutrients
Table 9.4.3.2	Metals and Metalloids
Table 10.1	Inorganic Analytical Report
Table 10.2	Organic Analytical Report
Table 10.3	Utah Groundwater Quality Standards (R317-6-2) & Initial Screening Levels

List of Exhibits

Exhibit 5.3.1	Process Flow Diagram
Exhibit 8.4.1	Typical Cap Schematic Showing Infiltration

List of Figures

- Figure 1 Location Map
- Figure 2 Mine Plan Map
- Figure 3 Material Handling Plan
- Figure 4 Utah Water Rights
- Figure 5 Watershed Map
- Figure 6 Natural Surface Geologic Map

List of Appendices

- Appendix A Ownership Information
- Appendix B Hydrology of North Spring and Bruin Point
- Appendix C Hydrologic Evaluation of Landfill Performance (HELP) Model Results
- Appendix D Fate and Transport Evaluation of Residual Solvent in Sand Tailings, and Tailings Quality Control
- Appendix E Solvent MSDS Sheet
- Appendix F Seep and Spring Inventory
- Appendix G Preliminary Stability and Hydrology Analyses
- Appendix H Sampling and Analysis Plan, and Quality and Assurance Project Plan
- Appendix I Water Quality Analytical Results

Utah Groundwater Discharge Permit Information

For

Green River Resources, Inc.

Bruin Point Mine Project

1. Administrative Information

Applicant Name, Mailing Address, Telephone Number, Contact Information, Designated Agent

Green River Resources, Inc. 201 South Main Street, Suite 1800 Salt Lake City, UT 84111 Phone: (801) 536-6140 Company Representative/Designated Agent: William C. Gibbs

Facility Legal Location

The Bruin Point Mine is located in portions of Sections 2, 3, and 10, Township 14 South, Range 14 East, Salt Lake Base and Meridian (SLBM). All sections are located within Carbon County, Utah.

Owner and Operator Information

The operator information is the same as the applicant information: Green River Resources, Inc. (GRR). Further ownership information may be found in **Appendix A**.

Facility and Contact Information

Bruin Point Mine Green River Resources, Inc.

The project is located approximately six miles northeast of Sunnyside, Utah. Facilities have not yet been established at the project site, so communication should be directed to the corporate offices until such time that facilities can be established on the site and supervisory staff is hired.

2. Introduction

American Sands Energy Corporation (American Sands/the Company) is a Delaware Company with primary operations in Utah. The Company has acquired rights to oil sands ore covering approximately 1,760 acres (Lease Boundary) of prime oil sands resources (known as the Sunnyside deposit) in the Bruin Point area in the Book Cliffs of Utah. The Company has licensed proprietary extraction technology for a bitumen and hydrocarbon extraction process that separates oil and other hydrocarbons from sand, dirt and other substances on a 99% efficiency basis, without creating environmental hazards. The licensed technology uses no water (except for water consumed for fugitive and underground dust control), produces clean sand and bitumen, and uses a fraction of the heat typically required for extracting fuels from oil sands. Based upon prototype trials and feasibility studies, American Sands is proposing to produce and deliver approximately 5,000-10,000 barrels per day of bitumen extracted from the Green River Formation oil sands.

American Sands acquired GRR, a privately-held company that controls the oil sands ore property in Carbon County, Utah. Through the Green River acquisition, the Company also acquired exclusive use in Utah of the proprietary process mentioned above. GRR will be using this new technology to extract bitumen from ore mined from the deposit. The extraction plant will be located within the Lease Boundary, in eastern Carbon County, Utah as shown in **Figure 1**.

During the first five years of bitumen extraction, sand tailings (clean, dry sand) will be placed in a permanent surface sand tailings disposal area. There is no tailing pond associated with either the process or the surface tailings disposal area. As mining activities advance, sorted sand tailings will be used as underground mine backfill, with no anticipated impact to surface or groundwater resources. Underground disposal of tailings will commence in the sixth year of mining activities.

It is anticipated that there will be no impact to surface or groundwater because the mining and processing activities are designed to be zero discharge. Furthermore, all storm water runoff will be captured and will be left to evaporate, used for dust control, or will be hauled off site by a licensed contractor as further described below. The *de minimis* use of water on-site will not impact groundwater or surface water. As described below, GRR proposes ongoing monitoring of certain seeps and springs to provide additional evidence supporting the lack of impacts to water.

3. Background Information

The Bruin Point Mine is a new mine operation. The Sunnyside deposits are the largest of the Uinta Basin Special Oil Sands Areas defined by the U.S. Geological Survey (USGS). Within the Lease Boundary, GRR has defined a survey boundary for the Bruin Point Mine, where initial baseline surveys were performed. The initial mine development (as described in more detail in the Notice of Intention to Commence Large Mining Operations [NOI] submitted to the Utah Division of Oil, Gas and Mining [DOGM] in March 2015) will take place within the Lease Boundary on approximately 160 acres (referred to throughout this Groundwater Discharge Permit Application as the Affected Area) as shown on **Figure 2**.

Groundwater within the Affected Area is best characterized as shallow (<100 feet below ground surface [bgs]) as evidenced by discharge from North Spring and other seeps near Range Creek. Additional information on the hydrology of the region is included as **Appendix B**, describing the hydrology of North Spring (URS, 2014b). The condition of the spring is noted as being highly disturbed as a result of overgrazing (JBR, 2014; Calkin, 1990). Additionally, the amount of recharge for that system is sparse and directly related to precipitation. The shallow groundwater system follows an annual cycle related to snowmelt, with discharge from springs during the spring at

approximately 40 gallons per minute (gpm), decreasing during summer and fall to less than 2 gpm and often times drying up altogether. The studies (reviewed in the hydrologic report [URS, 2014b]) provide consistent evidence that Range Creek is dry in the vicinity of the Affected Area. This is because, in a typical year, there is insufficient precipitation and discharge from springs/seeps to sustain perennial flow in Range Creek near the Affected Area. In turn, the shallow groundwater flow does not move downward. Vertical movement of groundwater from the shallow system to greater depths is inhibited by low permeability shale and oil sand layers, which dominate the stratigraphic column at depths greater than 100 feet bgs.

During the fall of 2013, GRR conducted exploration drilling under Exploration Permit, E/007/0011. Drilling advanced to approximately 1,035 feet bgs. During drilling, groundwater was encountered at approximately 400 to 420 feet bgs within the Garden Gulch Member. The groundwater detected at this depth is anomalous with the reported results from 50+ exploratory borings drilled by Amoco (as reviewed in the hydrologic report [URS, 2014b]), including at least three in the immediate vicinity of the American Sands boring. None of the logs for the Amoco borings (also included in the hydrologic report, in part [URS, 2014b]) reported groundwater at depths below the shallow aquifer in the Parachute Creek Member, approximately 200 feet bgs. Flow from the American Sands boring was estimated at less than 2 gpm. This flow is believed to be from the shallow groundwater system trickling down the Amoco borings to 400-420 feet bgs.

Groundwater in the region will not be affected by the proposed operations because design of the cap and liner for the tailings will seal the surface tailings disposal area from the infiltration of rainfall and snow melt while not materially impacting the ability of this water to recharge North Spring and Range Creek. The design of the system and its ability to control the contact of tailings by surface water while allowing the recharge of North Spring and Range creek is described below. The Hydrologic Evaluation of Landfill Performance (HELP) model predicts minimal infiltration into the shallow groundwater system of less than 1 inch per year (in/yr) (see **Appendix C** for HELP model results [URS, 2014c]). The model was run for a period of 50 years and rerun until the initial and final moisture content for each layer reached a steady-state or equilibrium.

The Range Creek Drainage area will be protected from tailings impoundment-related impacts. The dry tailings impoundment will be designed, constructed and operated to protect the recharge systems related to both North Spring and Range Creek. To ensure that the integrity of the dry tailings impoundment is consistent with its design, HELP modeling will be run on tailings samples collected during construction. The HELP model will be used to demonstrate the water balance in the tailings lining and capping systems. The following briefly describes the tailings impoundment design rationale.

The dry tailings will be constructed with a four foot clay liner, below the tailings; a four foot clay cap on top of the tailings (each with 1×10^{-7} centimeters per second [cm/s] permeability); a weeping tile system above the lower clay liner and at the bottom of the tailings; a capillary barrier over the upper clay cap; and 18 inches of growth media on top of the structure. The upper and lower clay caps will prevent infiltration of meteoric water into the tailings pile. The capillary barrier will direct any precipitation to drain off the sides of the dry tailings impoundment and thereby contribute to recharge North Spring and minimize contact of meteoric water with the capped materials.

The weeping tile system will allow any water that infiltrates the clay cap to drain into a high-density polyethylene (HDPE)-lined retention basin at the toe of the tailings impoundment. Water collected in that basin will not be discharged. Instead, the water will be sampled, and if suitable and free from hydrocarbons it will be used for dust control. If it is unsuitable for dust control, it will be disposed of by a licensed contractor.

4. Facility Classification and Type

4.1 Facility Classification

This facility is classified as a mine operation.

4.2 Type of Facility

The new facility will be an oil sands production operation to extract bitumen from mined oil sands. The facility will include underground mine access, office and maintenance facilities, process equipment, tank farms, crushed ore storage, and sand tailings storage.

4.3 SIC/NAICS Codes

The Standard Industrial Classification (SIC) and North American Industry Classification System (NAICS) codes that describe the proposed facility are 1311 (SIC) and 211111 (NAICS) for crude petroleum and natural gas extraction.

4.4 Project Facility Life

The initial life of mining operation is 15 years.

5. Green River Resources, Inc. Oil Sands Mine and Operation Description

5.1 Site Development

The development of full-scale mining operations will begin with preparation of surface facilities and portal development. Vegetation will be cleared and topsoil will be stockpiled for use in reclamation. The site will only be leveled in areas required for operations and equipment. Areas that will be used for truck traffic within the Affected Area will be paved using some of the oil sands ore mixed with road base. Equipment and utility access will be developed from the plant site to the portal. Crushed rock mined from the face of the portal will be used to develop a pad to accommodate mine surface facilities. The pad will be large enough to contain the support facilities including a parts trailer, portable office, substation, fan house, two fuel tanks and two water tanks. Following the initial underground mine development the parts trailer, portable office, substation, and fan house will be the only facilities left outside of the mine and they will be located directly outside of the portal. As mining advances, the balance of the support facilities and equipment will be moved to permanent locations underground. After portal development, underground mining will commence using a room and pillar method. **Figure 2** illustrates the locations of mine and processing plant features.

5.2 Overall Operation Description

The extraction process employed by GRR will use a proprietary solvent to separate bitumen from crushed ore. Mining, maintenance, and processing facilities will be located on-site and mining and processing operations will occur simultaneously. Development of the mine site will follow these general steps:

- Land clearing (where appropriate)
- Soil removal and stockpiling
- Work area preparation (leveling and placement of gravel)

- Portal development
- Entry development

The general mining sequence will consist of the following unit operations:

- Ore extraction (drilling, blasting, and hauling to processing pad)
- Ore crushing and stockpiling
- Solvent treatment/bitumen extraction and solvent recovery
- Placement of sand tailings on surface (and eventually, as backfill underground)

The mine development plan includes clearing and grubbing operations, installation of storm water controls, and salvaging of soil prior to mining the oil sands. Topsoil will be salvaged and stockpiled to be used during the reclamation phase. The mine opening will be developed at approximately 9,100 feet elevation along the cliff face. The road to the portal from the plant site will need to be in place in order for equipment to gain access to the portal location. Once the portal is developed, mining will proceed underground. The initial underground mining will involve the development of four entries. Mining will continue with the development of rooms and pillars shown on the underground mine Materials Handling Plan, **Figure 3**.

The ore will be drilled and blasted to advance an upper bench and an underlying bench. Once the ore has been blasted it will be loaded with front end loaders and hauled using 25- to 40-ton haul trucks. Initially the sizing and sorting equipment and operations will be located at the portal bench. Ore mined during the first year of mining activities will be hauled to the material handling and sizing equipment located near the portal area. After the first year, sizing and sorting operations will be relocated from the portal area to a mined-out area underground. Ore mined will be hauled to the plant site via the mine access road. The material handling system at the mine will consist of screens, crushers, sorter, conveyor belt line, and ore stockpiles.

Crushed, sorted, and mined ore will be transported in haul trucks via the main haul road to the process area and discharged into the material handling equipment at the plant feed stockpile. This plant site stockpile will contain 30,000 tons of ore and will be available to provide feed in the event of disruption of ore supply from the mine.

The processing facilities will be located on the upper bench near Bruin Point. These facilities will be designed to extract bitumen from the ore producing clean, dry sand (tailings) and a liquid bitumen product. The major structures located in this area include the office and associated parking area; warehouse and maintenance shop; process equipment; tank farm; electrical building; and stockpiles of crushed ore and tailings.

The process produces tailings that consist of dry, clean sand as a byproduct. Based on pilot testing results, the sand tailings will contain between 2 and 25 parts per million (ppm) of the proprietary solvent. The consistency of the tailings is coarse-grained sand with very low organic carbon content after processing. The dry sand tailings disposal area will be developed in an area north of the plant site. The area is designed to hold 14 million cubic yards, or five years of dry sand tailings production. The stockpile will feature a compacted base and cover each constructed of 4 feet of impermeable clay material 1×10^{-7} cm/s. The system will include a capillary barrier on top of the clay cover with 18 inches of growth media above the capillary barrier. A sloped weeping tile will be installed above the clay base and will run downhill from the highest point in sand pile to a lined retention basin (see Map 8 in the General Construction Permit [GRR, 2015b]). A barrier consisting of a berm will be constructed across the interface between the working and capped sections of the pile in order to separate meteoric water deposited on the working portion of the pile from that deposited on the capped section of the

pile. Water deposited on the working part of the pile will be collected in the retention basin through the above mentioned weeping tile system. Water deposited on the capped section of the pile will be returned to the North Spring and Range Creek recharge systems through the capillary break feature.

This system will serve the following purposes:

- 1. The clay cap and liner systems will seal the tailings pile from the environment and prevent the infiltration of meteoric water into the pile.
- 2. The weeping tile system and lower clay liner will contain any meteoric water, should it infiltrate the pile. The system will collect the water and deliver it to a lined retention basin for analysis and ultimate disposal.
- 3. The capillary system will direct meteoric water deposited on the tailings pile off to the side of the pile and back into the North Spring and Range Creek Recharge system.
- 4. The berm dividing the working and capped sections of the pile will serve to prevent meteoric water deposited on the working section of the pile from entering the environment.

The sand tailings will be placed in controlled lifts approximately 10 feet to 50 feet in thickness. As the material is placed from the bottom of the site upwards, when final slopes can be reclaimed, a cover consisting of approximately four feet of sorted waste will be used to cover the sand tailings. Topsoil which has been removed from the site and stored in a designated area will be used to cover the sorted waste to enhance successful revegetation and final reclamation activities. The capillary barrier system will ensure that water collected on the cap will flow off the cap and be available to recharge the groundwater system, described further in **Section 8.4**. A more detailed description of the mine and reclamation plans are in the DOGM, Mine and Reclamation Plan, M/007/0040 (GRR, 2015a).

Soil vapor vents will be included in the final design to remove residual vapors, in any, from the dry tailings material. Spacing will be determined during the design phase.

The system in its entirety will be designed to exclude water from the tailings while collecting water that does enter the tailings, delivering it to the collection basin, and excluding it from the environment. An analysis was conducted to evaluate the behavior of residual solvent remaining in the tailings impoundment. The evaluation consisted of: (1) performing quantitative calculations to estimate the mass of solvent contained in the tailings in the impoundment; (2) estimating the retention capacity of the sand tailings to evaluate how much solvent can be held immobile in the pore space of the sands; (3) comparing the mass of solvent to the retention capacity to estimate whether sufficient mass of solvent will be present to allow downward vertical migration of free phase solvent; and (4) qualitatively evaluating the fate of any free phase solvent that may exist in the impoundment. See the Fate and Transport Evaluation of Residual Solvent in Sand Tailings provided in **Appendix D** [URS, 2015b]).

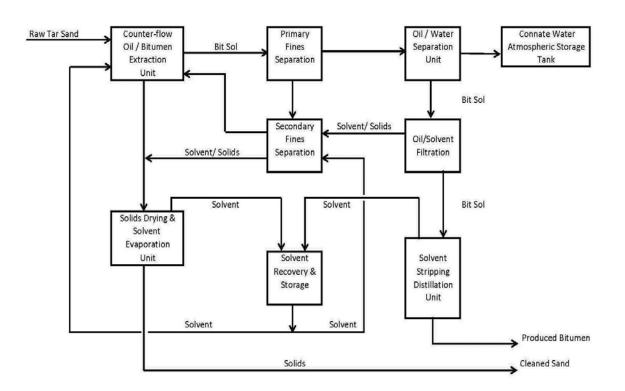
5.3 Extraction Process

Extraction of bitumen from oil sands ore will take place on-site. Crushed ore from the underground mine will be transported to a crushed ore storage area near the processing area. Storage of crushed ore near the process area allows for volumes of ore to be constantly available as feedstock for the bitumen extraction process. Prior to being fed into the process, recovered ore will be crushed to a size no greater than ¹/₄-inch and fed into a hopper to be mixed with extraction solvent. The material safety data sheet (MSDS) and properties of the proprietary solvent are located in **Appendix E**.

Solvent-wetted sand will then be mixed with additional solvent in an auger system. The wet sand/solvent mixture will flow from the auger to a closed settling tank. In this tank sand will settle to the bottom and solvent bitumen (bitsol) mixture will rise to the top. The liquid will be decanted off the vessel through a filter to remove any fines not separated from it in the decanter tank. Wet sand will be augured from the bottom of the settling tank to a system of drying augers.

The heated drying augers will serve to dry the sand in a sealed system thus removing the solvent by application of heat. The solvent will be evaporated from the sand and the solvent vapors thus generated will be condensed by cross exchange with chilled heat transfer fluid. Condensed solvent will be filtered and sent to a sealed holding tank. Clean, dry sand will be produced from the drying augers to sand tailings storage as detailed elsewhere in this document.

The bitsol stream from the sand washing system will be sent to a water separator. Connate (formation or naturally occurring) water will be separated from bitsol by gravity separation. This water will be sent to a water storage tank for subsequent use as underground dust control. Dry bitsol from the water separator will be heated and sent to a distillation unit.


The hot bitsol will be separated into its bitumen and solvent components under vacuum distillation. The distillation system will produce hot liquid bitumen to storage and solvent vapors. The solvent vapors will be condensed to liquid by cross exchange with cool heat transfer medium. The clean dry solvent will be sent to storage along with the solvent recovered off the sand. Solvent will be drawn from storage and used in the sand washing portion of the plant as described above. Bitumen will be stored on-site in tanks and held for transportation to the market.

Solvent used in the operation will be recovered from both the sand and the bitumen. During the pilot testing of the process 2 ppm of solvent remained in the dry sand tailings. Operation of the plant will produce a sand product with no more than 25 ppm of solvent weight to weight (w/w) in the dry sand tailings. Bitumen produced from the process will contain a maximum of 0.5% volume percent (v/v) of solvent. This solvent will be shipped from site with the bitumen product and delivered to a refinery. These two streams (dry sand to storage with a maximum solvent content of 25 ppm and the bitumen product with a solvent content of 0.5%) represent the two streams to which solvent will be lost. All other solvent will be recovered and reused in the process. See the Fate and Transport Evaluation of Residual Solvent in Sand Tailings provided in **Appendix D** (URS, 2015b).

Clean, dry sand or "tailings" will be stored in the above-referenced sand tailings area for the first five years of operation and will be returned to the underground workings as backfill after the sixth year of operation. **Exhibit 5.3.1** below illustrates the process flow sequence for the bitumen extraction from the oil sands.

EXHIBIT 5.3.1 Process Flow Diagram

PROCESS FLOW SEQUENCE - PROCESS FOR EXTRACTION OF OIL & BITUMEN FROM TAR SANDS

All liquid stored on-site including fuel, oil, and lubricants, water, solvent and bitumen will be stored in tanks. The tanks will be constructed with secondary containment consistent with the Spill Prevention, Control and Countermeasure (SPCC) Plan. The total contained volume of the bermed area will be at least 110% of the volume of the largest tank contained in the farm. Tanks will be underlain by impermeable liners, such as HDPE, to prevent migration of spilled or leaked hydrocarbons into the soil. The impermeable liners will be integrated with secondary containment berms and sealed against them. If any spills occur during mining or processing these will be managed as outlined in the SPCC Plan.

All tank connections that have a potential to be open to the atmosphere will be contained inside the tank dykes. Therefore all load lines and drains will terminate inside the dyke. All load stations will also be equipped with spill boxes. These boxes will be connected to the end of the load connections and will seal around them. The boxes will come equipped with a sealed lid designed to keep out rain and snow and will be designed to contain small leaks and drips associated with the normal use of the load connections. The boxes will be inspected on a schedule and cleaned as required. All materials removed from the boxes will be returned to their source tanks or disposed of in a manner in keeping with their identity and condition.

Any spills from the tanks to the bermed areas will be contained by these structures. Liquid collected in the berm areas will be identified and quantified. Material will be returned to the appropriate source tank or disposed of off site by a licensed contractor.

The tanks will be installed in the berms on piles with the bottoms of the tanks elevated off the ground. The tank liner material referred to above will be continuous under the tanks and around the piles and will be sealed against the piles by rubber seals. In this way the underside of the tanks will be kept out of any accumulated rain water and can be subject to periodic inspection for corrosion or damage.

If meteoric water that accumulates inside berms and other such structures is contaminated by spills, the water will be disposed of by a licensed contractor off site. If is it not contained it will be allowed to evaporate or be recovered and used for dust control.

As mentioned above, truck load stations will be located inside the bermed areas. Any spills from loading and unloading operations will be retained within the bermed areas. Spills will be cleaned from the area and returned to the appropriate tank, reprocessed or disposed of off site by a licensed contractor.

6. Issued and Pending Permits

6.1 Permit History

Permit activities include an Exploration Permit (E/007/0011) issued by DOGM in 2013.

6.2 Issued and Potential Permits and Plans

A NOI has been filed with DOGM, March 2015 (GRR, 2015a).

Although the operations will not discharge to jurisdictional surface waters and are exempt from storm water permitting obligations, GRR will obtain a Construction Storm Water General Permit consistent with the Utah Pollutant Discharge Elimination System (UPDES); GRR will plan to obtain UPDES storm water coverage from the Utah Department of Environmental Quality Division of Water Quality (DWQ) for both construction of the facility and to cover facility operations. A construction Storm Water Pollution Prevention Plan (SWPPP) has been prepared (URS, 2014a) and will be kept current as required by the Construction Storm Water General Permit (GRR, 2015b) and modified consistent with the requirements of the Multi-Sector Permit (DWQ, 2008).

A small source exemption registration will be filed with the Utah Division of Air Quality (DAQ) to address air quality issues associated with point source emissions.

Sanitary and solid waste water will be collected and removed from the site by a licensed contractor.

7. Water Information

7.1 Well and Spring Identification

No wells or springs have been or are expected to be impacted by the mining operations at the Bruin Point Mine because they are outside of the Affected Area, and the conservative design of the dry tailings impoundment will retain the small amount of contact water on-site.

Range Creek and North Spring are located outside of the Affected Area but within the Lease Boundary, **Figure 2.** North Spring is located near the northern boundary of the project area, outside of the Affected Area, and approximately 500 feet southeast of the proposed dry tailings area. The source area of North Spring is the upper Range Creek drainage basin west and southwest of the spring. North Spring is fenced, piped, and flows into a stock pond. A culvert runs from the stock pond to Range Creek. The condition of the spring is noted as being highly disturbed as a result of overgrazing (JBR, 2014; Calkin, 1990).

According to online records of the State Engineer's office, (Utah Division of Water Rights [DWRi], 2014) there are four water rights in the vicinity of the Project as shown in **Table 7.1.1** and **Figure 4**. No water rights will be affected by the GRR operations. Furthermore, there are no water rights within the Affected Area. Areas of disturbance will not be near the water right locations. There are no wells identified within a one-mile radius of the facility, likely due to the fact that groundwater is so deep.

Water Right Number	Water Source	Quantity (ft ³ /s)	Use	Water Right Owner ¹
91-3054	Range Creek	-	Stock watering directly on stream	Hunt Oil Company (25%) Meany Land & Exploration Inc. (75%)
91-11	Range Creek	-	Livestock	State of Utah DWRi (Application Permanently Lapsed)
91-15	Unnamed Spring	0.1	Stock watering directly on stream	Magnificent Seven, LLC (34.5%) Penta Creek LLC (65.5%)
91-Area	Stock Pond on Range Creek	1.2	Stock watering directly on stream (Expired)	Amoco Production Company

Table 7.1.1 Water Rights

Notes:

¹ http://maps.waterrights.utah.gov/mapserver/scripts/search.asp (DWRi, 2014)

Acronyms:

DWRi - Division of Water Rights

 ft^3/s - cubic feet per second

The South Spring/Tributary Spring is approximately 0.5 miles downstream from North Spring in a steep, forested drainage outside of the Affected Area. Water from the South Spring/Tributary Spring was observed coming out of the rock at several places in the drainage and appears to be heavily used by deer. There are no water rights on file with the State Engineers Office associated with this location.

Within Water Canyon, three cliff seeps were identified that contributed to an unnamed fork of Water Canyon. Cliff seeps are located on the far western portion of the Lease Boundary, but outside of the Affected Area where water was found trickling over the cliff edge or seeping from the cliff face. These seeps discharge through stress relief factures with groundwater sourced near the topographic high point of Bruin Point (approximately 1 mile northwest of the American Sands exploratory boring). This water shows signs of infiltrating into the ground and does not flow into Water Canyon. No springs or seeps were observed in the mine portal area within Bear Canyon. There are no water rights on file with the State Engineers Office associated with these locations (DWRi, 2014).

To mitigate potential impacts of the tailings facility to North Spring and Range Creek flows, the facility will be built in six phases, one phase in each of the six consecutive years of the facility's operation. The ground surface up gradient of the active phase will be left undisturbed, leaving infiltration from that area unchanged until the area is needed for tailing placement. The area of the active phase will contribute little if any infiltration during the year of its operation.

As each phase is completed and transitioned from active to inactive, it will be covered and reclaimed, with infiltration and runoff from the reclaimed area being directed off the facility cap to adjacent areas for infiltration to shallow groundwater. Using this method to construct the tailing facility will ensure that at greatest impact of the ultimate tailing facility footprint to the recharge source areas on North Spring and Range Creek will be approximately 26.5% of the source area for North Spring, and only 10.3% of the source area for the nearest perennial reach of Range Creek, will be subject to inhibited infiltration at any given time, Table 7.1.2. After five years, the full area of reclaimed tailings facility will again be available to contribute runoff for infiltration into the shallow groundwater system through the capillary barrier.

Recharge to the shallow aquifer feeding North Spring occurs when water derived from snowmelt infiltrates through the thin site soils and into the underlying fractured bedrock. The estimated drainage contributing to North Spring is shown on attached Figure 2 and is approximately 266 acres. The estimated drainage contributing to Range Creek, at the point where its flow becomes perennial about 1 mile down gradient from the tailing facility, is 681 acres. The footprint of the final tailing facility is approximately 109 acres which represents about 41 % of the drainage area contributing North Spring, and about 16% of the drainage area above the first perennial reach of Range Creek.

	Tailings Placem	ent Area as a % of t	he Total Area of the:						
End of Laydown Year	Placement Area	North Spring Recharge Area	Recharge Area of the First Perennial Occurrence of Range Creek	Tailings Placement Area (Acres)					
1	21.70%	8.90%	3.50%	23.6					
2	33.20%	13.60%	5.30%	36.2					
3	50.70%	20.80%	8.10%	55.3					
4	64.60%	26.50%	10.30%	70.4					
5	0.00%	0.00%	0.00%	0					
Total Tailing	Total Tailings Placement area (acres)								
North Spring	266								
Range Creek	Range Creek Perennial Reach Recharge Area (acres)								

Table 7.1.2 Dry Tailings Impoundment Land Status

Notes:

All Values are as end of period.

Tailings placement is complete at end of year 5. It is assumed that the cover is in place as of the end of period.

Some lag time (a few weeks) is likely between end of period.

The dry tailings will be constructed with a four foot clay liner under the tailings, a four foot clay cap (each with a permeability of 1×10^{-7} cm/s) over top of the tailings, a weeping tile system just above the lower clay liner, a capillary barrier above the clay cap, and 18 inches of growth media on top of the structure. The capillary barrier will allow water to drain off the dry tailings impoundment and allow the water to recharge North Spring. The underlying clay liner and clay cap will prevent meteoric water from coming into contact with the tailings. Instead, that water will flow to the sides of the dry tailings area, and will contribute to the recharge of the groundwater system and North Spring. The weeping tile system will ensure any water that contacts the tailings sand will drain into an HDPE-lined retention basin at the toe of the tailings impoundment.

Water that is collected in the retention basin will be analyzed. If it is not contaminated it will be used for dust control or allowed to evaporate. If it is found to be contaminated, it will be hauled off site by a licensed contractor and disposed of in a manner consistent with its contents. Any water that is collected in the HDPE-lined retention basin will not be discharged. These measures will ensure that there will be no impact to groundwater flows and that no solvent will be released to the environment. See **Appendix B** for additional information regarding the hydrology of North Spring (URS, 2014b). Data and field investigations were performed to determine the presence of any wells or springs in the vicinity of the Affected Area. The inventory area and resulting water feature locations are shown on Figure 2 of the Seep and Spring Inventory report, provided in **Appendix F**.

As documented in this application and the supporting materials, all mining-related operations will be engineered and conducted to have no impacts to the identified seeps and springs. As described below, the proposed monitoring will also ensure that the quality of these seeps and springs will be assessed throughout the life of the mine.

7.2 Surface Water Body and Drainage Identification

No perennial, intermittent or ephemeral streams or other features have been or are expected to be impacted by the mining operations at the Bruin Point Mine because those waters are outside of and not impacted by flows from the Affected Area. The following briefly identifies surface water features in the general area.

The Lease Boundary (as opposed to the Affected Area) is located within the Book Cliffs and Roan Cliffs area in the Colorado Plateau Physiographic Province. Hydrologically, the Lease Boundary falls within the headwaters of Range Creek Canyon (hydrologic unit code [HUC] 14060005), Lower Grassy Creek (HUC 14060007), Dry Creek (HUC 140600050402), and Cottonwood Canyon (HUC 140600050403), all part of the Colorado River system. **Figure 5** shows watershed boundaries in the Lease Boundary, as well as other water features.

The Affected Area will be located in the Grassy Trail Creek and Range Creek watershed. However, the headwaters of Range Creek and Grassy Creek are outside of the Affected Area. Range Creek eventually drains to the Green River (Uinta Watershed). The south and west sides of the lease area are also outside of the Affected Area and drop steeply off a plateau towards the headwaters of Water Canyon, which eventually drains to the Price River. Storm water flow into the Affected Area will be controlled as described in the above-referenced Construction Storm Water General Permit (GRR, 2015b) and consistent with the requirements of the Multi-Sector Permit (DWQ, 2008). As indicated, there will be no storm water flow from the Affected Area. As previously described, no contact storm water will be conveyed off site; all storm water runoff within the Affected Area will be contained and will be left to evaporate, used for dust control or will be hauled off site by a licensed contractor. The ultimate disposal of accumulated storm water will be dependent on its quality. In addition any storm water collected in the HDPE-lined retention basin below the tailings impoundment area will be allowed to evaporate, used for dust control or hauled off site by a licensed contractor depending on quality.

The named main stem of Water Canyon originates in the western portion of the Lease Boundary and is also outside of the Affected Area. It drains to the southwest, out of the Lease Boundary. The main stem originates at approximately 9,500 feet above mean sea level (amsl) with a small intermittent channel that contained rock outcrops and wet areas in October 2012 (JBR, 2014). The main stem within the Lease Boundary was wet but not flowing in either May or October, (JBR, 2014). Any precipitation that enters the Affected Area from the hillside above will be controlled and contained using drainage controls and Best Management Practices (BMPs) as described in the Construction Storm Water General Permit (GRR, 2015b).

7.3 Well-head Protection Area Identification

No well-head protection areas have been identified within a one-mile radius of the mine operation.

7.4 Drinking Water Source Identification

No drinking water sources have been identified within a one mile radius of the mine operation.

7.5 Well Logs

According to online records of the State Engineer's office, (DWRi, 2014) there are no constructed wells identified within the Affected Area for the purpose of groundwater extraction.

8. General Identification

8.1 Location Identification

As indicated throughout this application, the mining-related facilities have been designed as zero discharge with no potential for any off site mining or process-related flows. There are no point source discharges from the operation and the facility is conservatively designed. All process equipment will be housed in buildings with seal welded steel floors and seal welded lip drips. Any spill from the processing plant will be contained within the buildings with the drip lip acting as a berm to prevent liquid from spilling into the environment. All of the tanks on the site will be constructed with secondary containment structures and will be operated in a manner consistent with the SPCC Plan. GRR will monitor the residual solvent content of the sand tailings, in accordance to the Sampling and Analysis Plan (SAP) as discussed further in **Section 11**.

8.2 No Planned Discharges

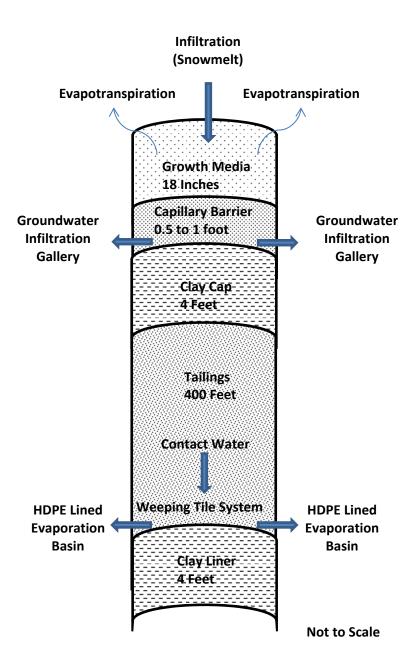
This mine is designed to be a zero-discharge operation. Ore processing will occur in a closed system within the tank farm and processing plant. The system will be designed to maximize the solvent recovery and reuse, from both the sand tailings and the bitumen. Storm water will be

managed consistent with the facility's Construction Storm Water General Permit (GRR, 2015b).

8.3 No Potential Discharges

This mine operation is designed to be a zero-discharge operation. There is no process water associated with the sand tailings storage area. All tanks will be constructed with secondary containment consistent with the applicable SPCC Plan. Connate water (naturally occurring in the geologic formation water within the tar sands) will be separated during processing and stored in the water (atmospheric) storage tank shown previously in **Exhibit 5.3.1**. That water (approximately 50 barrels or 2100 gallons per day) will be collected and used then for dust control or disposed of by a licensed contractor, depending on quality.

8.4 No Means of Discharge


The extraction process is a closed system designed to retain the solvent mixture until all of the solvent can be reused. The nature of the closed system also prevents outside contaminates from entering the processing stream.

Stockpiles of mined ore will be covered and maintained adjacent to the processing plant, to maintain a constant supply of feedstock for the processing system. The stockpiles will be covered so storm water cannot come into contact with the ore or tailings sand. Should any storm water come in contact with the stockpiles, that water will be retained on-site and/or managed in accordance with the facility's Construction Storm Water General Permit SWPPP (URS, 2014a). Storm water will not be discharged and will evaporate, used for dust control, or will be hauled off site by a licensed contractor for disposal.

Areas used for stockpiles, sand tailings, and processing facilities will be bermed and graded higher than surrounding areas to prevent contamination of storm water within the Bruin Point Mine area. In addition, the working platforms that make up the mining areas will be bermed to meet Mine Safety and Health Administration regulations, and act as a containment area where runoff will remain until it evaporates. To capture and contain all runoff during a 100-year, 6-hour storm event, retention basins were designed on preliminary calculations for the site and assuming a 72-hour holding time. Retention basins will be constructed with clay lined bottoms, as shown in **Appendix G** (URS, 2015a).

The Preliminary Stability and Hydrology Analyses in **Appendix G** identify the design criteria and specify how the berms and the dry tailings cap and liner will be constructed (URS, 2015a). The berms will be constructed using a stable configuration that meets the State Engineers required factors of safety, as applicable. The dry tailings liner under the tailings pile and cap will be installed to minimize water infiltrating through the dry tailings. Permeability tests were performed on a single partings sample that will be used to construct the liner $(1x10^{-7} \text{ cm/s})$. Permeability results for this sample were 2.3 x 10^{-7} cm/s , meaning that $1x10^{-7}$ cm/s is achievable. Engineered controls will be utilized so the Affected Area will not have an impact to groundwater. In addition (and as referenced above), the major lithologies (shale, tar sand) in the subsurface have low permeability and do not allow for groundwater recharge of the Garden Gulch and Douglas Creek hydrologic units within the area of operations via vertical infiltration. The high bitumen content layers within the Affected Area inhibit downward movement of groundwater from the shallow groundwater system to lower units by semi-sealing fractures/joints. In addition to the clay liner and clay cover, a capillary barrier and 18 inches of topsoil will be placed over the clay cover. The capillary barrier is an engineered earthen cover designed and constructed to direct water off the sand pile and into the recharge system for North Spring and Range Creek. The Capillary System will be designed to intercept and move water laterally across the top of the clay cap to infiltration galleries for groundwater recharge. The capillary barrier is a coarse-grained layer underlying a fine-grained growth media (see Exhibit 8.4.1 below). The contrast in capillary pressure between the fine- and coarse-grained layers inhibits movement of water across the interface between the two layers because pore water is at a lower energy state in the finegrained material (capillary suction) than in the coarse-grained material. The fine-grained growth medium will have enough storage capacity to hold the infiltration that occurs during the winter, when the highest precipitation occurs; the water held in storage is then consumed by evapotranspiration during the growing season. Capillary suction within the top layer (growth media) will be less than atmospheric (negative pressure) and will counteract the downward force of gravity until the media becomes fully saturated. At this point, gravity overcomes the capillary forces and water drains into the capillary barrier. If infiltration does reach into the capillary barrier, the high conductivity material would act as a preferential flow path to move water laterally, across the top of the clay cap and topographically down slope to infiltration galleries for infiltration into the undisturbed subsurface. Infiltration within the capillary barrier will continue until it contacts the top of the clay cap, where infiltration will laterally spread topographically down slope by gravitational forces to designed infiltration galleries around the perimeter of the tailings impoundment. These infiltration galleries will be in contact with fractured bedrock allowing recharge of the shallow groundwater system and North Spring.

EXHIBIT 8.4.1 Typical Cap Schematic Showing Infiltration

Storm water (including storm water intercepted by haul road and access roads) will be managed on-site using BMPs as described in the applicable permit and Construction Storm Water General Permit SWPPP (URS, 2014a). If erosion is observed, GRR is committed to using appropriate water and erosion control measures including properly installed filter fence, straw bales check damns, dirt berms, log berms, (<0.1 acre-foot) sediment retention sumps and rock check dams.

8.5 Treatment Processes and Technology

All production flows will be contained within the processing plant and tanks. There will be no liquid discharges from the facility. After bitumen has been washed from the ore, the sand will be dried to recover the solvent; the sand tailings will then be placed in the dry tailings area. Liquid components of the extraction process will be separated into its bitumen and solvent constituents as the final step of extraction. Bitumen will be stored in tanks for eventual transportation to a refinery and the solvent will be returned to the process stream. Truck loading will be in compliance with the SPCC Plan.

8.6 No Discharge Effluent Characteristics

This mine operation is designed to be a zero-discharge operation. There is no planned discharge of water or other liquid from the operation.

9. Hydrology Report

9.1 Regional Geology and Landform

The Bruin Point Mine is located within the Book Cliffs and Roan Cliffs area in the Colorado Plateau Physiographic Province (Stokes, 1986) and falls along the southern border of the Uinta Basin (Blackett, 1996), also known as the West Colorado River Basin. The topography in the area is mountainous and rugged, with nearly 2,000 feet of relief. Elevations within the Lease Boundary range from approximately 8,200 feet amsl at the southern end of the Lease Boundary, to over 10,000 feet amsl at Bruin Point at the northwest corner of the Lease Boundary.

Blackett (1996) notes the formation of the Uinta Basin was the result of simultaneous subsidence within the basin and uplift on all sides in what is now Utah, Colorado, and Wyoming beginning in the early Tertiary period. The structure of the sandstone and shale deposits within the basin suggests the rate of subsidence during this time was relatively high. Development of the basin ended in the late Eocene or early Oligocene but some additional uplifting within the region occurred during the middle Miocene.

9.2 Area Specific Geology

The oil sands deposits on the south end of the Uinta Basin are referred to as the Sunnyside deposit (Blackett, 1996). Regionally, these deposits dip 3 to 12 degrees to the northeast. Deposition of the Sunnyside deposit is the result of several stacked channels, down cutting, and subsequent in-filling. The sandstones of this deposit were deposited in meandering stream and fluvial environments at the margin of Lake Uinta. The oil sands within the Sunnyside deposit are as much as 680 feet (210 meters) thick and are overlain with about 400 feet (122 meters) of fine-grained rock. Studies of the relations of the different units suggest a correlation between the strata in the Sunnyside deposits with the Douglas Creek, Garden Gulch and Parachute Creek members in the eastern Uinta Basin (Campbell and Ritzma, 1979).

The oil sands to be mined for this project occur in the upper part of the Colter Formation and the lower part of the Green River Formation (Garden Gulch and Douglas Creek Members). The Colter Formation is composed of nonmarine, fluvial and deltaic sandstone interbedded with red and green shale, mudstone, and thin limestone (Morrison Knudsen, 1984). The fluvial sandstone is the host rock for the bitumen. The Green River Formation overlies the Colter Formation and consists of freshwater marlstone, oil shale, limestone, siltstone, sandstone, oil sands, and shale deposited in a lacustrine environment. The distinction between the Colter and the Green River Formations is difficult to discern because the two formations are intertongued and have very similar lithological types (Blackett, 1996). Bitumen occurs chiefly in the sandstone beds of the Colter Formation and the lower members of the Green River Formation. The Sunnyside deposit is the most exposed deposit of the southwest Uinta Basin deposits with exposures along the Roan and Book Cliffs (Campbell and Ritzma, 1979). **Figure 6** is a geological map of the Lease Boundary and the surrounding area.

9.3 Area Surface Water

The Lease Boundary falls within the watersheds of Range Creek Canyon, Lower Grassy Creek, Dry Creek, and Cottonwood Canyon, which are all part of the Colorado River system. The Affected Area for the mine is confined to the Lower Grassy Creek and Range Creek watersheds.

Precipitation in this area is estimated at about 10.12 inches annually, with September having the highest levels, (NOAA, 2014). This is not sufficient to sustain perennial flow in the watersheds in this region.

The USGS does not maintain any gauging stations in the area surrounding the Lease Boundary.

9.4 Area Groundwater

9.4.1 Area Groundwater Setting

Groundwater within the Affected Area is best characterized as shallow (<100 feet bgs) as evidenced by discharge from North Spring and other seeps near Range Creek. Additional information on the hydrology of the region is included as **Appendix B**, describing the hydrology of North Spring. Additionally, the amount of recharge for that system is sparse and directly related to precipitation. The shallow groundwater system follows an annual cycle related to snowmelt, with discharge from springs during the spring, and decreasing during summer and fall to less than 2 gpm and often times drying up altogether. The studies (reviewed in the hydrologic report [URS, 2014b]) provide consistent evidence that Range Creek is dry in the vicinity of the Affected Area. This is because, in a typical year, there is insufficient precipitation and discharge from springs/seeps to sustain perennial flow in Range Creek near the Affected Area. In turn, the shallow groundwater flow does not move downward. Vertical movement of groundwater from the shallow system to greater depths is inhibited by low permeability shale and oil sand layers, which dominate the stratigraphic column at depths greater than 100 feet bgs. Even in an atypical year where precipitation exceeds the historical averages, the design of the mine operations will be such that contact water is retained on-site and non-contact water diverted to enhance the recharge of the shallow groundwater system.

9.4.2 Affected Area Hydrology

During exploratory drilling in November 2013, GRR encountered groundwater at 400 to 420 feet flowing at less than two gpm. This is anomalous with 50+ exploratory borings drilled by Amoco (as reviewed in the hydrologic report [URS, 2014b]), including at least three in the immediate vicinity of the American Sands boring. None of the logs for the Amoco borings (also included in the hydrologic report, in part [URs, 2014]) reported groundwater at depths below the shallow aquifer in the Parachute Creek Member. Flow from the American Sands boring is believed to be from the shallow groundwater system trickling down the Amoco borings to 400-420 feet bgs.

Nearby seeps and springs, as described in **Section 7.1**, provide evidence of localized, shallow groundwater, representing an isolated perched aquifer (JBR, 2014). The source area of North Spring is the upper Range Creek drainage basin northwest of the spring (see **Appendix B** [URS, 2014b]).

The mining and process activities are designed to be zero discharge. All storm water will be collected and captured and will either be left to evaporate, used for dust control (if free from visible sheen) or will be hauled off site by a licensed contractor for disposal as further described above. The *de minimis* use of water on-site will not impact groundwater or surface water because the facility and tailings cap and cover will be designed to provide adequate controls on infiltration into the shallow groundwater. There will be ongoing monitoring of the seeps and springs within the Lease Boundary, as detailed in the SAP and Quality Assurance Project Plan (QAPP) provided in **Appendix H** (URS, 2015 d,e).

9.4.3 Area Surface and Groundwater Quality

Samples to determine baseline water quality at seeps and springs within the Lease Boundary were collected during the initial hydrologic survey in May 2012. **Tables 9.4.3.1** and **9.4.3.2** show water quality data from this investigation (JBR, 2014). The complete American West Analytical Laboratories (AWAL) report is included in **Appendix F.**

	Ra	nge Creek	Lower Grassy Trail Creek and Tributaries		
	Lower Green – Desolation Canyon Watershed		Price Watershed		
	North Spring	Range Creek (Flume)	Cliff Seep (#1)	Water Canyon	
Acidity	<15.0	<15.0	<15.0	<15.0	
Alkalinity as CaCO ₃	181	221	254	348	
Bicarbonate as CaCO ₃	181	221	240	348	
Carbonate as CaCO ₃	<20.0	<20.0	<20.0	<20.0	
Chloride	0.471	0.676	2.05	3.85	
Specific conductance (µmhos/cm)	338	389	504	860	
Hardness as CaCO3	166	192	218	395	
pH @ 25° C (std units)	7.68	8.21	8.28	8.14	
Sulfate	8.34	12.1	35	160	
Total Dissolved Solids	176	192	276	520	
Total Suspended Solids	<3.00	<3.00	<3.00	<3.00	
		Nutrients (mg/L)			
Ammonia as N	< 0.0500	< 0.0500	< 0.0500	< 0.0500	
Nitrate as N	0.396	0.206	< 0.0100	0.0458	
Nitrite as N	< 0.0100	< 0.0100	< 0.0100	< 0.0100	
Total Orthophosphate as P	< 0.0500	< 0.0500	< 0.0500	< 0.0500	

Table 9.4.3.1 General Water Chemistry and Nutrients

Acronyms:

μmhos/cm - micromhos per centimeter mg/L - milligrams per Liter std - standard

	Range Creek				Lower Grassy Trail Creek and Tributaries					
	Lower Green – Desolation Canyon Watershed				Price Watershed					
	HUC 14060005					HUC 14060007				
	North	Spring	Range Cre	eek (Flume)	Cliff Seep (#1) Water C			Canyon		
	Total	Dissolved	Total	Dissolved	Total Dissolved		Total	Dissolved		
Aluminum	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	0.042	< 0.100		
Arsenic	0.00241	0.00284	0.00297	0.00305	0.000796	0.000855	0.00135	0.00106		
Boron	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500		
Cadmium	< 0.00018	< 0.00018	< 0.00018	< 0.00018	< 0.00018	< 0.00018	< 0.00018	< 0.00018		
Calcium		40.8		44.7		46.3		62.4		
Copper	< 0.00080	< 0.00080	< 0.00080	< 0.00080	< 0.00080	< 0.00080	< 0.00080	< 0.00080		
Iron	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	< 0.100	0.424	< 0.100		
Lead	< 0.00040	< 0.00040	< 0.00040	< 0.00040	< 0.00040	< 0.00040	< 0.00042	< 0.00040		
Magnesium		15.6		19.5		24.8		58		
Manganese	< 0.00120	< 0.00120	0.00149	0.00127	< 0.00120	0.00165	0.03	0.0154		
Molybdenum	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 0.0200	< 0.0200		
Potassium		<1.00		<1.00		<1.00		1.45		
Selenium	< 0.00080	< 0.00080	< 0.00080	< 0.00080	< 0.00080	< 0.00080	0.00139	< 0.00080		
Sodium		5.33		6.34		22.1		45.2		
Zinc	0.00585	< 0.00500	< 0.00500	< 0.00500	< 0.00500	< 0.00500	< 0.00500	< 0.00500		

Table 9.4.3.2 Metals and Metalloids (in mg/L)

Acronyms:

HUC - hydrologic unit code

mg/L - milligrams per Liter

9.5 Affected Area Groundwater Investigation

9.5.1 Seep and Spring Inventory

The seep and spring inventory area was based on the Lease Boundary for the proposed Bruin Point Mine. **Appendix F** contains the entire Seep and Spring Inventory report (JBR, 2014). Observations and conclusions are summarized below.

Field work was carried out in early October 2012. The work was carried out by two hydrogeologists. The intent of the inventory was to obtain baseline seep and spring locations. The seep and spring resources were sparse in the vicinity of the proposed mine operations; only two springs and three cliff seeps were found in addition to several dry features (at the time of the inventory), which may constitute seeps and springs during runoff. None of these features are affected by the project, because they are not within the Affected Area and/or because the design of the cover, cap, and liner for the proposed tailings demonstrates adequate control of infiltration into the shallow groundwater and retention of water for consumption by the vegetated cover using the design parameters as described above (JBR, 2014). **Appendix F** presents all the data and information collected.

10. Groundwater Discharge Control Plan

The zero-discharge design of the tanks is described in detail in **Section 8**. However, to determine the possible contaminants present in the sand tailings, samples of sand tailings were analyzed for leachable constituents, as described below.

In September 2012, GRR pilot processed three samples of raw tar sands from the Sunnyside, Utah ore body. The samples were processed using American Sands' proprietary solvent in a manner designed to emulate, as accurately as possible, the process that the company plans to use on a production scale at the mine site. The processed samples replicate, the sand tailings that will be generated by the production facility when the site is in operation. Properties of the proprietary solvent are in **Appendix E**.

Three tailing samples and one raw tar sands sample were collected and sent to AWAL in Salt Lake City, Utah for analysis. Each sample was analyzed using U.S. Environmental Protection Agency (EPA) Method 1312, the Synthetic Precipitation Leaching Procedure (SPLP), which simulates rainfall and snowmelt that might infiltrate a stockpile of the sample material and the resulting leachate that might seep out of the stockpile. The purpose of this SPLP procedure is to estimate the maximum level of contaminants with the potential to leach from the stockpile into soil, and potentially groundwater, underneath.

Table 10.1 shows the September 2012 results for inorganic analytes, which are primarily metals (JBR, 2014). The samples labeled U-001A, U-002A, and U-003A are the processed ore, and the sample labeled U-004B is raw tar sands. **Table 10.1** also shows several other parameters, including pH, oil and grease, total dissolved solids (TDS), total organic carbon (TOC), and total recoverable hydrocarbons (TRPH).

Table 10.2 shows the results for organic analytes that were above their respective detection limits in at least one sample (13 analytes out of 106 total) plus total petroleum hydrocarbons, diesel range organics (TPH-DRO). Three of these analytes (m,p-xylene, xylenes (Total), and methylene chloride) were at detectable levels in one of the lab's quality control method blank. Since these three analytes were detected at less than five times the method blank concentrations, it can be assumed laboratory contamination was present and the concentrations are estimated quantities.

Table 10.3 shows Utah groundwater quality standards as codified in R317-6-2. **Table 10.3** also shows the Utah Initial Screening Levels (DWQ, 2014) for groundwater, which constitute the action level for leaking underground storage tanks; these action levels are not applicable to sand tailings or stockpiles, but are included to provide a standard for comparison.

Results of the lab analyses show very low levels of constituents in the leachate. The majority of analyses were below detection limits; the few analyses that showed detectable levels of analytes were orders of magnitude below the applicable standards. Benzene, toluene, ethylbenzene, and xylenes (BTEX), compounds are below analytical reporting limits. Note that the pH of the leaching solution under the SPLP method is 4.2, which explains why the pH results are below the standard range of 6.5-8.5; pH 4.2 is designed to simulate the pH of rainfall in the mountain region of the U.S. The lab analytical results also help demonstrate that stockpiles of raw tar sand or sand tailings produced by GRR process will not impact groundwater. The complete AWAL report is included in **Appendix I**.

Sand tailings will be stored in a designated area placed on a compacted liner designed to meet site-specific BMPs (i.e., with a constructed permeability of 1×10^{-7} cm/s). Infiltration is anticipated to be

less than 1 in/yr and will be captured in the retention basin. The HELP model, which was developed by the EPA for evaluation of landfill designs, was used for modeling the cover system to the tailings. Weather, soil and design criteria were used to model the effects of surface storage, snowmelt, runoff, infiltration, evapotranspiration, vegetative growth, soil moisture storage, lateral subsurface drainage, leachate recirculation, unsaturated vertical drainage, and leakage through soil and liner. The modeling demonstrates that the cover provides adequate control on infiltration into the shallow groundwater for the vegetated cover using the design parameters. The model was run for a period of 50 years and rerun until the initial and final moisture content for each layer reached a steady-state or equilibrium (URS, 2014c). See **Appendix C** for the full results of the HELP model.

After construction of the dry tailings impoundment has started, tailing samples will be collected and evaluated using the HELP model to determine the time required for water to infiltrate through the tailings down to the bottom compacted liner. The dry tailings impoundment will be constructed so that there will not be impact to Range Creek. The dry tailings will be constructed with a four foot clay liner under the sand, a four foot clay cap (both with a maximum permeability of 1×10^{-7} cm/s), a weeping tile system immediately above the underlying clay liner draining to a retention basin at the base of the pile, and a capillary barrier and 18 inches of growth media on top of the clay cap. The capillary barrier will allow any water to drain off the dry tailings impoundment; therefore allowing the water to be discharged to the sides of the dry tailings storage for recharge of the groundwater system and North Spring. The weeping tile system will allow any contacted water to drain into an HDPE-lined retention basin at the toe of the tailings impoundment. This water will be collected and allowed to evaporate, used for dust control or disposed of by a licensed contractor for disposal. The ultimate destination of this water will be dependent on its volume and quality. Any water that is collected in the HDPE-lined retention basin will not be discharged. These measures will ensure that there will be minimal impact to groundwater flows and that no solvent will be released to the environment.

At startup, the sand will be sampled daily and analyzed. Operating data will also be collected daily and recorded against the results of the analysis of each sand sample thereby establishing a correlation between sand quality and plant operating conditions. After a record of successful sand quality has been established showing sand is being produced with a residual solvent concentration of 25 ppm or less, the operating data collected to that point will be analyzed and a correlation will be established between good sand quality and operating conditions (see Tailings Quality Control provided in Appendix D [URS, 2015c]). If needed, sand drying operating conditions will be adjusted to match the successful operating conditions observed in the system startup period. In addition to operating in compliance with the operating procedures established above, sand tailings will be inspected and free of moisture prior to being placed in the dry tailings impoundment. A moisture probe will be used to inspect and record the moisture content of each load of sand moved from the plant to the tailings pile. In this way, an inspection will be performed for every 60 tons of sand produced resulting in 166 such inspections being performed each day. Sand will also be inspected hourly by operations personnel. Gas detection equipment will collect solvent vapor concentration readings above the sand pile and archive those to a server. At time of writing, best available technology (BAT) is based on gas chromatography and can detect solvent vapors in air down to 50 ppm with a minimum sampling time of 5 minutes. Using the then current BAT, if solvent is found in the air at the minimum detectable concentration, an alarm will sound and operators will intervene to reestablish proper sand drying practices. All plant alarms will be logged electronically.

		Analytical Result SPLP Metals Method 1312				
Compound	Units	Sample U-001A	Sample U-002A	Sample U-003A	Sample U-004B	
Antimony	mg/L	< 0.00200	< 0.00200	< 0.00200	< 0.00200	
Arsenic	mg/L	< 0.00200	< 0.00200	< 0.00200	< 0.00200	
Barium	mg/L	0.0413	0.0401	0.0353	0.0266	
Beryllium	mg/L	< 0.00200	< 0.00200	< 0.00200	< 0.00200	
Boron	mg/L	< 0.500	< 0.500	< 0.500	< 0.500	
Cadmium	mg/L	< 0.000500	< 0.000500	< 0.000500	0.000924	
Calcium	mg/L	2.81	2.62	2.24	5.42	
Chromium	mg/L	< 0.0100	< 0.0100	< 0.0100	< 0.0100	
Copper	mg/L	< 0.00200	0.00302	0.00252	0.0176	
Iron	mg/L	1.17	1.18	1.17	0.3	
Lead	mg/L	< 0.0100	< 0.0100	< 0.0100	< 0.0100	
Lithium	mg/L	<0.100 ~	<0.100 ~	<0.100 ~	< 0.100 ~	
Magnesium	mg/L	<1.00	<1.00	<1.00	<1.00	
Manganese	mg/L	0.684	0.614	0.457	0.0669	
Mercury	mg/L	< 0.00100	< 0.00100	< 0.00100	< 0.00100	
Molybdenum	mg/L	< 0.0200	< 0.0200	< 0.0200	< 0.0200	
Nickel	mg/L	0.0277	0.0283	0.0243	0.0309	
Potassium	mg/L	<1.00	<1.00	<1.00	<1.00	
Selenium	mg/L	< 0.00200	< 0.00200	< 0.00200	< 0.00200	
Silver	mg/L	< 0.00200	< 0.00200	< 0.00200	< 0.00200	
Sodium	mg/L	<1.00	1.24	1.5	1.48	
Strontium	mg/L	< 0.0500	< 0.0500	< 0.0500	< 0.0500	
Thallium	mg/L	< 0.00200	< 0.00200	< 0.00200	< 0.00200	
Tin	mg/L	< 0.500	< 0.500	< 0.500	< 0.500	
Vanadium	mg/L	< 0.0500	< 0.0500	< 0.0500	< 0.0500	
Zinc	mg/L	< 0.100	< 0.100	< 0.100	0.306	
Alkalinity (as CaCO ₃)	mg/L	<10.0	<10.0	<10.0	<10.0	
Chloride	mg/L	<5.00	< 5.00	< 5.00	< 5.00	
Oil & Grease	mg/L	<3.00	<3.00	<3.00	<3.00	
рН	S.U.	6.27	5.89	4.51	3.6	
Sulfate	mg/L	11.2	9.03	7.95	22.1	
Total Dissolved Solids	mg/L	14.0 #	14	20	46	
Total Organic Carbon	mg/L	6.69 B	7.14 B	6.90 B	2.83 B	
Total Recoverable Hydrocarbons	mg/L	<3.00	<3.00	<3.00	<3.00	

Notes:

~ Result was not performed in accordance with National Environmental Laboratory Accreditation Program (NELAP) requirements # High relative percent difference (RPD) due to low analyte concentration. In this range high RPDs are expected.

B This analyte was also detected in the SPLP method blank above the practical quantification limit (PQL) at 1.0056 mg/L. The batch method blank was below the PQL.

Acronyms:

mg/L - milligrams per Liter SPLP - Synthetic Precipitation Leaching Procedure

S.U. - standard unit

Table 10.2 Organic Analytical Report

		Analytical Result VOCs SPLP*				
Compound		Sample 001A	Sample 003A	Sample 005A	Sample 007A	
1,2,3-Trimethylbenzene	mg/L	< 0.00200	< 0.00200	0.00281	< 0.00200	
1,2,4-Trimethylbenzene	mg/L	< 0.00200	0.0175	0.00425	< 0.00200	
1,3,5 Trimethylbenzene	mg/L	< 0.00200	0.011	0.00245	< 0.00200	
2-Butanone	mg/L	0.0101	< 0.0100	0.0118	< 0.00200	
Ethylbenzene	mg/L	< 0.00200	0.00209	< 0.00200	< 0.00200	
m,p-Xylene	mg/L	<0.00200 B	0.0156 B	<0.00200 B	<0.00200 B	
Methylene chloride	mg/L	0.00329 B	0.00327 B	0.00268 B	0.00304 B	
n-Hexane	mg/L	0.0129	0.015	0.0138	< 0.00200	
Naphthalene	mg/L	< 0.00200	0.0035	0.00351	< 0.00200	
o-Xylene	mg/L	< 0.00200	0.00569	< 0.00200	< 0.00200	
Toluene	mg/L	< 0.00200	0.00466	< 0.00200	< 0.00200	
Xylenes, Total	mg/L	<0.00200 B	0.0213 B	<0.00200 B	<0.00200 B	
TPH-DRO	mg/L	< 0.0200	< 0.0200	< 0.0200	< 0.0200	
TPH-GRO	mg/L	0.0971	0.19	0.162	< 0.0200	

Notes:

B - This analyte was also detected in MB-SPLP-21377, which was a method blank

* VOCs SPLP 1312 List by GC/MS Method 8260C/5030C

Total # of analytes = 106. All analytes not listed above were non-detect for all samples.

Acronyms:

mg/L - milligrams per Liter

SPLP - Synthetic Precipitation Leaching Procedure TPH-DRO - total petroleum hydrocarbons, diesel range organics TPH-GRO - total petroleum hydrocarbons, gasoline range organics VOCs - volatile organic compounds

Parameter	Units	Standard ¹	Parameter	Units	Screening Level
pН	S.U.	6.5-8.5			
Metals			Volatile Organics ¹		
Antimony	mg/L	0.006	Benzene	mg/L	0.005
Arsenic	mg/L	0.05	Toluene	mg/L	1
Barium	mg/L	2	Ethylbenzene	mg/L	0.7
Beryllium	mg/L	0.004	Xylenes (Total)	mg/L	10
Cadmium	mg/L	0.005	Initial Screening Levels – Groundwater ²		
Chromium	mg/L	0.1	TPH-GRO	mg/L	1
Copper	mg/L	1.3	TPH-DRO	mg/L	1
Lead	mg/L	0.015	Oil & Grease or TRPH	mg/L	10
Mercury	mg/L	0.002	Methyl t-butyl ether (MTBE)	mg/L	0.2
Selenium	mg/L	0.05	Naphthalene	mg/L	0.7
Silver	mg/L	0.1			
Thallium	mg/L	0.002			
Zinc	mg/L	5			

 Table 10.3 Utah Groundwater Quality Standards (R317-6-2)¹ & Initial Screening Levels²

Notes:

¹http://www.waterquality.utah.gov/GroundWater/gwstandards.htm (DWQ, 2014)

²http://undergroundtanks.utah.gov/docs/cleanupLevels.pdf (DERR, 2005) Acronyms:

mg/L - milligrams per Liter

S.U. - standard unit

TPH-DRO - total petroleum hydrocarbons, diesel range organics

TPH-GRO - total petroleum hydrocarbons, gasoline range organics

TRPH - total recoverable hydrocarbons

11. Compliance Monitoring Plan

Throughout production, closure, and reclamation, measures will be taken to ensure that material does not impact surface water or groundwater. Production facilities on the site have seal welded steel floors and seal welded drip lips to contain any spills, and all tanks within the tank farm will be constructed with secondary containment structures.

GRR has developed a monitoring plan (consistent with the terms of its permit) that will include monitoring and sampling of surface water, groundwater, retention basin and dry materials. Eight groundwater monitoring wells are proposed to be installed. Wells are proposed to be installed at the edges of the tailings storage facility and the processing area.

Groundwater monitoring will be conducted during the first year, prior to operation, in order to establish background conditions at the site. Each monitoring well will be sampled eight times during the first year for a total of up to 64 data points. Statistical analysis will then be conducted to establish background conditions as detailed in the QAPP (URS, 2015d). After the first year, groundwater monitoring will be conducted during the spring, summer, and fall quarters at each of the monitoring wells. Sampling will not be conducted during the winter quarter, because the sampling locations will be inaccessible due to weather conditions. The location of monitoring wells, described below, was

determined based on topographic and hydrologic gradients and locations of proposed future operations. The proposed monitoring well locations are shown in **Figure 2**.

Tailings Monitoring Wells

Up to five tailings monitoring wells are proposed to be installed on the northern, eastern, and southern edges of the proposed tailings storage area.

Process Monitoring Wells

Up to three process monitoring wells are proposed to be installed on the eastern and western edges of the processing area.

Dry Material Impoundment (DMI) Area

DMI located in northwestern area of Lease Boundary, used to store dry material.

Sampling from the DMI area will occur during the first and second quarter that dry materials are produced. Dry material samples locations will be determined using Microsoft[®] Excel's Random Number Generator. In addition, the retention basin (if water is present) will be sampled at the same time as the groundwater monitoring wells. See **Appendix H** for the SAP and QAPP (URS, 2015d,e).

Groundwater monitoring will continue post closure on an annual basis. In addition an air sample will be taken from the weeping tile system at the retention basin point and an analysis for the solvent vapors. Post closure monitoring will continue for a period of 10 years on an annual basis; however, four samples with no detectable solvent vapors would be a reason to discontinue groundwater monitoring, after the 10-year period is over.

Groundwater entering the underground workings is not anticipated because groundwater in the area is deep or in the shallow groundwater system above sealed off by the oils layers that have created aquitards. However, the underground workings will be monitored and inspected for groundwater entering the mine. If groundwater is present GRR will immediately notify DWQ, investigate the source, and develop a plan for mitigation.

12. Reclamation and Closure Evaluation

Upon completion of mining activities, the mine and processing facility sites will be reclaimed with the goal of creating open space and wildlife habitat, consistent with current land use. Equipment and facilities will be removed from the site and the site will be regraded, topsoiled, and reseeded to create a safe, stable, and environmentally functioning site.

As part of the reclamation process, all buildings and facilities will be removed from the site. The office, maintenance building, warehouse, change house, substation, fan house, materials handling equipment, support and mining equipment, and tanks will be hauled away to a licensed disposal facility. The mine office and power center are modular pieces of equipment and will be hauled off as intact structures. Approximately 67% of the underground mine workings will be backfilled with the material from the sand tailings temporary storage area, including reserve and reject ore and sand and fine tails. The permanent dry sand tailings storage area will be regraded to at least a 2.5-3H:1V slope to achieve a natural-looking landscape. Maintenance and haul roads will be deep-ripped to relieve compaction, regraded to match site topography, then topsoiled and seeded.

After equipment and facilities have been removed and the site has been regraded, stockpiled topsoil will be redistributed around the site, except in those areas where armored drainage channels have

been installed, and beyond a practical distance on the upper slope. The newly placed topsoil will be ripped on the contour to provide a roughened surface to retain seeds and enable root penetration. Vegetative matter that was salvaged during topsoil storage will be spread with topsoil to provide additional organic matter and aid in water retention. Seeds will be broadcast as soon as possible following seedbed preparation. Fertilizer and mulch are not anticipated for use in reclamation efforts.

Visual inspections will be performed during the course of reclamation activities to ensure that reclamation goals are being met. Additional visual inspections will be performed by DOGM personnel to ensure that GRR is meeting reclamation obligations under the Utah Mined Land Reclamation Act and associated rules.

After reclamation construction and until the bond is released, GRR will monitor for noxious weeds and provide weed control measures according to County directives should noxious weeds pose a problem. Weed monitoring will consist of visual surveys of the site during early summer months by a biologist familiar with noxious weeds. In addition, GRR will qualitatively and visually monitor revegetation success during the growing season for the first two years after reclamation construction. During the third year, a quantitative vegetation survey will be conducted to assess revegetation success and to determine if revegetation has achieved 70% of pre-mining cover as required by R647-4-111.13.11.

13. Contingency Plan

The processing facility has been designed as a zero-discharge operation. Process buildings will have seal welded floors and drip edges to prevent spills into the environment. However, in the event of a spill that escapes these confines, contaminated material will be isolated and either treated or disposed of in a manner that prevents degradation to the environment. In addition, corrective actions will be undertaken to prevent a similar spill event from occurring again. The facility will have a SWPPP developed to comply with a Construction Storm Water General Permit and a SPCC Plan. Both plans contain additional management details that will be followed.

14. Certification

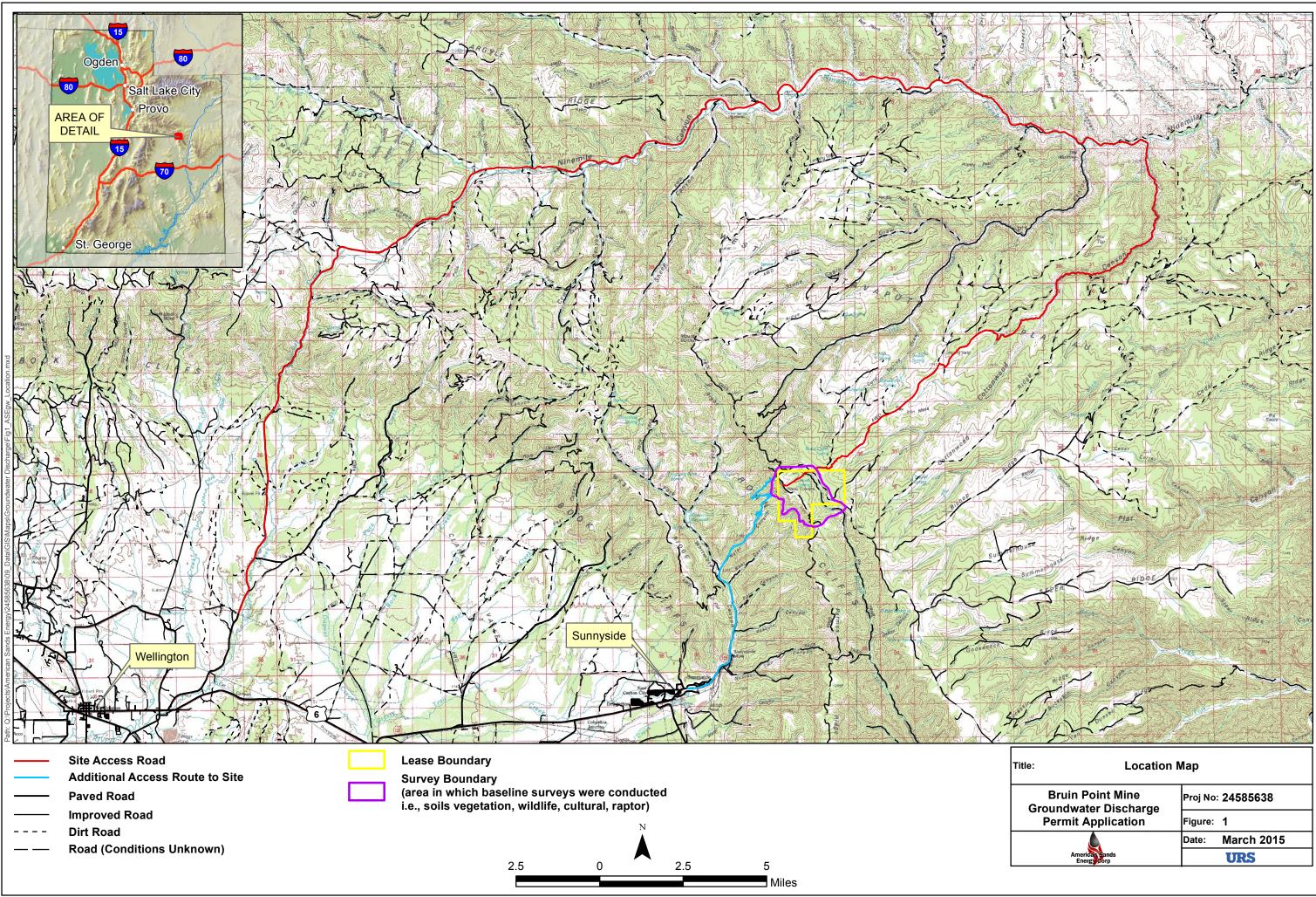
I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

NAME & OFFICIAL TITLE (type or print)

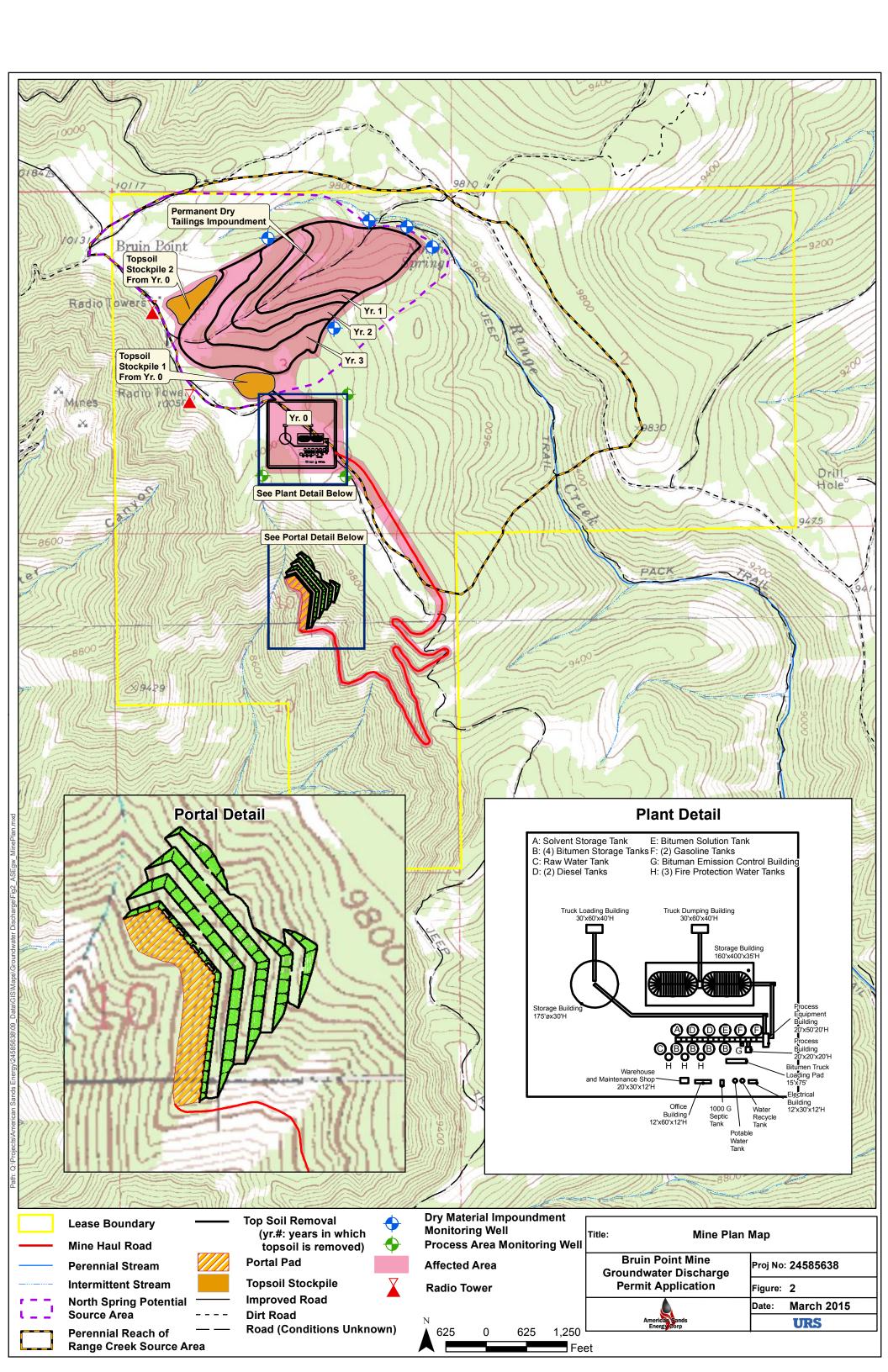
PHONE NO. (area code & no.)

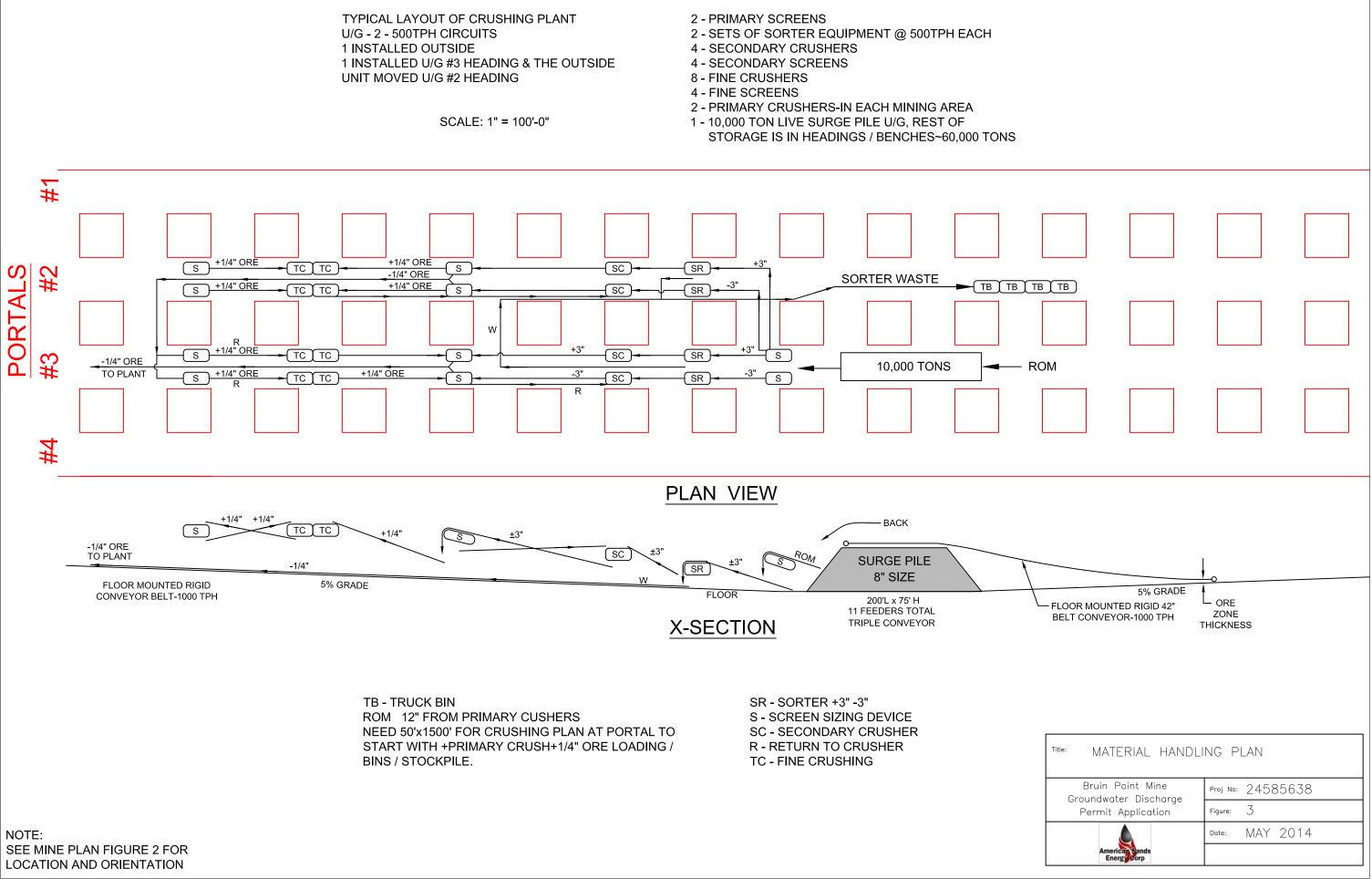
SIGNATURE

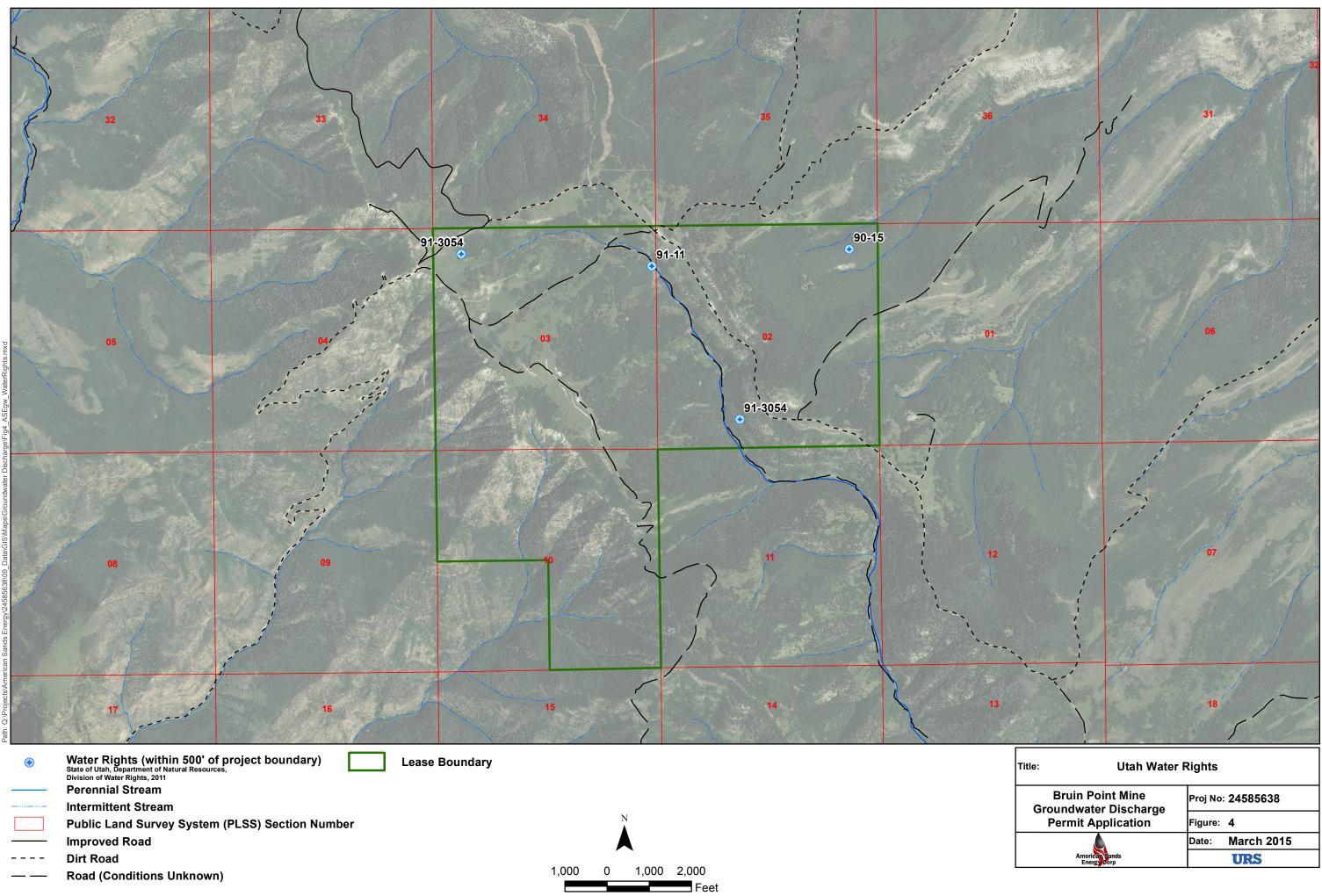
DATE SIGNED

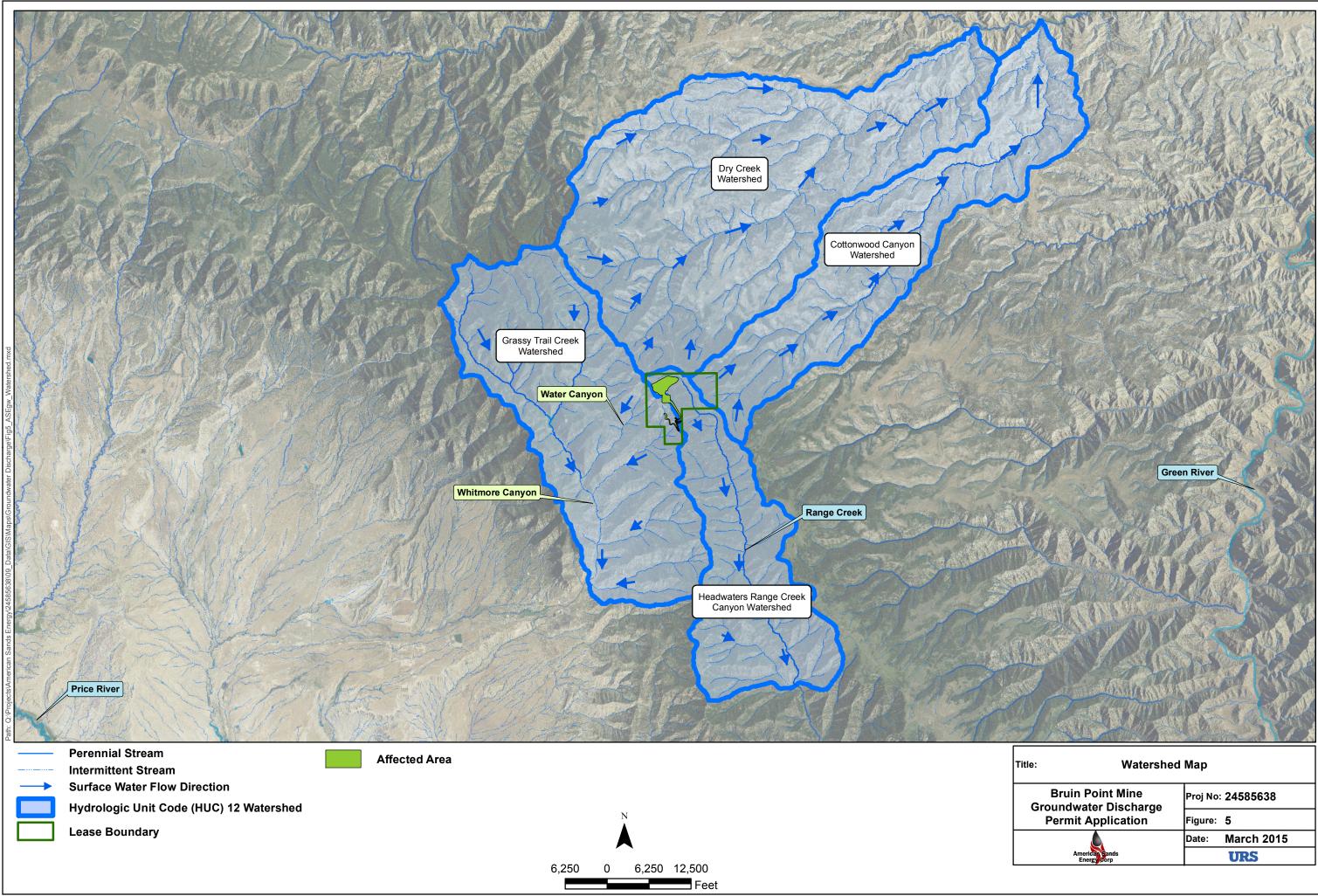

15. References

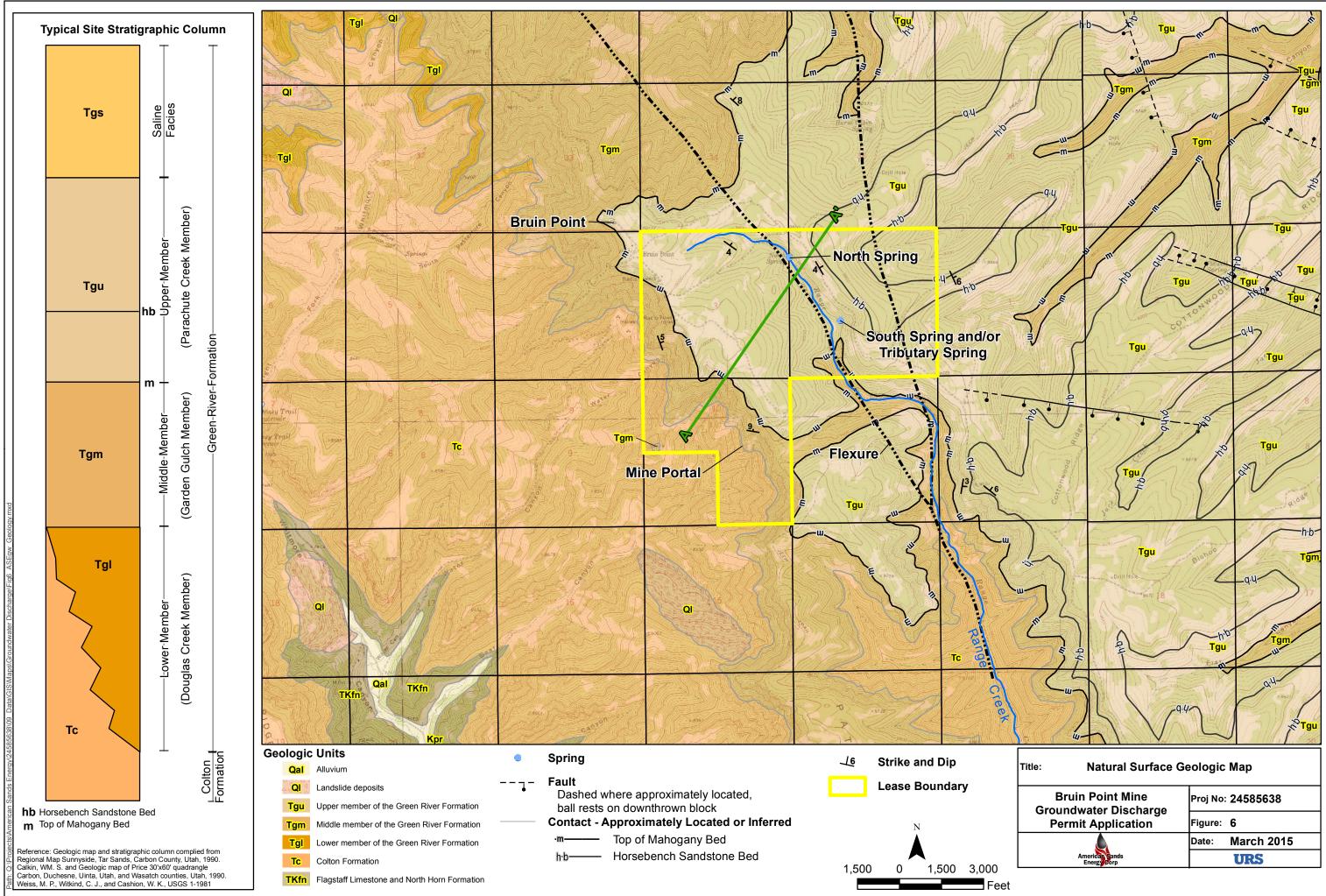
- Blackett, Robert E., 1996. Tar-Sand Resources of the Uinta Basin, Utah. A Catalog of Deposits. Utah Geological Survey, Open File Report 335. May 1996.
- Calkin, Wm. S., 1990. Geologic Summary Report of the 1989 Exploration Program Sunnyside Tar Sands Project Carbon County Utah. For Amoco Corporation, Solid Resources.
- Campbell, Jock A., and Howard R. Ritzma, 1979. Geology and Petroleum Resources of the Major Oil-Impregnated Sandstone Deposits of Utah. Utah Geological and Mineral Survey, Special Studies 50. August 1979.
- Utah Department of Environmental Quality, Division of Environmental Response and Remediation (DERR), 2005. Initial Screening Levels and Tier 1 Screening Criteria. November 1, 2005. http://undergroundtanks.utah.gov/docs/cleanupLevels.pdf
- Utah Department of Environmental Quality, Division of Water Quality (DWQ), 2008. Multi-Sector General Permit (MSGP) for Storm Water Discharges Associated with Industrial Activities. Dated December 12, 2008. http://www.waterquality.utah.gov/UPDES/docs/2008/12Dec/msgp_we1.pdf
- DWQ, 2014. Utah Ground Water Quality Standards Table 1 of R317-6-2.1. Last Updated June 17, 2014. http://www.waterquality.utah.gov/GroundWater/gwstandards.htm
- Utah Department of Natural Resources, Division of Water Rights (DWRi), 2014. Map Search. http://maps.waterrights.utah.gov/mapserver/scripts/search.asp
- Green River Resources (GRR), 2015a. Notice of Intention to Commence Large Mining Operations, Green River Resources, Inc., Bruin Point Mine, M/007/0040. March 2015.
- GRR, 2015b. Construction Storm Water General Permit, Green River Resources, Inc., Bruin Point Mine. April 2015.
- JBR Environmental Consultants (JBR), 2014. American Sands Energy Corporation Proposed Bruin Point Mine Seep and Spring Inventory. February 2014.
- Morrison Knudsen, 1984. Mono Power Company, Sunnyside Tar Sands Project 1983 geologic evaluation.
- NOAA, 2014. National Oceanic and Atmospheric Administration. National Operational Hydrologic Remote Sensing Center Interactive Snow Information. Station SHEF ID: BRPU1. http://www.nohrsc.noaa.gov/interactive/html/graph.html?station=BRPU1>.
- Stokes, W.L., 1986. Geology of Utah. Utah Museum of Natural History and Utah Geological and Minerals Survey.
- URS, 2014a. Stormwater Pollution and Prevention Plan (SWPPP), Bruin Point Mine. September 2014.


URS, 2014b. Hydrology of North Spring and Bruin Point Utah. September 18, 2014.


- URS, 2014c. Summary of Preliminary HELP Model Results, Green River Resources Bruin Point Mine. September 30, 2014.
- URS, 2015a. Final Report Revision 1, Preliminary Stability and Hydrology Analyses, Bruin Point Mine. February 4, 2015.
- URS, 2015b. American Sands Energy Corporation Fate and Transport Evaluation of Residual Solvent in Sand Tailings. March 2015.
- URS, 2015c. American Sands Energy Corporation Tailings Quality Control. March 2015.
- URS, 2015d. Quality Assurance Project Plan (QAPP), Bruin Point Mine. April 2015.
- URS, 2015e. Sampling and Analysis Plan (SAP), Bruin Point Mine. April 2015.


FIGURES


Bruin Point Mine Groundwater Discharge	Proj No: 24585638	
Permit Application	Figure: 1	
	Date: March 2015	
American Sands Energy Corp	URS	



Utah Water Rights					
Bruin Point Mine		: 24585638			
it Application	Figure:	4			
	Date:	March 2015			
American Sands Energy Corp		URS			
	n Point Mine water Discharge it Application	n Point Mine water Discharge it Application Figure: Date:			

Title:	Watershed Map				
	Bruin Point Mine undwater Discharge	Proj No: 24585638			
	Permit Application	Figure:	5		
		Date:	March 2015		
	American Sands Energy Corp		URS		
			URS		

Bruin Point Mine Groundwater Discharge	Proj No: 24585638
Permit Application	Figure: 6
	Date: March 2015
American Sands Energy Corp	URS

APPENDIX A

OWNERSHIP INFORMATION

ATTN: WILLIAM GIBBS AMERICAN SANDS ENERGY CORP.

Date <u>02-18-14</u> Case No. <u>7710</u> Name <u>OIL SANDS CORP. et a1</u> Legal <u>SUNNYSIDE NO. 4,5,6</u>&7, S10 T14SR Your File No: <u>N/A</u>

L

Owners Policy of Title Insurance	\$
Lenders Policy of Title Insurance	φ
Endorsements #	
Recording Fees	
Deeds	
Trust Deed	
Releases	
Assignments	
Other	
Reconveyance Fee	······································
Document Preparation	
Escrow Fees	
Courier Fees	
Wire Fees	
Cancellation Fee	
Foreclosure/Litigation Report	
Plats and Copies	50.00
Other Fees UPDATED REPORT & MINERAL OWNERSHIP	500.00
Other Fees	
Other Fees	
TOTAL DUE	\$ 550.00
	17991

ALTA Commitment Form

COMMITMENT FOR TITLE INSURANCE issued by

→ title guaranty company

Stewart Title Guaranty Company, a Texas Corporation ("Company"), for a valuable consideration, commits to issue its policy or policies of title insurance, as identified in Schedule A, in favor of the Proposed Insured named in Schedule A, as owner or mortgagee of the estate or interest in the land described or referred to in Schedule A, upon payment of the premiums and charges and compliance with the Requirements; all subject to the provisions of Schedules A and B and to the Conditions of this Commitment.

This Commitment shall be effective only when the identity of the Proposed Insured and the amount of the policy or policies committed for have been inserted in Schedule A by the Company.

All liability and obligation under this Commitment shall cease and terminate six months after the Effective Date or when the policy or policies committed for shall issue, whichever first occurs, provided that the failure to issue the policy or policies is not the fault of the Company.

The Company will provide a sample of the policy form upon request.

This commitment shall not be valid or binding until countersigned by a validating officer or authorized signatory.

IN WITNESS WHEREOF, Stewart Title Guaranty Company has caused its corporate name and seal to be hereunto affixed by its duly authorized officers on the date shown in Schedule A.

Countersigned:

Authorized Countersignature

Professional Title Services Company Name

Price, UT City, State

Senior Chairman of the Board

004-UN ALTA Commitment (6/17/06) Agency ID: 440121

File No.: 7710

SCHEDULE A

Order Number: 7710

Commitment Number: N/A

Amount of Insurance

- 1. Effective Date: February 7, 2014 at 08:00 AM
- Policy or Policies to be issued:
 (a) A.L.T.A. Owner's Pre

Premium: \$

Proposed Insured:

- (b) A.L.T.A. Mortgagee's Premium: \$ Proposed Insured:
- (c) Endorsement Premium: \$0.00 Endorsements

UPDATED SPECIAL REPORT CHARGE: \$500.00 This report should not be considered as a Commitment for Title Insurance, but is given for informational purpoes only.

- 3. The estate or interest in the land described or referred to in this Commitment and covered herein is: Fee Simple
- 4. Title to the above estate or interest in said land is at the effective date hereof vested in: SURFACE OWNERS:

ᆕᄲᆇᇭᇾᇾᆯᆯᆿᆕᆕᆄᇭᇾᇴᇴᆿᆿᆕᅶᅶᆦᇾᇭᆿᇹᆂ<u>ᆕᄡ</u>ᆤᇾᇴᆂᇏᅆᇾ

13 1/3% Interest: OIL SANDS CORPORATION of UTAH, a Wyoming Corporation

5% Interest: WILLIAM G. GIBBS

71 2/3% Interest: RESOURCE ASSOCIATES, LLC

10% Interest: HELENE E. RICHARDS, as Trustee of THE HELENE E. RICHARDS TRUST, dated January 6, 2009

MINERAL OWNERS:

13 1/3% Interest: OIL SANDS CORPORATION of UTAH, a Wyoming Corporation

5% Interest: WILLIAM G. GIBBS

16 2/3% Interest: MEANY FAMILY LLC

27 1/2% Interest: ROBERT SCHONLAU

27 1/2% Interest: NANCY SCHONLAU

10% Interest: HELENE E. RICHARDS, as Trustee of THE HELENE E. RICHARDS TRUST, dated January 6, 2009

 The land referred to in the Commitment is described as follows: (Continued) Order Number: 7710

Commitment Number: N/A

That certain mining claim or premises, known as the Sunnyside No. 4, Sunnyside No. 5, Sunnyside No. 6, and Sunnyside No. 7, placer mining claims, described as follows: the Sunnyside No. 4 claim comprising the Northwest Quarter of Section 10 in Township 14 South of Range 14 East, of the Salt Lake Meridian; the Sunnyside No. 5 claim comprising the Northeast Quarter of said Section 10, the Sunnyside No. 6 claim comprising the Southeast Quarter of said Section 10, and the Sunnyside No. 7 claim comprising the Southwest Quarter of Section 3, said Township and Range.

(Tax ID # 2A-1356-A, 2A-1366-A, SA-516, SA-9515-1, SA-9670-1 and SA-9567-1) Situate in Carbon County, State of Utah.

Order Number: 7710

Commitment Number: N/A

REQUIREMENTS

The following are the requirements to be complied with:

NOTE: ANY MATTER IN DISPUTE BETWEEN YOU AND THE COMPANY MAY BE SUBJECT TO ARBITRATION AS AN ALTERNATIVE TO COURT ACTION PURSUANT TO THE TITLE INSURANCE RULES OF THE AMERICAN ARBITRATION ASSOCIATION, A COPY OF WHICH IS AVAILABLE FROM THE COMPANY. ANY DECISION REACHED BY ARBITRATION SHALL BE BINDING UPON BOTH YOU AND THE COMPANY. THE ARBITRATION AWARD MAY INCLUDE ATTORNEY'S FEES IF ALLOWED BY THE STATE LAW AND MAY BE ENTERED AS A JUDGEMENT IN ANY COURT OF PROPER JURISDICTION.

NOTICE TO APPLICANT: The land described in this commitment may be serviced by services provided by Cities, Towns, pubic utility companies and other firms providing municipal type services which do not constitute liens upon the land and for which no notice of the existence of such service charges are evidenced in the Public Records. The applicant should directly contact all entities providing such services and make the necessary arrangements to insure payment for such services and continuation of services to the land.

NOTICE TO APPLICANT: If you require copies of any documents identified in this Commitment for Title Insurance, the Company will furnish the same upon request, either free of charge, or for the actual cost of duplication for those copies requiring payment by the Company to obtain.

SCHEDULE B - SECTION 2

Order Number: 7710

Commitment Number: N/A

The policy or policies to be issued will contain exceptions to the following unless the same are disposed of to the satisfaction of the Company:

- 1. Taxes or assessments which are not shown as existing liens by the records of any taxing authority that levies taxes or assessments on real property or by the Public Records. Proceedings by a public agency which may result in taxes or assessments, or notices of such proceedings, whether or not shown by the records of such agency or by the Public Records.
- 2. Any facts, rights, interests or claims which are not shown by the Public Records but which could be ascertained by an inspection of the land or by making inquiry of persons in possession thereof.
- 3. Easements, liens or encumbrances, or claims thereof, which are not shown by the Public Records.
- 4. Any encroachment, encumbrance, violation, variation, or adverse circumstance affecting the Title that would be disclosed by an accurate and complete land survey of the Land and not shown by the Public Records.
- 5. (a) Unpatented mining claims; (b) reservations or exceptions in patents or in Acts authorizing the issuance thereof; (c) water rights, claims or title to water, whether or not the matters excepted under (a), (b) or (c) are shown by the Public Records.
- 6. Any lien, or right to a lien, for services, labor or material heretofore or hereafter furnished, imposed by law and not shown by the Public Records.
- Taxes for the year 2014 and subsequent years, not yet due and payable. Taxes for the year 2013 have been paid as to Serial Numbers 2A-1356-A, 2A-1366-A, SA-516, SA-9515-1, SA-9670-1 and SA-9567-1.
- 8. The property described herein does not front on any dedicated street or right of way, and therefore lacks public access thereto.
- 9. A perpetual easement in favor of Mountain Fuel Supply Company, its successors and/or assigns, to construct, operate, maintain, repair, and remove a microwave equipment building, tower, and other related facilities within a portion of said Section 3, together with all rights and privileges incident thereto, as reserved in that certain Warranty Deed recorded November 10, 1961, as Entry No. 96628, in that certain Warranty Deed recorded November 10, 1961, as Entry No. 96628, in Book 75 at Page 278, and as granted in those certain Grants of Easement recorded November 29, 1961, as Entry No. 96799, in Book 75 at Page 435 and recorded March 18, 1964, as Entry No. 105729, in Book 89, at Page 266, of Official Records.
- 10. Agreement Not to Sell, Transfer or Encumber said land executed by William S. Batchelder and Jessie M. Batchelder, his wife, in favor of First National Beach Bank, Jacksonville Beach dated June 13, 1967, recorded July 29, 1968, as Entry No. 117139, in Book 113, at Page 173, of Official Records.
- A Mortgage to secure an indebtedness of the amount stated herein and any other amounts payable under the terms thereof: Dated: January 10, 1981 Executed by: AMOCO PRODUCTION COMPANY, a Delaware Corporation Amount: 1,485,000.00 In Favor Of: PETER W. RICHARDS Recorded: January 12, 1981 as Entry No. 156791 in Book 203 at Page 780 of Official Records.

SCHEDULE B - SECTION 2 (Continued)

Order Number: 7710

Commitment Number: N/A

- 12. Obligations, conditions, and any other matter set forth in that certain Decree of Divorce recorded January 4, 1988, as Entry No. 19410, in Book 277, at Page 812, filed November 30, 1987 in the records of the Circuit Court, Third Judicial Circuit, in and for Suwannee County, Florida, entitled WILLIAM STEWART BATCHELDER, husband, vs. PATRICIA S. BATCHELDER, Wife; Case No. 85-299-CA.
- 13. A claim of Lien, Notice of which was filed by THE STEWART THOMAS COMPANY, INC., as Claimant, recorded November 28, 1988 as Entry No. 22373 in Book 284 at Page 587 of Official Records. Amount of claim \$11,525.00, and subsequent Hold Harmless Agreement recorded February 23, 1998 as Entry No. 64482 in Book 403 at Page 509 of Official Records.
- 14. Reservations regarding some minerals, mining and other matters as contained in the Patent to said lands recorded January 3, 1929, as Entry No. 17592, in Book 6A, at Page 135, of Official Records.
- 15. Tar Sand Lease dated May 1, 1979 by and between BARBARA P. SCHONLAU and WILLIAM G. GIBBS, as Lessors, and W.H. HUDSON, as Lessee, and Amendment thereto dated September 15, 1981, as disclosed by that certain Memorandum of Tar Sand Lease and Amendment recorded November 12, 1982, as Entry No. 166018 and 166019, in Book 222, at Page 645 and 653, and any assignment and other agreements relating to Lessee's interest therein.
- 16. Any Claim based on the assertion or assumption that, of that certain Deed recorded December 22, 1997, as Entry No. 63454, in Book 400, at Page 361, of Official Records did not pass after-acquired title. (Grantor, Amoco Production Company acquired title by that certain Quit Claim Deed dated April 21, 1998, recorded October 6, 1998, as Entry No. 69224, in Book 418, at Page 454, of Official Records.)
- 17. "Subject to the terms of an unrecorded Letter Agreement dated December 17, 1997" as disclosed by that certain Deed recorded December 22, 1997, as Entry No. 63454, in Book 400, at Page 361, of Official Records.
- 18. Any claim based on any inadequacy of or misrepresentation by William S. Batchelder as to his right or ability to convey the interest of Justin C. Montgomery and Jessie M. Batchelder, Trustees under the provisions of a certain Trust Indenture dated September 26, 1968, to Oil Sands Corporation of Utah, a Wyoming corporation, in that certain Disclaimer and Quit Claim Deed recorded May 19, 2005, as Entry No. 111507, in Book 591, at Page 146 and that certain Quit Claim Deed recorded June 9, 2005 as Entry No. 111840 in Book 592 at Page 561.
- 19. A Memorandum of Lease giving notice of a Lease Agreement dated as of January 14, 2005, by and between Meany Land & Exploration, Inc., as Lessor, and Bleeding Rock LLC, a Utah company, as Lessee, recorded November 10, 2005 as Entry No. 114400 in Book 606 at Page 22; a Notice of Assignment by Bleeding Rock LLC to Green River Resources, Inc. of said Lease Agreement, recorded November 10, 2005 as Entry No. 114401, in Book 606 at Page 23 of Official Records.
- 20. Oil and Gas Lease dated May 8, 2006, from MEANY LAND & EXPLORATION, INC., a Colorado Corporation, to PETRO-CANADA RESOURCES (USA) INC., for a term of 5 years from May 8, 2006, and so long thereafter as oil and gas are produced in paying quantities upon the terms, conditions an covenants therein provided, recorded September 29, 2006, as Entry No. 119668, in Book 629, at Page 686, of the Official Records, and any subsequent Assignments, Modifications, etc., thereof; an Assignment, Bill of Sale and Conveyance from Petro-Canada Resources (USA) Inc., a Colorado Corporation, to Questar Exploration and Production Company, recorded April 13, 2010 as Entry No. 805291 in Book 720 at Page 266.

(7710/7710/12)

SCHEDULE B - SECTION 2 (Continued)

Order Number: 7710

Commitment Number: N/A

- 21. An Acknowledgement and Notice of Acknowledgement by The State of Utah regarding "Dry Canyon Road", the same as may traverse a portion of said land, recorded June 23, 2008 as Entry No. 129761 in Book 676 at Page 54, of Official Records.
- 22. A Memorandum of Lease giving notice of a Lease Agreement dated as of October 22, 2009, by and between William G. Gibbs, as Lessor, and Green River Resources, Inc., a Utah company as Lessee, recorded October 29, 2009 as Entry No. 803350 in Book 711 at Page 137 of Official Records.

CONDITIONS

- 1. The term mortgage, when used herein, shall include deed of trust, trust deed, or other security instrument.
- 2. If the proposed Insured has or acquired actual knowledge of any defect, lien, encumbrance, adverse claim or other matter affecting the estate or interest or mortgage thereon covered by this Commitment other than those shown in Schedule B hereof, and shall fail to disclose such knowledge to the Company in writing, the Company shall be relieved from liability for any loss or damage resulting from any act of reliance hereon to the extent the Company is prejudiced by failure to so disclose such knowledge. If the proposed Insured shall disclose such knowledge to the Company, or if the Company otherwise acquires actual knowledge of any such defect, lien, encumbrance, adverse claim or other matter, the Company at its option may amend Schedule B of this Commitment accordingly, but such amendment shall not relieve the Company from liability previously incurred pursuant to paragraph 3 of these Conditions.
- 3. Liability of the Company under this Commitment shall be only to the named proposed Insured and such parties included under the definition of Insured in the form of policy or policies committed for and only for actual loss incurred in reliance hereon in undertaking in good faith (a) to comply with the requirements hereof, or (b) to eliminate exceptions shown in Schedule B, or (c) to acquire or create the estate or interest or mortgage thereon covered by this Commitment. In no event shall such liability exceed the amount stated in Schedule A for the policy or policies committed for and such liability is subject to the insuring provisions and Conditions and the Exclusions from Coverage of the form of policy or policies committed for in favor of the proposed Insured which are hereby incorporated by reference and are made a part of this Commitment except as expressly modified herein.
- 4. This Commitment is a contract to issue one or more title insurance policies and is not an abstract of title or a report of the condition of title. Any action or actions or rights of action that the proposed Insured may have or may bring against the Company arising out of the status of the title to the estate or interest or the status of the mortgage thereon covered by this Commitment must be based on and are subject to the provisions of this Commitment.
- 5. The policy to be issued contains an arbitration clause. All arbitrable matters when the Amount of Insurance is \$2,000,000 or less shall be arbitrated at the option of either the Company or the Insured as the exclusive remedy of the parties. You may review a copy of the arbitration rules at< <u>http://www.alta.org/</u>>.

All notices required to be given the Company and any statement in writing required to be furnished the Company shall be addressed to it at P.O. Box 2029, Houston, Texas 77252.

11:06:10AM

(~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	~							
	SA-0516-000					En	try:		
		CORP OF UTAI	Η		- Property	Address:			
c/o Name:	TAX DEPAR	TMENT				y Auu 633.			
Address 1:	P O BOX 954	19							
Address 2:									
City State Zip:	JACKSON	WY	83002-0	000	Acres:	0.00			
Mortgage Co:									
Status:	Active	Year:	2014	Dis	trict: 009	COUNTY	OUTSIDE DIS	TRIC1 0.010	744
Owne	rs	Interest		Entry	Date of	Filing	Comment		
OIL SANDS CORP C	F UTAH								
			2014	Valı	ues & Ta	Yes	2013	Values 8	Taxes
Property In	formation	Units/Ac		arket	Taxable	Taxes		Taxable	Taxes
LP01 LATE PENALT	Y	0	.00	0	0	0.0	0 0	0	10.00
PU07 NON-METALL	IFEROUS MINING	6 0	.00	21,332	21,332	229.1	9 21,332	21,332	229.19
Tot	als:	0	.00 2	21,332	21,332	229.1	19 21,332	21,332	239.19
****	SPECIAL N	OTF ****		201	14 Taxes:	229	.19 20	13 Taxes: 2	229.19
Tax Rates for 20 ²	······································		oved.	Spec	cial Taxes:	-	.00		
Any levied taxes	or values show	n on this printo	ut for the	۸ ۲	Penalty: atements: (-	.00 .00)		
year 2014 are sul	oject to change				Payments: (.00)		
					nount Due:			ВАСК ТАХ	ES!
01/13/2014 10:34	AM 0129682 20	13 WILLIAM BAT	CHELDER		R	edemption -	Check	10.00 co	losimo
<u></u>						Total	Payments:	10.00	
			Back	Tax Sur	nmary				
Year Pi	rincipal Specia	ls Total Pen	naity Inte	erest Due	e Inte	erest Rate	Total Paymen	ts To	tal Due
2013	0.00 (0.00 0	.00	0.00	<u></u>	7.00%	10.00		0.00

Legal Description

0.00

0.00

7.00%

10.00

10.00

0.00

0.00

0.00

0.00

*******STATE ASSESSED PROPERTY***

Totals:

0.00

History

Original Account/Serial Number:9000516 SA-0516

0.00

11:06:19AM

	Property Inf	ormation -	20 Units/Acres	14 Val Market	ues & Taxes	2013 Taxes Market	Values & Tax	es axes
Ģ	BIBBS WILLIAM G							
	Owner	S	Interest	Entry	Date of Filing	Comment		
	Mortgage Co: Status:		Year: 201	4 Dis	strict: 009 COUI	NTY OUTSIDE DIS	TRIC1 0.010744	
		SALT LAKE CITY	UT 84103	3-0000	Acres: 0.00			
		657 18TH AVE						
	Name: c/o Name:	GIBBS WILLIAM G			Property Add	ress:		
		SA-9515-0001				Entry:		

					<u> </u>	714 V ai	uco o i	aves		2013	values	5 04 TAA	.63
Prop	erty Inform	ation		ι	Inits/Acres	Market	Taxable	1	axes	Market	Taxable	Т	Faxes
LP01 LATE P	PENALTY				0.00	0		0	0.00	0		0	10.0
PU07 NON-M	ETALLIFER	OUS MIN	ING		0.00	11,000	11,00	0	118.18	11,000	11,00	10	118.1
	Totals:				0.00	11,000	11,00	0	118.18	11,000	11,00	10	128.1
	**** SP	FCIAL	NOT	F F ***	:*	20)14 Taxes:		118.18	2013	Taxes:	118.18	
Fav Rates f					r approved	Spe	ecial Taxes:		0.00				
					printout for		Penalty:		0.00				
*				ni uno	printout for	A A	batements:	(0.00)				
/ear 2014 a	are subjec	t to char	igen				Payments:	(0.00)				
						A	mount Due:		118.18	NO E	BACK TA	AXES!	
01/15/2014	10:07 AM	0129724	2012	GIBBS	WILLIAM G			Interest -	Check		8.11	colosimo	
01/15/2014	10:07 AM	0129724	2012	GIBBS	WILLIAM G			Penalty -	Check		10.00	colosimo	
01/15/2014	10:07 AM	0129724	2012	GIBBS	WILLIAM G			Redemp	tion - Check		114.81	colosimo	
01/15/2014	10:07 AM	0129724	2013	GIBBS	WILLIAM G			Penalty -	Check		10.00	colosimo	
01/15/2014	10:07 AM	0129724	2013	GIBBS	WILLIAM G			Redemp	tion - Check		118.18	colosimo	
									Total Paym	ents:	261.10		
						Back Tax Sı	ummary						
Year	Princi	pal Spe	cials 1	Fotal	Penaity	Interest Du	le li	nterest R	ate To	otal Payments		Total Due	9
2013	0.0	00	0.00)	0.00	0.0	00	7.00%	, D	128.18		0.0	0
2012	0.0	00	0.00)	0.00	0.0	00	7.00%	D	132.92		0.0	0
Totals:	0.0	0	0.00)	0.00	0.0	00			261.10		0.0	0
						Legal Desc	ription						

****STATE ASSESSED****

11:07:08AM

Parcel:	SA-9670-0001				Entry:			
Name:	RESOURCE ASSO	DCIATES		Dura a suto a	A -1-1			
c/o Name:	ROBERT SCHON	LAU		[Property /	Address: —			
Address 1:	PO BOX 219							
Address 2:								
City State Zip:	WALLSBURG	UT 84	4082-0000	Acres: 0	.00			
Mortgage Co				L				
Status:	Active	Year:	2014 Di	strict: 009 C	OUNTY OUT	SIDE DIST	RIC1 0.010	744
Owners	s	Interest	Entry	Date of F	iling Co	omment		
						OT FOUND		
RESOURCE ASSOCI	ATES	1/0			ENTRIP	IOT FOOND		
RESOURCE ASSOCI	ATES	1/0				OTFOOND		
RESOURCE ASSOCI	ATES 1	1/0	2014 Val	1105 & Tay			Values &	Taxes
RESOURCE ASSOCI		Units/Acre		ues & Tax		2013 Market	Values &	Taxes
RESOURCE ASSOCI Property Info PU07 NON-METALLIF	ormation		s Market		es	2013		
Property Inf	ormation FEROUS MINING	Units/Acre	s Market) 114,672	Taxable	es Taxes	2013 Market	Taxable	Taxes
Property Info PU07 NON-METALLIF Tota	ormation FEROUS MINING Ils:	Units/Acre 0.00	s Market) 114,672) 114,672	Taxable 114,672	es Taxes 1,232.04	2013 Market 114,672 114,672	Taxable 114,672 114,672	Taxes 1,232.04
Property Info PU07 NON-METALLIF Tota **** (ormation FEROUS MINING Ils: SPECIAL NOTE	Units/Acrea 0.00 0.00	s Market) 114,672) 114,672 20	Taxable 114,672 114,672 114,672 114 Taxes: scial Taxes:	ES Taxes 1,232.04 1,232.04 1,232.04 1,232.04 0.00	2013 Market 114,672 114,672	Taxable 114,672 114,672	Taxes 1,232.04 1,232.04
Property Info PU07 NON-METALLIF Tota **** (Tax Rates for 201	ormation FEROUS MINING Ils: SPECIAL NOTE 4 have NOT been s	Units/Acrea 0.00 0.00 **** set or approv	s Market) 114,672) 114,672 20 red. Spe for the	Taxable 114,672 114,672 114 Taxes: cial Taxes: Penalty:	ES Taxes 1,232.04 1,232.04 1,232.04 0.00 0.00 0.00	2013 Market 114,672 114,672	Taxable 114,672 114,672	Taxes 1,232.04 1,232.04
Property Inf PU07 NON-METALLIF Tota **** (Tax Rates for 201 Any levied taxes o	ormation FEROUS MINING Ils: SPECIAL NOTE 4 have NOT been s or values shown on	Units/Acrea 0.00 0.00 **** set or approv	s Market) 114,672) 114,672 20 red. Spe for the	Taxable114,672114,672114,672114 Taxes:scial Taxes:Penalty:batements:	es <u>Taxes</u> 1,232.04 1,232.04 1,232.04 0.00 0.00 0.00)	2013 Market 114,672 114,672	Taxable 114,672 114,672	Taxes 1,232.04 1,232.04
Property Info PU07 NON-METALLIF Tota **** (Tax Rates for 201	ormation FEROUS MINING Ils: SPECIAL NOTE 4 have NOT been s or values shown on	Units/Acrea 0.00 0.00 **** set or approv	s Market 114,672 114,672 20 20 20 20 20 20 20 20 20 2	Taxable 114,672 114,672 114 Taxes: cial Taxes: Penalty:	ES Taxes 1,232.04 1,232.04 1,232.04 0.00 0.00 0.00	2013 Market 114,672 114,672 201	Taxable 114,672 114,672	Taxes 1,232.04 1,232.04 232.04

STATE ASSESSED

11:07:26AM

Parcel:	SA-9567-0001				Entr	y:		
Name:	RICHARDS HELEI	NE E TRUS	Т	Duana	A .l			
c/o Name:	%KATHY OHLANI	2		Proper	ty Address: -			
Address 1:	PO BOX 530482 D	EBARY						
Address 2:								
City State Zip:	DEBARY	FL 3	2713-0000	Acres:	0.00			
Mortgage Co:				L			·	
Status:	Active	Year:	2014	District: 009	COUNTY O	OUTSIDE DIST	RIC1 0.01	0744
	_	Interest	н	ntry Date o	of Filing	Comment		
Owner	S	Interest	-					
		/0			ENTF	RY NOT FOUND		
				/alues & Ta		RY NOT FOUND 2013	Values	& Taxes
	E TRUST 1		2014				Values of Taxable	& Taxes Taxes
RICHARDS HELENE	E TRUST 1	/0	2014 V es Marke	t Taxable	AXES Taxes	2013 Market		
RICHARDS HELENE Property Inf	E TRUST 1	/0 Units/Acre	2014 es Marke 0 16,0	t Taxable 00 16,000	axes Taxes 171.90	2013 Market 16,000	Taxable	Taxes
Property Inf PU07 NON-METALLI Tota	E TRUST 1	/0 Units/Acre 0.00 0.00	2014 es Marke 0 16,0	t Taxable 00 16,000	axes Taxes 171.90	2013 Market 0 16,000 0 16,000	Taxable 16,000	Taxes 171.90
Property Inf PU07 NON-METALLI Tota	E TRUST 1 formation FEROUS MINING ils: SPECIAL NOTE	/0 Units/Acre 0.00 0.00	2014 es Marke 0 16,0 0 16,0	t Taxable 00 16,000 00 16,000 2014 Taxes: Special Taxes:	AXES Taxes 171.90 171.90 171.9 0.0	2013 Market 0 16,000 0 16,000 0 201 00 201	Taxable 16,000 16,000	Taxes 171.90 171.90
Property Inf PU07 NON-METALLI Tota Tax Rates for 201	E TRUST 1	/0 Units/Acre 0.00 0.00	2014 es Marke 0 16,0 0 16,0 ved.	t Taxable 00 16,000 00 16,000 2014 Taxes: Special Taxes: Penalty:	AXES Taxes 171.90 171.90 171.90 171.9 0.0 0.0	2013 Market 0 16,000 0 16,000 0 201 00 201	Taxable 16,000 16,000	Taxes 171.90 171.90
Property Inf PU07 NON-METALLI Tota Tax Rates for 201	E TRUST 1 formation FEROUS MINING uls: SPECIAL NOTE 4 have NOT been so or values shown on	/0 Units/Acre 0.00 0.00	2014 es Marke 0 16,0 0 16,0 ved.	t Taxable 00 16,000 00 16,000 2014 Taxes: Special Taxes:	AXES Taxes 171.90 171.90 171.90 171.9 0.0 0.0	2013 Market 0 16,000 0 16,000 0 201 00 201 00 00	Taxable 16,000 16,000	Taxes 171.90 171.90

"STATE ASSESSED PROPERTY"

10:42:47AM

Parcel:	2A-1366-000A		Entry: 121611
Name:	RESOURCE ASSC	CIATES LLC	Droporty Addropp:
c/o Name:			Property Address:
Address 1:	PO BOX 219		
Address 2:			
City State Zip:	WALLSBURG	UT 84082-0000	Acres: 480.00
Mortgage Co			
Status:	State Assessed	Year: 2014 Di	strict: 009 COUNTY OUTSIDE DISTRIC1 0.010744

Owners	Interest	Entry	Date of Filing	Comment	t	
RESOURCE ASSOCIATES LLC	55%	121611	02/01/2007	(0528/0263)		
BATCHELDER WM S, ETAL	20%					
GIBBS WM G	5%			(0199/0723)		
RICHARDS PETER W	10%	132083	12/03/2008	(0687/0109)		
RICHARDS HELENE E TR	10%	133034	02/18/2009	(0692/0194)		
**** SPECIAL N		2014	Taxes:	0.00	2013 Taxes:	0.00
Tax Rates for 2014 have NOT		Special	Taxes:	0.00		
		F	Penalty:	0.00		
Any levied taxes or values show		Abate	ments: (0.00)		
year 2014 are subject to change	3!!	Pay	ments: (0.00)		
		Amou	nt Due:	0.00	NO BACK TA	XES!

Legal Description

NW4 (SUNNYSIDE #4) NE4 (SUNNYSIDE #5) SE4 (SUNNYSIDE #6) SEC 10, T14S, R14E, SLB&M. 480.00 AC

History

Original Account/Serial Number:0133365 2A-1366-00A

10:43:01AM

Parcel:	2A-1356-000A		Entry: 121611
Name:	RESOURCE ASSO	OCIATES LLC	Design for Address of
c/o Name:			Property Address:
Address 1:	PO BOX 219		
Address 2:			
City State Zip:	WALLSBURG	UT 84082-0000	Acres: 160.00
Mortgage Co			
Status:	State Assessed	Year: 2014 Di	strict: 009 COUNTY OUTSIDE DISTRIC1 0.010744

Owners	Interest	Entry	Date of Filing	Comment	:	
RESOURCE ASSOCIATES LLC	55%	121611	02/01/2007	(0528/0263)	·	
BATCHELDER WM S, ETAL	20%					
GIBBS WM G	5%			(0199/723)		
RICHARDS PETER W	10%	132083	12/03/2008	(0687/0109)		
RICHARDS HELENE E TR	10%	133034	02/18/2009	(0692/0194)		
**** SPECIAL N	OTE ****	2014	Taxes:	0.00	2013 Taxes:	0,00
Tax Rates for 2014 have NOT t		Special	Taxes:	0.00		
		, t	Penalty:	0.00		
Any levied taxes or values show		Abate	ments: (0.00)		
year 2014 are subject to change	3!!	Pay	ments: (0.00)		
		Amou	int Due:	0.00	NO BACK TA	XES!

```
Legal Description
```

SW4 SEC 3, T14S, R14E, SLB&M. (SUNNYSIDE #7) 160.00 AC

February 13, 2014

History

Original Account/Serial Number:0133340 2A-1356-00A

MEMORANDUM OF LEASE

This Memorandum of Lease is to give notice of a Lease Agreement ("Lease") dated as of the <u>22</u> day of October, 2009, by and between William G. Gibbs ("Lessor") and GreenRiver Resources, Inc., a Utah company ("Lessee"). General information regarding the lease is as follows:

1. Real Property involved:

Township 14 South, Range 14 East, SLM Section 3: SW/4 Section 10: E/2, NW/4 Containing 640.00 acres, more or less

2. Term of Lease: The term of the lease is years 6 years, with provisions for extending the lease, beginning at the end of the initial term and extending so long thereafter as at least 500 barrels of bitumen per day are produced. The lease may be earlier terminated by default in its terms.

Lessee:

GreenRiver Resources Inc.

William C. Gibbs, President

COUNTY OF SALT LAKE}

STATE OF UTAH }

} ss.

Ent 803350 Bk 711 Pg 137 Date: 29-0CT-2009 4:17PM Fee: \$10.00 Charge Filed By: KR VIKKI BARNETT, Recorder CARBON COUNTY CORPORATION For: PROFESSION LOTITLE SERVICES

The foregoing instrument was acknowledged before me this _____ day of October, 2009 by William C. Gibbs, known to me to be the person described in and who executed the within and foregoing instrument and acknowledged to me that he executed the same on behalf of GreenRiver Resources, Inc..

NOTARY PUBLIC LINDSAY RENCHER 4641 S 2300 E Holladay, Utan B+117 My Commission Expires October 17, 2010 STATE OF UTAH	Notary Public Notary Public
My Commission Expires:	Residing at: Holladay, Utah
0/07/2010	ACCOM CATTON RECORDING ONLY PROFESSIONAL TITLE SERVICES NOT RESPONSIBLE FOR FORM, PREPARATION, CONTENT, EFFECT

Ent 805291 Bk 720 Pg 266 Date: 13-APR-2010 2:17:14PM Fee: \$515.00 Check Filed Ry: VB VIKKI BARNETT, Recorder CARBON COUNTY CORFORATION -For: THE-OIL-6 GAS ASSET CLEARI SE

ASSIGNMENT, BILL OF SALE AND

P O BOX 671787 HOUSTON, TX 77267-1787

THIS ASSIGNMENT, BILL OF SALE AND CONVEYANCE ("Assignment"), dated effective April 1, 2010 at 12:01 AM (the "Effective Time"), is from Petro-Canada Resources" (USA) Inc., a Colorado corporation, whose address is 999 18th Street, Suite 600, Denver, Colorado 80202 ("Assignor"), to <u>QUESTAR'EXPLORATION & PRODUCTION COMPANY</u> , whose address is <u>4050-17th STREET, SUITE-500, DENVER, CO. 80265</u>

("Assignee"):

For \$10.00 and other good and valuable consideration, the receipt and sufficiency of which are hereby acknowledged, Assignor hereby sells, assigns, transfers, grants, bargains, conveys to Assignee all of Assignor's right, title and interest, in and to the following (all of which are called the "Assets"):

1. The oil and gas leases specifically described in Exhibit A ("Leases") insofar and only insofar as the Leases cover the lands specifically described on Exhibit A ("Lands"), subject to all pre-existing depth or other limitations, if any and whether or not set forth on Exhibit A; the royalties, overriding royalties, net profits interests, production payments and other interests, if any, owned by Assignor burdening the Leases, and all right, title and interest in and to the oil, gas and all other hydrocarbons in, on or under the Lands and non-hydrocarbons and other products, whether liquid or gaseous, produced in association therewith ("Hydrocarbons") after the Effective Time, and the fee surface interests and fee mineral interests, if any, described on Exhibit A or otherwise relating solely to the Leases and Lands or leases and lands pooled or unitized therewith (the "Fee Interests").

2. All oil and gas wells, injection wells, disposal wells and any other wells located on the Leases as to the Lands, or on lands pooled or unitized therewith, including, without limitation, the oil and gas wells specifically described in Exhibit B, whether producing, non-producing or plugged and whether fully or properly described or not ("Wells"), and all personal property and equipment located on and used in the operation of the Wells as of the Effective Time, but excluding all vehicles, tools, administrative computer equipment and other personal property of Assignor not intended by Assignor to be included in the Assets.

3. The rights, to the extent transferable, in and to all existing and effective unitization, pooling and communitization agreements, declarations and orders, and the properties covered and the units created thereby to the extent that they relate to or affect any of Assignor's properties and interests described in Paragraphs 1 and 2 or the production of Hydrocarbons, if any, attributable to said properties and interests after the Effective Time.

4. The rights, to the extent transferable, in and to existing and effective oil, gas, liquids, condensate, casinghead gas and natural gas sales, purchase, exchange, gathering, transportation and processing contracts, operating agreements; balancing agreements, joint venture agreements, partnership agreements, farmout agreements and other contracts, agreements and instruments insofar and only insofar as they relate to any of Assignor's properties and interests described in Paragraphs 1, 2 and 3, excluding, however, any bonds or insurance contracts.

5. All of the personal property, fixtures, improvements, permits, licenses, approvals, servitudes, rights-of-way and easements, including, without limitation, the rights-of-way and easements set forth on Exhibit A, if any, surface leases and other surface rights (including, but not limited to, any wells, tanks, boilers, buildings, injection facilities, saltwater disposal facilities, compression facilities, gathering systems, other appurtenances and facilities), if any, located on and used exclusively in connection with or otherwise related to the exploration for or production, gathering, treatment, processing, storing, sale, treatment, processing or disposal of Hydrocarbons or water produced from the properties and interests described in Paragraphs 1 through 4 to the extent that they are located on and used in the operation of such properties and interests as of the Effective Time, and all contract rights (including rights under leases to third parties) related thereto, but excluding all vehicles, tools, administrative computer equipment and other personal property of Assigner not intended by Assigner to be included in the Assets.

Page 1 of 5

6. The files, records, data and information relating to the items described in Paragraphs 1 through 5, maintained by Assignor ("Records"), but excluding the following: (i) all of Assignor's internal appraisals and interpretive data related to the Fee Interests, Leases, Lands and Wells, (ii) all information and data under contractual restrictions on assignment, (iii) all geological and seismic data, (iv) all privileged information and intellectual property, (v) Assignor's corporate, financial, employee and general tax records that do not relate exclusively to the Assets, and (vi) all accounting files that do not relate exclusively to the Assets.

TO HAVE AND TO HOLD the Assets unto Assignee and its successors and assigns forever.

This Assignment is made and accepted expressly subject to the following terms and conditions:

A. THIS ASSIGNMENT IS MADE WITHOUT WARRANTY OF TITLE AND WITHOUT WARRANTY OF ANY OTHER KIND, EITHER EXPRESS, IMPLIED OR STATUTORY. ASSIGNEE ACKNOWLEDGES AND AFFIRMS THAT THE ASSETS HAVE BEEN UTILIZED FOR THE PURPOSE OF EXPLORATION, PRODUCTION AND DEVELOPMENT OF OIL AND GAS, AND THAT THE ASSETS ARE CONVEYED IN THEIR "AS IS, WHERE IS" CONDITION, WITH ALL EXISTING FAULTS. ASSIGNOR EXPRESSLY DISCLAIMS AND NEGATES ANY WARRANTY, EITHER EXPRESS OR IMPLIED, AS TO THE CONDITION OF ANY PERSONAL PROPERTY, EQUIPMENT, FIXTURES AND ITEMS OF MOVABLE PROPERTY COMPRISING ANY PART OF THE ASSETS, INCLUDING (i) MERCHANTABILITY OR CONDITION, (ii) FITNESS FOR A PARTICULAR PURPOSE, (III) CONFORMITY TO MODELS OR SAMPLES OF MATERIALS, (IV) ANY RIGHTS OF DIMINUTION OF ASSIGNEE UNDER APPLICABLE STATUTES TO CLAIM CONSIDERATION, AND (V) ANY CLAIM BY ASSIGNEE FOR DAMAGES BECAUSE OF DEFECTS, WHETHER KNOWN OR UNKNOWN, IT BEING EXPRESSLY UNDERSTOOD BY ASSIGNEE THAT SAID PERSONAL PROPERTY, FIXTURES, EQUIPMENT, AND ITEMS ARE BEING CONVEYED TO ASSIGNEE "AS IS." "WHERE IS." WITH ALL FAULTS, AND IN THEIR PRESENT CONDITION AND STATE OF REPAIR.

ASSIGNOR IS EXPERIENCED AND KNOWLEDGEABLE IN THE OIL AND GAS BUSINESS AND IS AWARE OF ITS RISKS. IN ENTERING INTO THIS ASSIGNMENT, ASSIGNEE ACKNOWLEDGES THAT IT HAS RELIED SOLELY ON ITS INDEPENDENT ANALYSIS, EVALUATION AND INVESTIGATION OF AND JUDGMENT WITH RESPECT TO THE BUSINESS, ECONOMIC, LEGAL, TAX AND/OR OTHER CONSEQUENCES OF THIS ASSIGNMENT, INCLUDING ITS OWN ESTIMATE AND APPRAISAL OF THE EXTENT AND VALUE OF THE PETROLEUM, NATURAL GAS AND OTHER RESERVES OF THE ASSETS. ASSIGNEE ACKNOWLEDGES THAT IT HAS REVIEWED THE MATERIALS MADE ASSIGNOR IN CONNECTION WITH THE TRANSACTION AVAILABLE BY CONTEMPLATED BY THIS ASSIGNMENT ("MATERIALS") AND THAT ASSIGNOR MAKES NO REPRESENTATION OR WARRANTY WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE MATERIALS. THE MATERIALS, CONTRACTS AFFECTING THE ASSETS, AND/OR DOCUMENTS AFFECTING THE ASSETS MAY CONTAIN RESTRICTIONS THAT AFFECT THE LEASES AND LANDS, AND ASSIGNEE ACCEPTS THE ASSETS SUBJECT TO ANY AND ALL SUCH RESTRICTIONS.

B. Notwithstanding the disclaimer of warranties set forth in Paragraph A above, if within 10 days after the execution by Assignee of this Assignment and the payment by Assignee of the consideration for the Assets, Assignee gives Assignor written notice at the address set forth above that the Assets conveyed by this Assignment are less than the interests described for sale in the Materials, then within 30 days after receipt by Assignor of adequate proof of such claim, Assignor shall the option to either (i) cure the defect giving rise to such interest discrepancy to Assignee's reasonable satisfaction; (ii) refund to Assignee the consideration paid by Assignee ito Assigner for the Assets, effective as of the Effective Time, and containing a warranty of title by Assignee against claims arising by, through or under Assignee, but not otherwise; or (iii) refund to Assignee to Assignee to Assignor for the Assets, as mutually agreed between Assignor and Assignee.

C. To the extent permitted by law, Assignee shall be subrogated to Assignor's rights in and to representations, warranties and covenants given by others with respect to the Assets. Assignor hereby grants and transfers to Assignee, its successors and assigns, to the extent so transferable and permitted by law, the benefit of and the right to enforce such covenants,

ڙ نے

÷.,.

÷,

Page 2 of 5

representations and warranties, if any, which Assignor is entitled to enforce with respect to the Assets, but only to the extent not enforced by Assignor.

Assignee accepts the Assets subject to and assumes and agrees to pay, perform, fulfill and discharge all claims, costs, expenses, liabilities and obligations accruing or relating to (i) gas imbalances; (ii) any change in condition or diminution in the value of the Assets or casualty loss, including, but not limited to the period between the execution of this Assignment by Assignor and the Effective Time, and (iii) all environmental matters and obligations, including but not limited to (a) the violation of, or compliance with past, present or future laws (including common law), rules, regulations and orders, (b) remediation and restoration of the Assets, including, without limitation, plugging and abandonment of the Wells and reclamation of the Well sites, (c) normally occurring radioactive materials, (d) man-made material fibers, (e) laws relating to public or employee health and safety; and (f) damage or injury to persons or property on account of chemicals or industrial, toxic or hazardous substances, in any way associated with or related to the Assets, for all periods before, on and after the Effective Time, including, without limitation including but not limited to, all obligations arising under all agreements covering or relating to the Assets. Assignee agrees to defend, indemnify, save and hold harmless Assignor and its affiliates, officers, directors, shareholders, representatives, employees, agents, successors and assigns forever from and against all claims, costs, expenses, losses, damages and liabilities incurred by any such indemnified party for any of the matters enumerated in this Paragraph D arising in connection with the Assets, regardless of whether incurred with respect to events occurring before, on or after the Effective Time and regardless whether such liabilities and obligations may have been caused by the active or passive, joint, sole or concurrent negligence of Assignor.

In addition to the assumption and indemnification obligations of Assignee set forth in Paragraph D, Assignee accepts the Assets subject to and also assumes and agrees to pay, perform, fulfill and discharge any and all other claims, costs, expenses, liabilities and obligations accruing or relating to the owning, developing, exploring, operating or maintaining of the Assets or the producing, transporting and marketing of Hydrocarbons from the Assets, relating to periods before, on and after the Effective Time, including, without limitation, obligations arising under all agreements covering or relating to the Assets, regardless of whether incurred with respect to events occurring before, on or after the Effective Time and regardless whether such liabilities and obligations may have been caused by the active or passive, joint, sole or concurrent negligence of Assignor. Provided, however, that for a limited period of thirty (30) days following the Effective Time Assignor shall be responsible for the payment of any unpaid normal and recurring joint interest billing expenses associated with the ownership or operation of the Assets prior to the Effective Time other than and excluding those expenses relating to the matters enumerated in Paragraph D above. Subject only to Assignor's agreement to pay certain pre-Effective Time expenses pursuant to the immediately preceding sentence, Assignee agrees to defend, indemnify, save and hold harmless Assignor and its affiliates, officers, directors, shareholders, representatives, employees, agents, successors and assigns forever from and against all claims, costs, expenses, losses, damages and liabilities incurred by any such indemnified party for any of the matters set forth in the first sentence of this Paragraph E, arising in connection with the Assets whether arising before, on, or after the Effective Time regardless of whether incurred with respect to events occurring before, on or after the Effective Time and regardless whether such liabilities and obligations may have been caused by the active or passive, joint, sole or concurrent negligence of Assignor.

F. Unless provided otherwise, all recording references in the Exhibits hereto are to the official real property records of the county in which the Assets are located.

G. Separate governmental form assignments of the Assets may be executed on officially approved forms by Assignor to Assignee, in sufficient counterparts to satisfy applicable statutory and regulatory requirements. Those assignments shall be deemed to contain all of the exceptions, warranties, rights, titles, power and privileges set forth herein as fully as though they were set forth in each such assignment. The interests conveyed by such separate assignments are the same as, and not in addition to, the interest in the Assets conveyed herein.

H. This Assignment binds and inures to the benefit of Assignor and Assignee and their respective successors and assigns.

I. This Assignment may be executed in any number of counterparts, each of which shall be deemed to be an original instrument, but all of which together shall constitute but one instrument.

1

J. Assignee shall be responsible for and shall bear and pay all applicable sales taxes, transfer taxes, and documentary, filing and recording fees required by or associated with the conveyance of the Assets hereby. Following recording, Assignee shall promptly furnish Assignor with a photocopy of this recorded Assignment.

K. For a period of six years after this Assignment, Assignor reserves the right to review the Records at Assignee's offices, during normal business hours and on reasonable notice to Assignee. If Assignees desires to destroy or dispose of the Records before that time, Assignee agrees to give Assignor prior written notice of Assignee's intent to dispose of or destroy the Records and give Assignor the opportunity to either copy the Records or take possession of the Records.

L. The Assets may include funds being held by Assignor in suspense for the benefit of a third party or parties. Assignor shall transfer and pay to Assignee, and Assignee agrees to accept from Assignor and hold for the benefit of Assignor and the party or parties entitled to receive payment therefore, and any and all such monies representing the value or proceeds of production removed or sold from the Assets and then held by Assignor for accounts from which payment has been suspended. Assignee shall be responsible for the proper distribution of such monies to the party or parties, entitled to receive payment of same, and shall defend, indemnify and hold Assignor harmless from any claims, costs, expenses, liabilities and obligations resulting therefrom.

EXECUTED on the dates contained in the acknowledgments of this instrument, to be effective for all purposes as of the Effective Time.

ASSIGNOR:

Petro-Canada Resources (USA) Inc.

Nom By:

Name: Dennis J. Gustafson Title: Vice President

ACKNOWLEDGMENT

STATE OF COLORADO § CITY AND § COUNTY OF DENVER §

The foregoing instrument was acknowledged before me this 24 day of 668,0424, 2010, by Dennis J. Gustafson, as Vice President of Petro-Canada Resources (USA) Inc., a Colorado corporation, on behalf of such corporation.

Witness my hand and official seal.

My commission expires:

Ţ,

Notáry Públic: Kathleen R. Vigil

#1452902 v1 den

Page 4 of 5

ÄSSIGNEE:

QUESTAR EXPLORATION & PRODUCTION COMPANY

By: J.B. Neese, Recutive Vice President Name

Title:

ACKNOWLEDGMENTS

STATE OF (Olorado ගුණුග COUNTY OF DONNY

Before me, the undersigned, a Notary Public in and for said County and State, on this day personally appeared J. B. Neese Executive Vice President _, as

Executive Vice President of Dissear Feature trion and Production, known to me to be the person whose name is subscribed to the foregoing instrument, and acknowledged to me that he/she executed the same for the purposes and consideration therein expressed and in the capacity therein stated.

GIVEN UNDER MY HAND AND SEAL OF OFFICE this 5 day of April 2010.

My commission expires:

. . . .

4-29-2012

Notary Públic:

P-DATE:

20 :

Itessee Name Lessee Name Lease Dependences (USA) INC. Townsis D PETRO-CANADA RESOURCES (USA) INC. SIZN2, S D PETRO-CANADA RESOURCES (USA) INC. SIZN2, S N PETRO-CANADA RESOURCES (USA) INC. SIZN2, S N PETRO-CANADA RESOURCES (USA) INC. SIZN2, S WIPE PETRO-CANADA RESOURCES (USA) INC. SIZN2, S N PETRO-CANADA RESOURCES (USA) INC. SIZN2, S SIZN2, S SIZN2, S SIZN2, S N PETRO-CANADA RESOURCES (USA) INC. SIZN2, S SIZN2, S SIZN2, S SIZN2, S MG. PETRO-CANADA RESOURCES (USA) INC. SIZN2, S SIZN2, S SIZN2, S SIZN2,	EXHIBIT "N" Page 2 of 18 DU Lasse Num: Lass Despinin Despinin <thdespinin< th=""> Despinin <t< th=""><th>EXHIBIT "N" Page 2 of 18 Diac Insert Num. Lass Description Diac <thdiac< th=""> Diac <thdiac< th=""></thdiac<></thdiac<></th><th></th><th></th><th></th><th>SEC. 31: LOTS 2-4, SIZNEIA, SEANWIA, EZSWIA, SEA SEC. 33: S/ZNEANEIA, S/ZNZ, N/ZS/Z, SW/ASW/A</th><th></th><th></th></t<></thdespinin<>	EXHIBIT "N" Page 2 of 18 Diac Insert Num. Lass Description Diac Diac <thdiac< th=""> Diac <thdiac< th=""></thdiac<></thdiac<>				SEC. 31: LOTS 2-4, SIZNEIA, SEANWIA, EZSWIA, SEA SEC. 33: S/ZNEANEIA, S/ZNZ, N/ZS/Z, SW/ASW/A		
Losse: Volue Lace: Description Lace Data Set: 2: 1017 Losse: State Set: 2: 1017 Losse: State Set: 2: 1017 Losse: State Set: 2: 1017 Set: 2: 1017	EXHIBIT*N* Page 2 of 18 Dis- lange bar Lase bar Lase bar <thlase bar <thlase bar La</thlase </thlase 	EXHIBIT "N" Page 2 of 18 20 Insert Name Laser Description Data Data Data Sing 3 pro Insert Non- Sing 3 pro <	119911				LAND GROUP	UTU-84625
Insert Num Last Description Last Description Last Description Last Description Last Description Data Data <thdata< th=""> Data <thdata< th=""> D</thdata<></thdata<>	EXHIBIT*A* Page 2 of 18 Dis- lange Lange base Lange base <thlange base Lange base</thlange 	EXHIBIT "A" Page 2 of 18 JJJ Insert Name Laser Description Laser Description Laser Description Laser Description DataConvert Board Page Insert Name INFORMATION RESOURCES (LIAA) NC: TOWNSHIP IL SOUTH, LAWEL IL JAST. SLAAM Exc. JUST. (INFORMATION RESOURCES (LIAA) NC: TOWNSHIP IL SOUTH, LAWEL IL JAST. SLAAM Board Page						
Losser Num Losse County Losse County <td>EXHIBIT "A" Page 2 of 18 2D Insee Name Lase Darigion Lase Darigion Lase Darigion Lase Darigion Insection Insectio</td> <td>EXHIBIT "N" Page 2 of 18 JJJ Insert hunc Inser hunc Insert hunc <td< td=""><td></td><td></td><td></td><td>Sec. 27-SE4</td><td></td><td></td></td<></td>	EXHIBIT "A" Page 2 of 18 2D Insee Name Lase Darigion Lase Darigion Lase Darigion Lase Darigion Insection Insectio	EXHIBIT "N" Page 2 of 18 JJJ Insert hunc Inser hunc Insert hunc <td< td=""><td></td><td></td><td></td><td>Sec. 27-SE4</td><td></td><td></td></td<>				Sec. 27-SE4		
Lesser Name Less Description Loss Data Loss Data Loss Data Loss Data Loss Data Loss Data Loss Data Loss Data Data Data <thdata< th=""> Data <thdata< th=""> Data Data<td>EXHIBIT "A" Page 2 of 18 2D Losse Num: Losse Description Losse Dired Coursy (CLU) Losse Dired Coursy (CLU) Losse Dired Coursy (CLU) Losse Dired Coursy Losse Dired Coursy Losse Dired Coursy Book Page PETRO-CANADA RESOURCES (USA) INC. ISC 2: LOTS (UGLANNICE), 200 39 ANNICE), 200 30 ANNICE), 20</td><td>EXHIBIT "N" Page 2 of 18 2D Insert Name Lase Description Description</td><td>. </td><td></td><td></td><td>Sec. 26: W2</td><td></td><td>an a sharan an a</td></thdata<></thdata<>	EXHIBIT "A" Page 2 of 18 2D Losse Num: Losse Description Losse Dired Coursy (CLU) Losse Dired Coursy (CLU) Losse Dired Coursy (CLU) Losse Dired Coursy Losse Dired Coursy Losse Dired Coursy Book Page PETRO-CANADA RESOURCES (USA) INC. ISC 2: LOTS (UGLANNICE), 200 39 ANNICE), 200 30 ANNICE), 20	EXHIBIT "N" Page 2 of 18 2D Insert Name Lase Description	.			Sec. 26: W2		an a sharan an a
Insset: Name Lase: Description Lase: Display: Status Lase: Display: Status Lase: Display: Status Lase: Display: Status Display: Status <thdisplay: status<="" th=""> <thdisplay: status<="" th=""></thdisplay:></thdisplay:>	EXHIBIT"N" Page 2 of 18 2D Lasse Name Lasse Did Conv Did Conv Convolution Lasse Did Did Conv Convolution Lasse Did Did Conv Convolution Lasse Did Did Convol Convolution Lasse Did Did Convol Convolution Lasse Did Did Convol	EXHIBIT 'N' Page 2 of 18 2/J Insert Name Lase Description Lase Description Lase Description Lase Description Lase Description Lase Description Lase Description Lase Description Lase Description Lase Description Description Lase Description Description D				Sec. 23: N/2. SW/4. NW/4SE/4	1999;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	
Issser Name Lase Description Lase Disal Convisiting 14 SOLITAL DAVIES Loss (List) NC. SURV. 2007 Disal Converts Disal Converts SURV. 2007 Book Page SURV. 2007 Page SURV. 2007 Page SURV. 2007	EXHIBIT "N" Page 2 of 18 Discreption Long Long Road Res Page Res Page Res Page Res Page Res Page Res Page	EXHIBIT "N" Page 2 of "18 2/D Insert						
Lasser Name Lass Durophins Lass Durophysics Lass Durophysics Lass Durophysics Lass Durophysics Lass Durophysics Lass Durophysics Durophysics	Lusser Nume Lusse Discription Lusse Discription Lusse Discription Lusse Discription Lusse Discription Lusse Discription Discription Discription Discription Discription Rep RETRO-CANADA RESOURCES (USA) INC. TOWNSHIP In SOUTH, NANCE IN EAST, SLRAM SIGNA, SIGNA	EXHIBIT "A" Page 2 of 18 Dir Lesse Nume Last Darupion Last Darupion Last Darupion Lost Darupion	606611				LÀND GROUP	TU-84624
Lasset Name Lass Lass Lass Lass Lass Dard Courry Boad Page RETRO-CAMADA RESOURCES (USA) INC. TOWNSHIP IL SOUTH, KANGE IL & LAST, SLB&M Dard Courry Boad Gap	EXHIBIT "N" Page 2 of 18 1 Lasse: Nam: Lass Lass Dade Dade Page Page <t< td=""><td>EXHIBIT "A" Page 2 of 18 20 Issee Name Lase Deciption Lase Deciption Lase Deciption Doc (Docs) Boc (Docs) <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<></td></t<>	EXHIBIT "A" Page 2 of 18 20 Issee Name Lase Deciption Lase Deciption Lase Deciption Doc (Docs) Boc (Docs) <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
Lesser Name Lase DiagComy Lase DiagComy Lase DiagComy Lase DiagComy DiagComy DiagComy DiagComy DiagComy Page RETRO-CAMADA RESOURCES (USA) NC. TOWNSHIP IL SOUTH, PANCE IL LOTS 1(40.03-NINE), 1(39.97-NINE), 1(39.97	EXHIBIT "N" Page 2 of 18 D Lasser, Nunc. Lasser, Successing (Lass), INC. TOWNSHIP 14 SOUTH, KANGE 14 EAST, SL&AM, WORD, JG9 91-NENWN, JG9 91-NENWNN, JG9 91-NENWN, JG9 91-NENWN, JG9 91-NENWNN, JG9 91-N	EXHIBIT "A" Page 2 of 18 2D Lasse: Nunc. Lasse: Cause Description Lasse: Cause Description <t< td=""><td></td><td></td><td></td><td></td><td></td><td>ODORADO CORP.</td></t<>						ODORADO CORP.
Lasset Name Lasse Description Lasse Date/coury (ALL) Lasse (ALL) Lasse (ALL) <thlasse (ALL) Lasse (ALL) Lasse</thlasse 	Lases Nume Lase Description Lase Description Description Date Description Description Date Description Description Date Description Description Date Description Description Date Description Description Description <thdescription< th=""> Description Descri</thdescription<>	EXHIBIT "A" Page 2 of 18 2D Issee: Name Issee: Sume Issee: Sume <td< td=""><td>119668</td><td>686</td><td></td><td>TOWNSHIP IA SOUTH, RANGE 14 EAST, SLB&M</td><td></td><td>EANY LAND & EXPLORATIO</td></td<>	119668	686		TOWNSHIP IA SOUTH, RANGE 14 EAST, SLB&M		EANY LAND & EXPLORATIO
Lasse Name Lass Description Lass Date Sec 2: LOTS (LONNSHIP 14 SOUTH, NANCE 14 EAST, SLBAM Lass Date Sec 2: LOTS (LONNSHIP 14 SOUTH, NANCE 14 EAST, SLBAM Lass Date Sec 2: LOTS (LONNSHIP 14 SOUTH, NANCE 14 EAST, SLBAM South 2000 South 20000 South 20000<	Lusser Num: Lase Lase Description Lase Lase (Luss) (Luss) Lase (Luss) (Luss) Lase (Luss) Lase (Luss) <thlase (Luss) <thlase (Luss)</thlase </thlase 	EXHIBIT "A" Page 2 of 18 2D Inseet Name Lasel Description Lasel Disc(Consy Status, Str. 2). UTS STATUS, 100: STATUS, 10:00: ANNOS, 12:0573 MINED, 129 ST-MENND, 409 ST-MENND, STATUS, 100: STATUS, 10:00: ANNOS, 12:0573 MINED, 129 ST-MENND, 409 ST-MENND, STATUS, 10:00: STATUS, 10:00: ANNOS, 12:0573 MINED, 129 ST-MENND, 409 ST-MENND, STATUS, 10:00: STATUS, 10:00: ANNOS, 12:0573 MINED, 129 ST-MENND, 409 ST-MENND, STATUS, 10:00: STATUS, 10:00: ANNOS, 12:0573 MINED, 129 ST-MENND, 409 ST-MENND, STATUS, 10:00: STATUS, 10:00: ANNOS, 12:0573 MINED, 129 ST-MENND, 409 ST-MENND, STATUS, 10:00: STATUS, 10:00: ANNOS, 12:0573 MINED, 129 ST-MENND, 409 ST-MENND, STATUS, 10:00: STATUS, 10:00: ANNOS, 12:0573 MINED, 12:0593 MENND, 409 ST-MENND, STATUS, 20:00: STATUS, 10:00: MENED, 12:0593 MENND, 409 ST-MENND, 409 ST-MENND, STATUS, 20:00: STATUS, 10:00: MENED, 12:0593 MENND, 409 ST-MENND, STATUS, 20:00: STATUS, 20:00: STATUS, 51.00: MENED, 12:0593 MENND, 409 ST-MENND, STATUS, 20:00: STATUS, 20:00: STATUS, 51.00: MENED, 12:0593 MENND, MEND, 40:00: MEND, 40:00: MEND, 12:0593 MENND, MEND, 40:00: MEND, 12:0593 MENND, MEND, 40:00: MEND, 12:00: MEND, 12:0593 MENND, MEND, 40:00: MEND, 12:0593 MENND, 40:00: MEND, 12:0593 MENND, MEND, 40:00: MEND, 12:00: MEND, 12:0593 MENND, MEND, 40:00: MEND, 12:00: MEND, 12:0593 MENND, 40:00: MEND, 12:00: MEND, 12:0593 MENND, 40:00: MEND, 12:00: MEND, 12:00: MEND, 12:00: MEND, 12:0						
Lasse Name Lass Description Lass Date/Councy Book Page PETRO-CANADA RESOURCES (USA) INC. TOWNSHIP I SOUTH, BANGE I 4 EAST, SLB&M SUBJ 200	Lasses Name Lasse Lasse <thli> Lasse Lasse</thli>	EXHIBIT "A" Page 2 of 18 2D Inser Name		_				
Lasse: Name Lass Lass Lass Lass Dad. County Book Page PETRO-CANADA RESOURCES (USA) INC. TOWNSHIP IF SOUTH, RANGE IF LAST, SLBAM EXEC: 2: LOTS 10100111, RANGE IF	Lusse: Name Lass (Lasse: Name) Lasse (Lasse: Name) Mark County Book Page VALUE STAVE, Str. STAVE, Str. STAVE, Str. STAVE, Str. Str. <t< td=""><td>EXHIBIT "A" Page 2 of 18 2D Lesser Nam: Less Description Less Description Less Description Dated Comy Book Page PETRO-CANADA RESOLICES (USA) NC: TOWNSHIP LANDE 14 EAST SLIKAM V Sning 201 Sning 201<!--</td--><td></td><td></td><td></td><td>SEC. 3: LOTS 1(39.84-NENE), 2(39.89-NWNE), 3(39.93-NENW), 4(39.98-NWNW),</td><td></td><td></td></td></t<>	EXHIBIT "A" Page 2 of 18 2D Lesser Nam: Less Description Less Description Less Description Dated Comy Book Page PETRO-CANADA RESOLICES (USA) NC: TOWNSHIP LANDE 14 EAST SLIKAM V Sning 201 Sning 201 </td <td></td> <td></td> <td></td> <td>SEC. 3: LOTS 1(39.84-NENE), 2(39.89-NWNE), 3(39.93-NENW), 4(39.98-NWNW),</td> <td></td> <td></td>				SEC. 3: LOTS 1(39.84-NENE), 2(39.89-NWNE), 3(39.93-NENW), 4(39.98-NWNW),		
Lasse: Name Lasse Description Lasse Data Size 2: LOTS 1(40:03-NRNE), 2(39-37-NWNE),	Lusse: Name Lase Description Lase SiNU, SV SINU, SV SI	EXHIBIT "A" Page 2 of 18 2D Lasse Name Lass Description Lass Description Lass Description Date County Book Page PETRO-CANADA RESOURCES (USA) INC. 100 WASHIP IA SOUTH, NANCE IA EAST, SLBAM Dist County Book Page INCL. 100 WASHIP IA SOUTH, NANCE IA EAST, SLBAM Dist County Book Page INCL. 100 WASHIP IA SOUTH, NANCE IA EAST, SLBAM Dist County Book Page INCL. 100 WASHIP IA SOUTH, NANCE IA EAST, SLBAM Dist County Book Book Book Book Book Page INCL. 100 WASHIP IA SOUTH, NANCE IA EAST, SLBAM V Book						F DRESS INVESTMENTS
Lasse: Name Lase: Description Lase: Date Courty Boxity Page PETRO-CANADA RESOURCES (USA) INC: TOWNSHIP I4 SOUTH, RANGE 14 EAST, SLB&M Lase: Date Courty Boxity	EXHIBIT "A" Page 2 of 18 2D Iusse: Name Lase Description Lase Carry Book Page PETRO-CANADA RESOURCES (USA) INC. TOWNSHIP 14 SOUTH, EANOE 14 EAST, SLIAM Lase Date Cauny Book Page PETRO-CANADA RESOURCES (USA) INC. TOWNSHIP 14 SOUTH, EANOE 14 EAST, SLIAM Page Sill Zoury Book Page SIRC 3: LOTS 14(0.03-MINE), 2(39.95-MINE), 1(39.93-MINEN), 4(39.93-MINEN), 4(30.00)	Lasse: Nune: Lase: Description Lase: State of 18 20 Instruction:				 S72N/2, S12		PARTNERS
Lasse: Name Lasse Description Lasse Date County Lasse Date County Book Page PETRO-CANADA RESOURCES (USA) INC. TOWNSHIP 14 SOUTH, RANCE 14 LAST, SLB&M SIZARS, SIZ SIZARS, SIZAR	Lasse: Nune Lasse: Chunc Book Page refTNO-CANADA RESOURCES (USA) INC: TOWNSHIP 14 SOUTH, RANGE 14 EAST, SLB&M SEC 3: LOTS 1(40.03-MRNB), 209.97-MINNB), 139.91-MENW), 439.95-MINNW), Sec 4: LOTS 1(40.03-MENB), 209.97-MINNB), 209.91-MENW), 439.95-MINNW), Sec 4: LOTS 1(40.03-MENB), 209.97-MINNB), 209.91-MENW), 439.95-MINNW), Sec 4: LOTS 1(40.03-MENB), 209.97-MINNB), 209.91-MENW), 439.95-MINNW), Sec 2: LOTS 1(40.03-MENB), 209.97-MINNB), 209.91-MENW), 439.95-MINNW), Sec 2: LOTS 1(40.03-MENB), 209.97-MINNB), 209.95-MINNW), Sec 2: LOTS 1(40.03-	EXHIBIT "A" Page 2 of 18 2D Lesser Name Lesser Description Lesser Description Lesser Description Ded Courry Book Page PETRO-CANADA RESOURCES (USA) INC. TOWNSHIP 14 SOUTH, RANGE 14 EAST, SLB&M Ded Courry Book Page SIGL 2: LOTS 160:03-SPT SIGL 2: LOTS 160:04-NERSD, 269:09-X-NWNED, 329:09-X-NWNW), 429:05-X-WNWN), 429:05-X-WNWN), 429:05-X-WNWN), 429:05-X-WNWN), 429:05-X-WNWN), 429:05-X-WNWN), 429:06-X-WDAWN, 429:06-X-WDAWN), 429:06-X-WDAWN, 429:00-X-WDAWN, 429:06-X-WDAWN, 429:06						RESS, INDIVIDUALLY, AND A
Lussee Name Lease Description Lease Date Coursy Lease Date Date Date Date Date Date Date Dat	Lasse Name Lase Discription Lase Status Lase David Status Lase David Status David David Status David David Status David David Status David Page Intra-	EXHIBIT "A" Page 2 of 18 Lise Lesse Name Lase David Page Orany Iase Iase PETRO-CANADA RESOURCES (USA) NC TOWNSHIP 14 SOUTH, RANGE 14 EAST, SLB&M E SUI2066 GARD 692 PETRO-CANADA RESOURCES (USA) NC TOWNSHIP 14 SOUTH, RANGE 14 EAST, SLB&M E SUI2066 GARD 692 SUI200 SUI200 GALU SUI200 GALU SUI2006 GARDON 692 SUI200 SUI200 GALU SUI200 GALU SUI2006 GARDON 692 SUI200 SUI200 GALU SUI200 GALU SUI2006 GARDON 693 SUI200 SUI201 SUI201 GAUU SUI200 GAUU 693 693 SUI200 SUI201 GAUU SUI201 GAUU 693 693 SUI201 SUI201 GUUU SUI201 GUUU GUUU 693 693 SUI201 SUI201 SUI201 SUI201 GUUU GUUU 693	120400			TOWNSHIP 14 SOUTH, RANGE 14 EAST, SLB&M		FFREY G. DRESS AND WILLI
Lasse: Name Lase: Description Lase: Date: Coursy Lase: Coursy: Cours	Lusser Name Lase Description Lase Date Lase Date Lase Date Lose Date Lose Date Lose Date Lose Date Lose Date Date Date Image: I	Lasse: Name Lass Lass Number Lass Number Lass Number Lass Number Lass Number Numer <th< td=""><td></td><td></td><td></td><td>SYLIVIZ, SEL</td><td></td><td></td></th<>				SYLIVIZ, SEL		
Lesser Name Lass Lass Lass Conny Lass Dad Dod Page PETRO-CANADA RESOURCES (USA) INC. TOWNSHIP 14 SOUTH, RANGE 14 EAST, SLB&M Size 2: LOTS 1(40:01-NEWS), 2(39:91-NEWN), 4(39:85-NWNW), Size 2: LOTS 1(40:01-NEWS), 2(39:91-NEWN), 4(39:85-NWNW), Size 2: LOTS 1(40:01-NEWS), 2(39:91-NEWN), 4(39:85-NWNW), Size 2: LOTS 1(40:01-NEWS), 2(39:91-NEWN), 4(39:92-NEWN), 4(39:92-NEWN), Size 2: LOTS 1(40:01-NEWS), 2(39:91-NEWN), 4(39:92-NEWNN), Size 2: LOTS 1(40:	EXHIBIT "A" Page 2 of 18 2D Lasse Name Lass Description Lass Description Dad Coursy Dad Coursy <t< td=""><td>Lasse: Name Lass: Councy Lass: Councy Lass: Councy Lass: Councy Res Not Page PETRO-CANADA RESOURCES (USA) INC. TOWNSHIP 14 SOUTH JANGE 14 EAST: SLB&M V Sic: Councy Res <t< td=""><td></td><td></td><td></td><td>5 1(39.84-NENE), 2(39.89-NWNE), 3(39.93-NENY</td><td></td><td>والمحاوية فالمحاولة المحاولة والمحاولة المحاولة والمحاولة و</td></t<></td></t<>	Lasse: Name Lass: Councy Lass: Councy Lass: Councy Lass: Councy Res Not Page PETRO-CANADA RESOURCES (USA) INC. TOWNSHIP 14 SOUTH JANGE 14 EAST: SLB&M V Sic: Councy Res Res <t< td=""><td></td><td></td><td></td><td>5 1(39.84-NENE), 2(39.89-NWNE), 3(39.93-NENY</td><td></td><td>والمحاوية فالمحاولة المحاولة والمحاولة المحاولة والمحاولة و</td></t<>				5 1(39.84-NENE), 2(39.89-NWNE), 3(39.93-NENY		والمحاوية فالمحاولة المحاولة والمحاولة المحاولة والمحاولة و
Lesse: Name Less Date Description Less Date Comy Enc 2: LOTS (Id0.03-NINC) IOWNSHIP 14 SOUTH, RANGE 14 EAST, SLB&M Date Comy Date Comy Boxit Page PETRO-CANADA RESOURCES (USA) INC: TOWNSHIP 14 SOUTH, RANGE 14 EAST, SLB&M 61/2006 CARBON 61/2006 CARBON 61/2 992 SEC: 2: LOTS 1(d0.03-NINE), 2(39.93-NIWNE), 139.93-NENWN, 4(39.85-NIWNW), SEC: 3: LOTS 1(d0.03-NENE), 2(39.93-NIWNE), 139.93-NENWN, 4(39.98-NIWNW), SEC: 3: LOTS 1(d0.03-NENE), 2(39.93-NIWNE), 139.93-NENWN, 4(39.98-NIWNW), SEC: 3: LOTS 1(d0.03-NENE), 2(39.97-NIWNE), 3(39.91-NENW), 4(39.98-NIWNW), SEC: 3: LOTS 1(d0.03-NENE), 2(39.97-NIWNE), 3(39.91-NENW), 4(39.98-NIWNW), SEC: 3: LOTS 1(d0.03-NENE), 2(39.93-NIWNE), 3(39.91-NENW), 4(39.98-NIWNW), SEC: 3: LOTS 1(d0.03-NENE), 2(39.97-NIWNE), 3(39.91-NENWN), SEC: 3: LOTS 1(d0.03-NENE), 2(39.97-NIWNE), 3(39.91-NENWN),	Lussee Name Lase (Lussee Name Lase (Lussee Name Lase (Lussee Name Lase (Date Councy Book Page (Page (NLU) PETRO-CANADA RESOURCES (USA) INC. TOWNSHIP 14 SOUTH, RANGE 14 EAST, SLB&M Sol (AUL) Sol (A	EXHIBIT "A" Page 2 of 18 Disc Lasser Name Lass Description Lass Lass Date County Book Page PETRO-CANADA RESOURCES (USA) INC. 100WRSHE 14 SOUTH, KANGE 14 EAST, SLB&M Size 2: LOTS 1(40:03-NENE), 2(9) 97-NWNE), 3(9) 91-NENW), 4(39 85-NWNW), Size 2: LOTS 1(40:03-NENE), 2(9) 90-NWNE), 3(9) 91-NENW), 4(39 85-NWNW), Size 2: LOTS 1(40:03-NENE), 2(9) 90-NWNE), 3(9) 91-NENW), 4(39 95-NWNW), Size 2: LOTS 1(40:03-NENE), 2(9) 90-NWNE), 3(9) 91-NENW), 4(39 95-NWNW), Size 2: LOTS 1(40:03-NENE), 2(9) 90-NWNE), 3(9) 91-NENW), 4(39 95-NWNW), Size 2: LOTS 1(40:03-NENE), 2(9) 97-NWNE), 3(9) 91-NENW), 4(39 95-NWNW), Size 2: LOTS 1(40:03-NENE), 2(9) 97-NWNE), 3(9) 91-NENW), 4(39 95-NWNW), Size 2: LOTS 1(40:03-NENE), 2(9) 97-NWNE), 3(9) 91-NENW), 4(39 95-NWNW), Size 2: LOTS 1(40:03-NENE), 2(9) 97-NWNE), 3(9) 91-NENW), 4(39 95-NWNW), Size 2: LOTS 1(40:03-NENE), 2(9) 97-NWNE), 3(9) 91-NENW), 4(39 95-NWNW), Size 2: LOTS 1(40:03-NENE), 2(9) 97-NWNE), 3(9) 93-NENW), 4(39 95-NWNW), Size 2: LOTS 1(40:03-NENE), 2(9) 97-NWNE), 3(9) 93-NENW), 4(39 95-NWNW), Size 2: LOTS 1(40:03-NENE), 2(9) 97-NWNE), 3(9) 93-NENW), 4(39 95-NWNW), Size 2: LOTS 1(40:03-NENE), 2(9) 97-NWNE), 3(9) 93-NENW), 4(39 95-NWNW), Size 2: LOTS 1(40:03-NENE), 2(39 97-NWNE), 3(39 91-NENW), 4(39 95-NWNW), Size 2: LOTS 1(40:03-NENE), 2(39 97-NWNE), 3(39 91-NENW), 4(39 95-NWNW), Size 2: LOTS 1(40:03-NENE), 2(39 97-NWNE), 3(39 91-NENW), 4(39 95-NWNW), Size 2: LOTS 1(40:03-NENE), 2(39 97-NWNE), 3(39 91-NENW), 4(39 95-NWNW), Size 2: LOTS				(ALL)		
Lessee Name Lesse Description Lesse Date County Res Date County Book Page Inscription TOWNSHIP 14 SOUTH, RANGE 14 EAST, SLB&M Date County Date County Book Page Inscription SEC. 2: LOTS (40:03-NIENE), 2(39.97-NIWNE), 3(39.97-NIWNE), 3(39.97-NIWNE), 4(39.85-NIWNW), 6/12006 CARBON 629 692 Inscription SEC. 2: LOTS (10.03-NIENE), 2(39.97-NIWNE), 3(39.93-NIWNY), 4(39.85-NIWNW), 6/12006 CARBON 649 649 Inscription SEC. 3: LOTS (10.03-NIENE), 2(39.93-NIWNE), 3(39.93-NIWNY), 4(39.93-NIWNW), 6/12006 649 649 Inscription SEC. 2: LOTS (140:03-NIENE), 2(39.97-NIWNE), 3(39.93-NIENW), 4(39.93-NIWNW), 6/12006 649 649 Inscription SEC. 2: LOTS (140:03-NIENE), 2(39.97-NIWNE), 3(39.93-NIENW), 4(39.93-NIWNW), 6112006 649	Lussee Name Lase Description Lase Description Lase Compy Book Page PETRO-CANADA RESOURCES (USA) INC. TOWNSHIP 14 SOUTH, RANGE 14 EAST, SLB&M Diad Compy Book Page PETRO-CANADA RESOURCES (USA) INC. TOWNSHIP 14 SOUTH, RANGE 14 EAST, SLB&M Status 61/2006 CARBON 622 Status Status Status Status Status 61/2006 629 692 Status Status Status Status Status 61/2006 629 692 Status Status Status Status Status Status 61/2006 629 692 Status Status Status Status Status 61/2006 628 692 Status Status Status Status Status 61/2006 628 692 Status Status Status Status Status 61/2006 648 629 693 Status Status Status Status Status 61/2006	Lasser Name Lase Description Lase Date Lase Courty SIXU2, SI2 Date Courty Date Date Courty Date Date Image: PETRO-CANADA RESOURCES (USA) INC. TOWNSHIP IS SOUTH, RANGE I I EAST, SLB&M SIXU2, SI2 SIXU2, SIXU2, SI2 SIXU2, SIX				SANA, SZ		
Lesser Name Less Description Less Date County Less Date County Less Date County Rest Date County Rest Date County Book Page PETRO-CANADA RESOURCES (USA) INC. TOWNSHIP 14 SOUTH, RANGE 14 EAST, SLB&M Mode Size 2: LOTS 1 (40.03-MENR), 2(39.97-MWNB), 3(39.91-MENW), 4(39.85-MWNW), Size 2: LOTS 1 (40.03-MENR), 2(39.97-MWNB), 3(39.91-MENW), 4(39.95-MWNW), Size 3: LOTS 1 (32.84-MENR), 2(39.92-MWNB), 3(39.92-MWNW), Size 3: LOTS 1 (32.84-MENR), 2(39.92-MWNB), 4(39.92-MWNW), Size 3: LOTS 1 (40.03-MENR), 2(39.91-MENW), 4(39.92-MWNW), Size 3: LOTS 1 (40.12) Size 3: LOTS 1 (40.12) Size 3: LOTS 1 (40.13-MENR), 2(39.91-MENW), 4(39.92-MWNW), Size 3: LOTS 1 (40.13-MENR), 2(39.91-MENW), 4(39.92-MWNW), Size 3: LOTS 1 (40.13-MENR), 2(39.91-MENW), 4(39.92-MWNW), Size 3: LOTS 1 (40.13-MENR), 2(39.93-MENW), 4(39.92-MWNW), Size 3: LOTS 1 (40.13-MENR), 2(39.93-MENW), 4(39.92-MWNW), Size 3: LOTS 1 (40.12-MENR), 2(39.93-MENW), 4(39.92-MWNW), Size 3: LOTS 1 (40.14-MENR), 2(39.93-MENW),	EXHIBIT "A" Page 2 of 18 Discrete Name Lase Lase Lase Lase Lase Lase Lase Lase Lase Date	Lasse: Name Lass Lass <td></td> <td></td> <td></td> <td> SEC. 2: LOTS 1(40.03-NENE), 2(39.97-NWNE), 3(39.91-NENW), 4(39.85-NWNW),</td> <td></td> <td>LADLIE, HUSBAND AND WIFE</td>				 SEC. 2: LOTS 1(40.03-NENE), 2(39.97-NWNE), 3(39.91-NENW), 4(39.85-NWNW),		LADLIE, HUSBAND AND WIFE
Lasser Name Lase Description Lase Date County Lesser Date County Book Page PETRO-CANADA RESOURCES (USA) INC. TOWNSHIP 14 SOUTH, RANGE 14 EAST, SLB&M Date County Date County Book Page Image: C 2: LOTS 1(40:03-NENE), 2(39:97-NENE), 2(39:97-NENE), 4(39:85-NENE), 4(39:85-NENE), 4(39:99-NENE), 4(39:9	EXHIBIT "A" Page 2 of 18 2D Lesser Name Lesser Description Lesser Description Lesser Description Lesser Description Date County Book Page IPETRO-CANADA RESOURCES (USA) INC. TOWNSHIP 14 SOUTH, RANGE 14 EAST, SLB&M Date County Date County Book Page IPETRO-CANADA RESOURCES (USA) INC. TOWNSHIP 14 SOUTH, RANGE 14 EAST, SLB&M Date County Book Date County Book Page IPETRO-CANADA RESOURCES (USA) INC. TOWNSHIP 14 SOUTH, RANGE 14 EAST, SLB&M Date County 6/1/2006 CARBON 6/20	Lissee Name Lase Description Date Date Date Date Date Date Date Date	119671			TOWNSHIP J4 SOUTH, RANGE 14 EAST, SLB&M		TEVEN A. LADLIE AND PENNI
Lessee Name Lease Description Lease Lease Lease Lease Lease Date County Book Page PETRO-CANADA RESOURCES (USA) INC. TOWNSHIP 14 SOUTH, RANGE 14 EAST, SLB&M SEC. 2: LOTS 1(40.03-NENE), 2(39.91-NENW), 4(39.85-NWNW), SI/2006 CARBON 629 692 VIAL SEC. 3: LOTS 1(40.03-NENE), 2(39.91-NENW), 4(39.95-NENW), 4(39.95-NENW), SI/2006 CARBON 629 692 VIAL SIZNIZ, SEC. SIZNIZ, SEC. SIZNIZ, SEC. SIZNIZ, SEA SIZNIZ, SEA SIZNIZ, SEA SIZNIZ, SEA SIZNIZ, SEA SIZNIZ, SEC. SIZNIZ, SEA SIZNIZ, SIZ SIZNIZ, SIZIS SIZNIZ, SIZIS SIZNIZ, SIZIS SIZNIZ, SIZIS SIZINIZ, SIZIS SIZINIZ, SIZIS SIZINIZ, SIZIS SIZINIZ, SIZIS SIZINIZ, SIZIS SIZINIZ, SIZISIS SIZINIZ, SIZISIS S	EXHIBIT "A" Page 2 of 18 W Lasse Name Lease Description Lease Description Lease PETRO-CANADA RESOURCES (USA) INC. TOWNSHIP 14 SOUTH, RANGE 14 EAST, SLB&M Dale Couny Book VILU SEC. 2: LOTS (40:03-WINE), 2(39:97-NWNE), 3(39:91-NENW), 4(39:85-NWNW), Sec. 2: LOTS (40:03-WINE), 2(39:99-NWNE), 3(39:91-NENW), 4(39:95-NWNW), Sec. 2: LOTS (40:03-WINE), 2(39:91-NENW), 4(39:95-NWNW), Sec. 2: LOTS (40:03-WINE), 2(39:91-NWNW), Sec. 2: LOTS (40:03-WINE), 2(39:93-NWNW), Sec. 2: LOTS (40:03-WINE), 2(39:93-NWNW), Sec. 2: LOTS (40:03-WINE), 2(39:93-NWNW), Sec.	EXHIBIT "A" Page 2 of 18 2D Lasse Name Lass Description Lass Description Lass Description Lass Description Date County Book Page PETRO-CANADA RESOURCES (USA) INC. 10WNSHIP 14 SOUTH, PANGE 14 EAST, SLI&&M Page Size 2: LOTS 1(40.01-NIENE), 2(39.97-NIENE), 3(39.91-NIENEV), 4(39.85-NIENEV), Size 2: LOTS 1(40.01-NIENE), 2(39.97-NIENE), 3(39.91-NIENEV), 4(39.95-NIENEV), Size 2: LOTS 1(40.01-NIENE), 2(39.97-NIENE), 3(39.91-NIENEV), Size 2: LOTS 1(40.01-NIENE), 2(39.97-NIENE), 3(39.91-NIENEV), Size 2: LOTS 1(40.01-NIENE), 2(39.97-NIENEV), 4(39.95-NIENEV), Size 2: LOTS 1(40.01-NIENE), 2(39.97-NIENEV), 4(39.95-NIENEV), Size 2: LOTS 1(40.01-NIENE), 2(39.91-NIENEV), 4(39.95-NIENEV), Size 2: LOTS 1(40.01-NIENE), 2(39.91-NIENEV), 4(39.95-NIENEV), Size 2: LOTS 1(40.01-NIENE), 2(39.91-NIENEV), Size 3: LOTS 1(40.01-NIENE), Size 3: LOTS 1(40.01-NIENE), Size 3: LOTS 1(40.01-NIENE), Size 3: LOTS 1(40.01-NIENE), Size 3: LOT						
Lesser Name Lesser Description Lesser Date County Lesser Date County Book Page PETRO-CANADA RESOURCES (USA) INC. TOWNSHIP 14 SOUTH, RANGE 14 EAST, SLB&M Date County Date County Book Page Image: Display County Siziniz, Siziniz Siziniz, Siziniz	Lesse Name Less Description Less County Less County Book Page PETRO-CANADA RESOURCES (USA) INC. TOWNSHIP 14 SOUTH, RANGE 14 EAST, SLIB&M V Date County Book Page Image: SCIVIZ, SVZ SCIVIZ, SVZ SCIVIZ, SVZ VALU Image SCIVIZ, SVZ SCIVIZ,	EXHIBIT "A" Page 2 of 18 Disconting in the provided in the page 2 of 18 Lease Lasser Name Lasse Description Lasse Description Lasse Description Date County Date County Book Page PETRO-CANADA RESOURCES (USA) INC. TOWNSHIP 14 SOUTH, RANGE 14 EAST, SLB&M Date County Book Date County Book Page Image: County Page 2 of 18 SZNZ, SIZ Loss (data-wine), 2(39.97-NWNE), 3(39.91-NENW), 4(39.85-NWNW), Book Page Image: County Page 2 of 18 SZNZ, SIZ Lasse Description Image: County Page Book Page Date County Page Book Page Book Page Date County Page Book Page Page Book Page Page Date County Page Book Page Page Book Book Book Boo				SEC. 3: LOIS ((39:34-NENE), 2(39:89-NWNE), 3(39:93-NENW), 4(39:98-NWNW),		
Lessee Name Lessee Name Lesse Description Lesse Lesse Date Councy Book Page PETRO-CANADA RESOURCES (USA) INC. TOWNSHIP 14 SOUTH, RANGE 14 EAST, SLB&M Date Councy Date Councy Date Councy Book Page PETRO-CANADA RESOURCES (USA) INC. TOWNSHIP 14 SOUTH, RANGE 14 EAST, SLB&M Page 6/1/2006 CARBON 6/2 PETRO-CANADA RESOURCES (USA) INC. SIZNIZ, SIZ SIZNIZ, SIZ 6/1/2006 CARBON 6/2 PETRO-CANADA RESOURCES (USA) INC. TOWNSHIP 14 SOUTH, RANGE 14 EAST, SLB&M Gold All All All All All All All All All A	EXHIBIT "A" Page 2 of 18 2D Lessee Mane Lesse Inscription Lesse Description Lesse PETRO-CANADA RESOURCES (USA) INC. TOWNSHIP 14 SOUTH, RANGE 14 EAST, SLB&M Date Couny Book Page Image: VALU S2XV2, S2 VALU S2XV2, S2 S2XV	EXHIBIT "A" Page 2 of 18 D Lesser Name Lesser Description Lesser Description Lesser Description Lesser Description Date County Book Page PETRO-CANADA RESOURCES (USA) INC. TOWNSHIP 14 SOUTH, RANGE 14 EAST, SLB&M V Date County Book Page Image: FETRO-CANADA RESOURCES (USA) INC. TOWNSHIP 14 SOUTH, RANGE 14 EAST, SLB&M V Srinz, Sri Sri </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
Lesse: Name Lesse: Name Lesse: Description Lesse: Date Councy Book Page PETRO-CANADA RESOURCES (USA) INC. 10WNISHIP 14 SOUTH, RANGE 14 EAST, SLB&M Date Councy Date Counc	EXHIBIT "A" Page 2 of 18 2D Lesse Name Less Description Less County Date County Date County Date County Book Page PETRO-CANADA RESOURCES (USA) INC. 170WNSHIP 14 SOUTH, RANGE 14 EAST, SLB&M V Date County Book Page Image: Description SEC. 2: LOTS 1(40.03-MENE), 2(39.97-NWNE), 3(39.91-NENW), 4(39.85-NWNW), 61/2006 CARBON 629 692 Image: County SIZ/VIZ, SV2 (ALL) SIZ/VIZ, SV2 61/2006 CARBON 61/2006 61/	EXHIBIT "A" Page 2 of 18 2D Lessee Name Lessee Name Lesse Description Lesse Description Lessee Councy bate Councy book Page PETRO-CANADA RESOURCES (USA) INC: TOWNSHIP 14 SOUTH, RANGE 14 EAST, SLB&M EX 6/1/2006 CARBON 6/2 VILU SEC 2: LOTS (40:01-NI-NIE), 2(39 91-NENW), 4(39 85-NWNW). EX 6/1/2006 CARBON 6/2 VILU SEC 3: LOTS (40:01-NI-NIE), 2(39 91-NENW), 4(39 85-NWNW). EX EX 6/1/2006 CARBON 6/2 VILU SEC 3: LOTS (40:01-NI-NIE), 2(39 91-NENW), 4(39 85-NWNW). EX EX EX EX EX VILU SEC 3: LOTS (40:01-NI-NIE), 2(39 91-NENW), 4(39 92-NIWNW). EX E			-	SIZNIZ, SIZ		
Lessee Name Lease Description Lease Description Lease Description Lease Description Date County Book Page PETRO-CANADA RESOURCES (USA) INC. TOWNSHIP 14 SOUTH, RANGE 14 EAST, SLIB&M V 6/1/2006 CARBON 6/2 6/	EXHIBIT "A" Page 2 of 18 Difference Lass Las Las Las	EXHIBIT "A" Page 2 of 18 Difference Lesse				SEC. 2: LOTS 1(40.03-NENE), 2(39.97-NWNE), 3(39.91-NENW), 4(39.85-NWNW),	> WIFE	ESTORIOUS, HUSBAND AND
Lessee Name Lessee Description Lessee Description Lessee Date Description Lessee Date Date County Book Page PETRO-CANADA RESOURCES (USA) INC. TOWNSHIP 14 SOUTH, RANGE 14 EAST, SLB&M Date County Date County Date County Book Page PETRO-CANADA RESOURCES (USA) INC. TOWNSHIP 14 SOUTH, RANGE 14 EAST, SLB&M Page 6/1/2006 CARBON 6/2 SIZNIZ, SIZ SIZNIZ, SIZ SIZNIZ, SIZ SIZNIZ, SIZ 6/1/2006 CARBON 6/2 SIZNIZ, SIZ (ALL) SIZNIZ, SIZ 1 1 1 SIZNIZ, SIZ4 SIZNIZ, SIZ4 SIZNIZ, SIZ4 1 1	EXHIBIT "A" Page 2 of 18 2D Lessee Name Less Description Less Description Less Description Less Description Less Description Date County Book Page PETRO-CANADA RESOURCES (USA) INC. TOWNSHIP 14 SOUTH, RANGE 14 EAST, SLB&M Date County Book Page PETRO-CANADA RESOURCES (USA) INC. TOWNSHIP 14 SOUTH, RANGE 14 EAST, SLB&M Date County Book Page PETRO-CANADA RESOURCES (USA) INC. TOWNSHIP 14 SOUTH, RANGE 14 EAST, SLB&M Date County Book Page VICTOR VIC	EXHIBIT "A" Page 2 of 18 D Lessee Name Lesse Description Lesse Description Lesse PETRO-CANADA RESOURCES (USA) INC. TOWNSHIP 14 SOUTH, RANGE 14 EAST, SLB&M Data Data PETRO-CANADA RESOURCES (USA) INC. TOWNSHIP 14 SOUTH, RANGE 14 EAST, SLB&M Page 61/2006 (CARBON 629 SZAVID, SP2 SZAVID, SP2 Incl. SZAVID, SP3 SCAVID, SP3 SCAVID, SP3 SCAVID, SP3 Image: SCA INC. NUM SZAVID, SP3 SZAVID, SP3 SCAVID, SP	119672			TOWNSHIP 14 SOUTH, RANGE 14 EAST, SLB&M		ARY PESTORIOUS AND DAW
Lessee Name Lessee Name Lessee Description Lessee Description Lessee Name Lessee Name Lessee Name Lessee Name Lessee Name Date County Book Page PETRO-CANADA RESOURCES (USA) INC. TOWNSHIP 14 SOUTH, RANGE 14 EAST, SLB&M P 61/2006 (ARBON 629 692 PETRO-CANADA RESOURCES (USA) INC. TOWNSHIP 14 SOUTH, RANGE 14 EAST, SLB&M P 61/2006 (ARBON 629 692 Sci (10, 10, 10, 10, 10, 10, 10, 10, 10, 10,	EXHIBIT "A" Page 2 of 18 2D Lessee Name Lesse Description Less PETRO-CANADA RESOURCES (USA) INC. TOWNSHIP 14 SOUTH, RANGE 14 EAST, SLIB&M Date County Book Page PETRO-CANADA RESOURCES (USA) INC. TOWNSHIP 14 SOUTH, RANGE 14 EAST, SLIB&M Edited County Book Page SOURCES (USA) INC. TOWNSHIP 14 SOUTH, RANGE 14 EAST, SLIB&M Edited County Book Page VICTOR (40.03-NIRNE), 2(39.97-NIWNE), 3(39.91-NIENW), 4(39.85-NIWNW), SOURCES (USA) SOURCES (USA) 6/1/2006 (CARBON 6/29 6/92 VICTOR (40.03-NIRNE), 2(39.93-NIWNE), 3(39.91-NIENW), 4(39.95-NIWNW), SOURCES (USA) 1 1 1 VICTOR (40.03-NIRNE), 2(39.93-NIWNE), 3(39.91-NIENW), 4(39.95-NIWNW), SOURCES (USA) 1 1 1 VICTOR (40.03-NIRNE), 2(39.93-NIWNE), 3(39.93-NIWNW), 4(39.95-NIWNW), 4(39.95-NIWNW), 1 1 VICTOR (40.03-NIRNE), 2(39.93-NIWNE), 3(39.93-NIWNW), 4(39.95-NIWNW), 4(39.95-NIWNW), 1 1	EXHIBIT "A" Page 2 of 18 D Lessee Name Lesse Description Lesse Description Lesse Description Date County Book Page PETRO-CANADA RESOURCES (USA) INC. TOWNSHIP 14 SOUTH, RANGE 14 EAST, SLB&M E 61/2006 CARBON 629 692 SCRUZ, SZ SZRUZ, SZ SZRUZ, SZ SZRUZ, SZ 100 NINE), 2(39.93-NIWNY), 4(39.95-NIWNW), 61/2006 CARBON 6.9 692 VALU SZRUZ, SZ SZRUZ, SZ SZRUZ, SZ SZRUZ, SZ 100 10 10 10 VALU SZRUZ, SZ SZRUZ, SZ SZRUZ, SZ SZRUZ, SZ 1075 1(39.84-NENE), 2(39.93-NENW), 4(39.95-NENW), 4(39.95				S72N72, SE/4		
Lessee Name Lessee Name Lessee Name Lessee Name Lessee Name Date County Book Page PETRO-CANADA RESOURCES (USA) INC. 10 WNISHIP 14 SOUTH, RANGE 14 EAST, SLB&M Mate County 6/1/2006 CARBON 6/2 SEC. 2: LOTS (40.03-NIFNE), 2(39.97-NIWNE), 3(39.91-NENW), 4(39.85-NIWNW), SS-NIWNW), 6/1/2006 CARBON 6/2 VIC SYZINZ, SIZ (ALL) (ALL) Mate County 6/1/2006 CARBON 0 0	EXHIBIT "A" Page 2 of 18 2D Lessee Name Lesse Description Lesse County Book Page PETRO-CANADA RESOURCES (USA) INC. TOWNSHIP 14 SOUTH, RANGE 14 EAST, SLB&M Date Date Date County Book Page PETRO-CANADA RESOURCES (USA) INC. TOWNSHIP 14 SOUTH, RANGE 14 EAST, SLB&M Date 61/2006 CARBON 629 692 SEC. 2: LOTS 1 (40.03-NENE), 2(39.91-NENW), 4(39.85-NWNW), SS-NWNW), 61/2006 CARBON 629 692 Model SV2N2, SV2 MALLY M	EXHIBIT "A" Page 2 of 18 D Lessee Name Lesse Description Lesse Description Lesse County Book Page PETRO-CANADA RESOURCES (USA) INC. TOWNSHIP 14 SOUTH, RANGE 14 EAST, SLIB&M SIG 97 AWNE), 3(39 91-NENW), 4(39 85-NWNW), 61/2006 (CARBON 62/2006 (CARBO				SEC. 3: LOTS 1(39.84-NENE), 2(39.89-NWNE), 3(39.93-NENW), 4(39.98-NWNW),		
Lesser Name Lease Description Lesse Page Date County Book PETRO-CANADA RESOURCES (USA) INC. 170WNSHIP 14 SOUTH, RANGE 14 EAST, SLB&M Date County PETRO-CANADA RESOURCES (USA) INC. 100WNSHIP 14 SOUTH, RANGE 14 EAST, SLB&M 61/2006 CARBON SEC. 2: LOTS 1(40.03-NIFNE), 2(39.97-NWNE), 3(39.91-NENW), 4(39.85-NWNW), 61/2006 County SEC. 2: LOTS 1(40.03-NIFNE), 2(39.97-NWNE), 3(39.91-NENW), 4(39.85-NWNW), 61/2006	EXHIBIT "A" Page 2 of 18 DD Lessee Name Lease Description Lease County Book Page PETRO-CANADA RESOURCES (USA) INC. TOWNSHIP 14 SOUTH, RANGE 14 EAST, SLB&M Page 61/12006 CARBON 629 692 SEC. 2: LOTS 1(40:03-NIFNE), 2(39:97-NWNE), 3(39:91-NENW), 4(39:85-NWNW). SS-NWNW). SS-NWNW). SS-NWNW). SS-NWNW).	EXHIBIT "A" Page 2 of 18 D Lessee Name Lease Description Lease County Book Page PETRO-CANADA RESOURCES (USA) INC. TOWNSHIP 14 SOUTH, RANGE 14 EAST, SLB&M P 61/12006 (CARBON) 62/2 SEC. 2: LOTS 1(40.03-NIRVE), 2(39.97-NWNE), 3(39.91-NENW), 4(39.85-NWNW). SS-NWNW). 61/12006 (CARBON) 62/2 SIZINIZ, SV2 SIZINIZ, SV2 SIZINIZ, SV2 SIZINIZ, SV2 SIZINIZ SIZINIZ				(ALL)		
Lessee Name Lesse Description Lesse PETRO-CANADA RESOURCES (USA) INC. 170WNSHIP 14 SOUTH, RANGE 14 EAST, SLB&M 6/1/2006 6/1/2006 6/1/2006 6/29 6/2 SEC. 2: LOTS 1(40.03-NFNE), 2(39.97-NWNE), 3(39.85-NWNW), 5/1/2006 6	EXHIBIT "A" Page 2 of 18 DD Lesse Lesse Lesse Lesse Lesse Lesse Lesse Lesse Date County Book Page PETRO-CANADA RESOURCES (USA) INC. ITOWNSHIP 14 SOUTH, RANGE 14 EAST, SLB&M P 61/2006 CARBON 629 692 EXERCISE (USA) INC. ITOWNSHIP 14 SOUTH, RANGE 14 EAST, SLB&M P 61/2006 CARBON 629 692	EXHIBIT "A" Page 2 of 18 D Lesse Name Less Description Less County Book Page PETRO-CANADA RESOURCES (USA) INC. ITOWNSHIP 14 SOUTH, RANGE 14 EAST, SLB&M Poly 139 91-NENW, 4(39 85-NWNW), 61/2006 CARBON 629 692 SEC 2: LOTS 1(40.03-NINE), 2(39 97-NWNE), 1(39 91-NENW, 4(39 85-NWNW), Schwnwy, 61/2006 CARBON 629 692				SrZNZ, SrZ		RTNERSHIP
Lessee Name Lesse Description Lesse Date County Date County Date County Date County PETRO-CANADA RESOURCES (USA) INC. TOWNSHIP 14 SOUTH, RANGE 14 EAST, SLB&M 6/1/2006 CARBON 6/29 6/92	EXHIBIT "A" Page 2 of 18 2D Lesser Name Lesse Description Lesse Description PETRO-CANADA RESOURCES (USA) INC. ITOWNSHIP 14 SOUTH, RANGE 14 EAST, SLB&M 6/1/2006	EXHIBIT "A" Page 2 of 18 2D Lesser Name Lesse Description Lesse Description Lesse Description Lesse Description Book Page PETRO-CANADA RESOURCES (USA) INC. ITOWNSHIP 14 SOUTH, RANGE 14 EAST, SLB&M SC 10000 CARBON 6/1/2006 CARBON 6/1				SEC 2: LOTS I(40.03-NFNE), 2(39.97-NWNE), 3(39.91-NENW), 4(39.85-NWNW),	Đ	STERBROEN FAMILY LIMITE
Lease Name Lease Description Lease Description DateCounty Book Page	EXHIBIT "A" Page 2 of 18 2D Lease Name Lease Description Lease Description Date County Book Page	EXHIBIT "A" Page 2 of 18 20 Lease Description Lease Description Date County Book Page	119670			TOWNSHIP 14 SOUTH, RANGE 14 EAST, SLB&M		REG JENSEN, PRESIDENT OF
	20	2D	Entry			Lease Description	Lessee Name	ssor Name
					 -			

.

Ent 815998 Bk 775 Pg 672 Date: 13-AUG-2012 12:01:29PM Fee: \$12.00 Check Filed By: VB VIKKI BARMETT, Recorder CARBON COUNTY CORPORATION For: MEANY LAND & EXPLORATION INC 1

MINERAL DEED

KNOW ALL MEN BY THESE PRESENTS THAT Meany Land & Exploration, Inc., of 410 17th Street Suite 1300 Denver, Colorado 80202 hereinafter called Grantor, (whether one or more) for and in consideration of the sum of TEN AND MORE dollars (\$10.00+) cash in hand paid and other good and valuable considerations, the receipt of which is hereby acknowledged, does hereby grant, bargain, sell, convey, transfer, assign and deliver unto Meany Family LLC, of 4719 E. Pinewood Cr. Centennial, Colorado 80121 hereinafter called Grantee, all of the interests owned by said Meany Land & Exploration, Inc., as set forth below, in and to all of the oil, gas and other minerals in and under and that may be produced from the following described lands situated in Carbon County, State of Utah, to-wit: Township 14 South, Range 14 East, SLM Section 2: All Section 3: N/2, SE/4

Township 14 South, Range 14 East, SLM Section 3: SW/4 (Sunnyside #7 Placer Mining Claim) Section 10: N/2, SE/4 (Sunnyside 4,5,6, Placer Mining Claims)

Containing 1,760.00 acres, more or less, together with the right of ingress and egress at all times for the purpose of mining, drilling, exploring, operating and developing said lands for oil, gas, and other minerals, and storing, handling, transporting and marketing the same therefrom with the right to remove from said land all of Grantee's property and improvements.

This sale is made subject to any rights now existing to any lessee or assigns under any valid and subsisting oil and gas lease of record heretofore executed; it being understood and agreed that said Grantee shall have, receive, and enjoy the herein granted interests in and to all bonuses, rents, royalties and other benefits which may accrue under the terms of said lease insofar as it covers the above described land from and after the date hereof, precisely as if the Grantee herein had been at the date of the making of said lease the owner of similar interests in and to the lands described and Grantee one of the lessors therein.

Grantor agrees to execute such further assurances as may be requisite for the full and complete enjoyment of the rights herein granted and likewise agrees that Grantee herein shall have the right at any time to redeem for said Grantor by payment, any mortgage, taxes, or other liens on the above described land, upon default in payment by Grantor, and be subrogated to the rights of the holder thereof.

TO HAVE AND TO HOLD, The above described property and easement with all and singular the rights, privileges, and appurtenances thereunto or in any wise belonging to the said Grantee herein its heirs, successors, personal representatives, administrators, executors, and assigns forever, and Grantor does hereby warrant said title to Grantee its heirs, executors, administrators, personal representatives, successors and assigns forever and does hereby agree to defend all and singular the said property unto the said Grantee herein its heirs, successors, executors, personal representatives, and assigns against every person whomsoever claiming or to claim the same on any part thereof.

WITNESS my hand this 9th day of August, 2012.

Meany Land & Exploration, Inc.

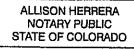
E. Michael Meany, President

State of Colorado County of Denver

The foregoing instrument was acknowledged before me this 9th day of August, 2012, by E. Michael Meany, president of Meany Land n & Exploration, Inc

} ss.

}


My commission expires:

IL

03/05.

v Notary Public

1000 Broadway RINKIN 10 60202 Address of Notary Public/

MY COMMISSION EXPIRES 03/05/14

APPENDIX B

HYDROLOGY OF NORTH SPRING AND BRUIN POINT

HYDROLOGY OF NORTH SPRING AND BRUIN POINT BRUIN POINT MINE

For

Green River Resources Inc. 201 South Main 1800 Salt Lake City, UT 84111

September 18, 2014

Hydrology of North Spring And Bruin Point Utah

Prepared for:

Salt Lake City, UT 84111

Prepared by:

URS Corporation 756 East Winchester, Suite 400 Salt Lake City, UT 84107

H. Lawrence Cannon, P.G. Project Geologist

Stephen melenone

Stephen H. Snelgrove Senior Hydrogeologist Vice President

TABLE OF CONTENTS

1.0	INTRO	DUCTION	. 1
2.0	HYDR	OGEOLOGY	. 1
	2.1	Climate and Topography	.1
		Subsurface Stratigraphy	
	2.3	Structural Factors	.2
	2.4	Groundwater	.3
3.0	CONC	LUSIONS	.5
4.0	REFE	RENCES	.6

TABLES

Table 1	NOAA Station	BRPU1	Bruin	Point	Precipitation	Data

FIGURES

Figure 1	Location Map
Figure 2	NOAA Station BRPU1 Bruin Point Precipitation Charts
Figure 3	Geologic Map
Figure 4	Generalized Cross-Section A-A'

APPENDICES

Appendix A Photograph Log

Appendix B Amoco Boring Logs

ACRONYMS

ASEC	American Sands Energy Corporation
BGS	Below Ground Surface
GPM	Gallons Per Minute
GRF	Green River Formation
GRR	Green River Resources Inc.
JBR	JBR Environmental Consultants, Inc.
NOAA	National Oceanic and Atmospheric Administration
USDA	U.S. Department of Agriculture
URS	URS Corporation
USGS	United States Geological Survey

1.0 INTRODUCTION

Green River Resources Inc. (GRR) proposes to mine and process oil sand resources located on private property approximately 6 miles northeast of Sunnyside, Utah, and approximately 100 miles southeast of Salt Lake City, Utah as illustrated in Figure 1. The proposed facilities include a subsurface mine to extract oil sand materials from deposits approximately 800-900 feet below the ground surface (bgs); a processing plant on the surface to extract bitumen from the oil sands; a surface impoundment to store dry materials derived from the processing plant; and associated haul roads used to move materials between the mine, processing plant, and the dry material surface impoundment.

2.0 HYDROGEOLOGY

The project area is in the Roan Cliffs and comprises 1,760 acres of private parcels located in Township 14 South, Range 14 East, Sections 2, 3, and 10, Salt Lake Meridian (Figure 1). The area is in mountainous terrain; elevations range from approximately 8,000 feet to over 10,150 feet at Bruin Point, near the northwest corner of the project area.

Much of the project area is within the Range Creek drainage (Figure 1). Although numerous studies conducted by Amoco, JBR and others indicate that Range Creek is generally dry in the vicinity of the project, North Spring, located near the northern boundary of project area and approximately 500 feet southeast of the proposed dry materials surface impoundment, discharges into the Range Creek drainage, indicating the presence of groundwater (JBR, 2014; Calkin, 1990A). Several factors affect the occurrence and movement of groundwater near the project, primarily the climate and topography of the project location, which controls the fraction of annual precipitation that infiltrates into the subsurface and when the infiltration occurs; the subsurface stratigraphy, which inhibits the percolation of shallow groundwater storage, movement, and the direction of flow. Each of these factors is discussed below, followed n a conceptual model of the groundwater in the project area that describes how these factors interact.

2.1 Climate and Topography

Few climate data are readily available that are directly applicable to the project area. The nearest relevant information is from the National Oceanic and Atmospheric Administration (NOAA) Bruin Point Station (SHEF ID: BRPU1), approximately 1.5 miles southeast of the project area, at an elevation of 9,341 feet (NOAA, 2014). (Climate data available for Sunnyside, UT, at an elevation of 6,414 feet, are not applicable to the project site because the difference in elevation results in a difference in precipitation and snowpack.) Data for the NOAA BRPU1 station were downloaded for the dates of October 2007 – August 2014. Table 1 lists the monthly and cumulative precipitation, beginning in October 2007; Figure 2 shows time series plots of the data, including temperature data. Assuming that the past seven years of data are representative of the typical behavior and variability of climate in the project area, the average annual precipitation is 10.12 inches.

Snowmelt is an important mechanism for in-place groundwater recharge in mountainous terrain because the evapotranspiration potential is considerably smaller than the amount of water available for infiltration into the subsurface during the period when the snowpack melts, and during which subsurface moisture conditions are conducive to recharge (Wilson and Guan, 2004; Flint et al., 2008). The snowpack is in

HYDROLOGY OF NORTH SPRING AND BRUIN POINT BRUIN POINT MINE

direct contact with the ground surface and provides a near-continuous source of water during the snowmelt season. Conditions for infiltration in the project area are further enhanced because the eastern portion of the project area is on a slope with a northeastern aspect, between the ridge crest to the west and Range Creek to the east, and thus protected from direct insolation during much of the snowmelt period, thereby prolonging the snowmelt period in comparison with slopes with a southern aspect (see Figure 1). The northeastern aspect of the project area would allow snowpack to melt slowly over a prolonged period, allowing a significant amount of snowmelt water to infiltrate into the subsurface and recharge the shallow groundwater system.

The majority of the precipitation occurring during the late spring, summer, and early fall is consumed by evapotranspiration and provides only an insignificant contribution to recharge.

2.2 Subsurface Stratigraphy

Soil cover in the project area is thin, ranging from zero to a few feet (<4 feet) thick (see Attachment A, Photographs 1, 2, and 4). Infiltration of surface water is therefore controlled to a large extent by the fractured bedrock stratigraphy. Surface outcrops are primarily of the Parachute Creek Member of the Eocene-age (56 to 34 million years before present) Green River Formation (GRF).

Lithologic logs from a series of exploratory wells in the project area drilled by Amoco in the 1980s (see Attachment B) indicate that the upper (approximately) 100 feet of the subsurface consists primarily of shale, with occasional thin (<1 feet) oil shale, tar sand, siltstone, and sandstone layers (see, for example, Amoco No. 14, located in the area of the planned dry materials storage area and approximately 2,000 feet west of North Spring). Below 100 feet bgs, in the Garden Gulch and Douglas Creek Members of the GRF, the lithology continues to be dominated by shale layers, often massive, with occasional thin limestone, siltstone, and sandstone layers. In addition, numerous thick (>10 feet and up to 100 feet) tar sand layers with high bitumen content occur beginning at approximately 400 feet bgs and ending approximately 900 feet bgs.

The major lithologies (shale, tar sand) present in the subsurface tend to have low permeability, which would impede vertical infiltration. Except in the upper (approximately) 100 feet of the subsurface, where relief fractures provide voids for both groundwater storage and flow (discussed below), there is little opportunity for groundwater recharge via vertical infiltration.

The higher bitumen content of the tar sands and oil shales beneath the Parachute Creek Member within the western segment of the Mount Bartles-Bruin Point flexure (discussed below) form significant aquicludes beneath the proposed dry material impoundment and processing plant. The steeper dips of the western segment of the flexure would also promote shallow groundwater movement down dip toward North Spring and Range Creek, and would preclude downward movement of shallow groundwater associated with the Parachute Creek Member from moving downward into the hydrogeologic units of the Garden Gulch and Douglas Creek Members.

2.3 Structural Factors

Two aspects of the structural geology in the project area influence groundwater storage and flow: nearsurface relief fractures and a subsurface structural flexure. Relief fractures occur when compressional stress on underlying rocks is removed by the erosion of overlying rock layers (Wyrick and Borchers, 1981). The relief of stress on exposed material on valley/canyon walls and floors results in predictable pattern of shallow, interconnected vertical and horizontal fractures. Secondary permeability provided by the fractures is often more significant than primary permeability through intergranular pore spaces (Wyrick and Borchers, 1981); this is the case in the project area given that the subsurface lithology is dominated by shale and tar sand. Fractures also provide groundwater storage capacity (Wilson and Guan, 2004). Thus the relief fractures provide the means for vertical infiltration of snowmelt into the subsurface, storage capacity for the infiltrated water, and conduits for groundwater flow.

The Mount Bartles-Bruin Point flexure, a large north-west segmented monoclinal dip slope (Calkin, 1990A), has been mapped in the project area and is shown on Figure 3 and is also depicted on Figure 4. The southern part of the flexure zone follows the pronounced topographic lineament of the upper portion of Range Creek. The flexure has divided the project area into three segments as shown on Figure 3. Each segment is characterized by different dips and bitumen content. The eastern segment is characterized by shallow 3-5° northeast dips and sandstones that contain low weight percent of bitumen (0-4%). The central segment is characterized by 4-7° northeast dips and sandstones that contain slightly higher weight percentages of bitumen (4-7%). The western segment exists along the Roan Cliffs and is characterized by steeper 4-12° northeast dips with sandstones that contain high weight percentages of bitumen (4-2%). Thus, this northwest trending flexure has gentle dips of 3-4° NE on the downthrown side and steeper dips of 4-12° NE on the upthrown side (Calkin, 1990A). As discussed below, the transition from comparatively steeper dips west of Range Creek to gentler dips at the flexure enhances discharge from the shallow groundwater system to North Spring. The elevated bitumen content to the west inhibits vertical movement of groundwater.

2.4 Groundwater

The three factors discussed above – climate/topography, stratigraphy, and structure – are the key elements of a conceptual model of the groundwater system that supplies water to North Spring. Recharge to the system occurs at the higher elevations of the upper Range Creek drainage northwest of the spring (Figure 1, Figure 4, and Appendix A, Photograph 6). Recharge is derived primarily from snowmelt that infiltrates and is stored in near-surface (<100 feet below ground surface) fractures in geologic units above oil shale and tar sand beds. Water percolates downward through the preferential pathways provided by the fractures until encountering a competent and low permeability oil shale or tar sand bed (e.g., the R-2 oil shale). As the volume of water in storage increases, hydraulic head is also increasing, driving flow down-dip toward Range Creek, where groundwater discharges from North Spring and other smaller seeps within the Range Creek channel near North Spring (JBR, 2014). The volume of water in storage and head are high, flow from the spring is at a maximum; storage and flow steadily decline during summer and fall, and reach a minimum in winter; the cycle starts again with the accumulation and eventual melting of new snowpack.

Groundwater moving from the western segment into the central segment of the flexure would be impeded when it encounters the shallower dip of the central segment of the flexure (as noted above, the hinge line

3

HYDROLOGY OF NORTH SPRING AND BRUIN POINT BRUIN POINT MINE

of the flexure, where the change in dip occurs, is coincident with Range Creek). This enhances discharge from springs and seeps because groundwater would follow the preferential flow path of the shallow, near-surface fractures and discharge to the surface as springs and seeps (North Spring) near the boundary of the western and central segments of the flexure (Range Creek).

Groundwater flow in upper Range Creek basin is confined to the Parachute Creek Member of the Green River Formation just above the R-2 and R-5 oil-shale intervals (Calkin, 1990A). The R-2 and R-5 oil-shale units serve as aquicludes impeding vertical movement of groundwater. Sedimentary rocks (calcareous shale/sandstone) of the Parachute Creek Member above the R-2 and R-5 oil-shale units are generally more permeable (largely due to secondary porosity of factures), and the groundwater preferentially passes through and is stored in these more permeable near-surface beds. In general, bitumen contained within the underlying oil shale and tar sand beds of the Garden Gulch and Douglas Creek Members inhibits downward movement of groundwater to lower units by semi-sealing fractures/joints. Amoco did not report encountering groundwater below the Parachute Creek Member in any of the exploratory borings drilled in the 1980s (UGS, 2010). In the Sunnyside Tar Sands area, North Spring and South Spring/Tributary Spring are located just above the R-2 oil shale interval and the Stone Cabin Spring is located just above the R-5 oil shale unit (Calkin, 1990A).

Observed flow from North Spring ranges from approximately 40 gallons per minute (gpm) in the springtime to 3 gpm or less in the fall (Calkin, 1990A and JBR, 2014). During the August 2014 geotechnical investigation of the dry material impoundment area, flow from North Spring was measured at 1.8 gpm. A water quality sample collected in May 2012 from the discharge from North Spring indicated the water quality is high (JBR, 2014) with low concentration of total dissolved solids (176 mg/L).

Note that the shallow groundwater system and North Spring are considerably higher (>500 feet) in elevation and east of the region where the T-38 member will be mined to obtain tar sand for bitumen extraction (Figure 4).

Amoco reported artesian groundwater within the parachute Creek Member at boring locations A-14 and A-17. During drilling activities at boring A-14, artesian groundwater was encountered at 65 feet bgs within the Parachute Creek Member. In A-17 artesian groundwater was encountered at 70 feet bgs, also within the Parachute Creek Member. Flow at A-14 was reported at approximately 300 gallons per minute (gpm) and at boring A-17 at 50 gpm. These boring are located topographically up dip from North Spring and within the recharge area of the shallow groundwater system. Boring logs can be found in Appendix B for borings A-14 and A-17.

ASEC encountered groundwater in a recent boring at 400 to 420 feet bgs within the Garden Gulch Member. This is anomalous with respect to the 50+ exploratory borings drilled by Amoco, including at least three in the immediate vicinity of the ASEC boring. None of logs for the Amoco borings reported groundwater at depths below the shallow aquifer in the Parachute Creek Member. Flow at the ASEC boring was reported at 2 gpm. Based on available documents, it is unclear whether this water is derived from higher in the boring within the Parachute Creek Member and trickles down the bore hole, or whether it is formation water within the Garden Gulch Member. If the water encountered were formation water, it would have to traverse numerous tar sand aquicludes before reaching the proposed mine workings.

4

HYDROLOGY OF NORTH SPRING AND BRUIN POINT BRUIN POINT MINE

surface location of the boring, the water may find preferential pathways northwest toward through stress relief fractures and discharge on the face of the Roan Cliffs. Three cliff face seeps were observed in the upper reaches of Water Canyon near Bruin Point (JBR, 2014). These seeps discharge through stress relief factures with groundwater sourced near the topographic high point of Bruin Point (approximately 1 mile northwest of the boring). No spring or seeps were observed during the July 29, 2014 site inspections of the mine portal area within the head waters of Bear Canyon. The head water of Bear Canyon is located within the Roan Cliff directly west of the ASEC boring.

North Spring originates from groundwater discharging from fractures sets located approximately 10 feet above Range Creek channel from the southwest side of the canyon (Appendix A, Photograph 3). Fractured bedrock was observed approximately 10-50 feet northwest of North Spring with a fracture orientation of 95° southeast and near vertical dip of 85-90° to the northeast (Appendix A, Photograph 4). Bedrock exposed at the surface in Range Creek, located approximately 200-300 feet north of North Spring, exhibits conjugate joint sets (Appendix A, Photograph 5). The orientation of these conjugate joints are 95° and 138° to the south east and near vertical dip of 85-90° to the northeast. The orientation of the calcareous shale/sandstone beds near North Spring strike approximately 290° and dip approximately 9° to the northeast.

3.0 CONCLUSIONS

The source area of North Spring is the upper Range Creek drainage basin northwest of the spring (see Appendix A, Photograph 6). Recharge to the shallow aquifer feeding North Spring occurs when water derived from snowmelt, soaks through the thin site soils and fractured bedrock covering the topographically-elevated drainage. Water percolates down-dip through preferential pathways in the fractured calcareous sandstone and shale beds of the Parachute Creek Member until an oil shale confining bed is reached (R-2 oil shale). Infiltrated water is stored in fractures. As storage from infiltration increases hydraulic head also increases, driving flow down-dip toward Range Creek, where subtle changes in dip angle associated with a structural flexure causes groundwater to discharge from North Spring near Range Creek. Fractured calcareous sandstone and shales bed allow groundwater to move down slope in a stair step pattern.

High bitumen-content layers within the western segment of the flexure (underlying oil shale and tar sand beds of the Garden Gulch and Douglas Creek Members) inhibit downward movement of groundwater from the shallow groundwater system to lower units by semi-sealing fractures/joints. Amoco did not report encountering groundwater below the Parachute Creek Member in any of the exploratory borings drilled in the 1980s.

4.0 **REFERENCES**

- Calkin, WM. S. 1990A. Geologic Summary Report of the 1989 Exploration Program Sunnyside Tar Sands Project Carbon County Utah. *For* Amoco Corporation, Solid Resources.
- Calkin, WM. S. 1990B. Regional Map Sunnyside Tar Sands, Carbon County, Utah. *For* Amoco Corporation, Solid Resources.
- Flint, A.L., L.E. Flint, and M.D. Dettinger. 2008. Modeling soil moisture processes and recharge under a melting snowpack. Vadose Zone Journal, 7:350-357.
- JBR. 2014. American Sands Energy Corporation Proposed Bruin Point Mine, Seep and Spring Inventory.
- NOAA, 2014. National Oceanic and Atmospheric Administration. National Operational Hydrologic Remote Sensing Center Interactive Snow Information. Station SHEF ID: BRPU1. <<u>http://www.nohrsc.noaa.gov/interactive/html/graph.html?station=BRPU1</u>>.
- UGS. 2010. Utah Geological Survey Open-File Report 566. 2010
- Weiss, M.P., Witkind, C.J., and Cashion, W.K. 1981. Geologic Map of Price Quadrangle, Carbon, Duchesne, Uinta, Utah, and Wasatch Counties, Utah, USGS 1-1981.
- Wilson, J.L., and H. Guan. 2004. Mountain-block hydrology and mountain-front recharge. p. 113–137. In J.F. Hogan, F.M. Phillips, and B.R. Scanlon (ed.) Groundwater recharge in a desert environment: The southwestern United States. Water Science and Applications Ser. Vol. 9. American Geophysical Union, Washington, DC.
- Wyrick, G.G., and J.W. Borchers. 1981. Hydrologic effects of stress-relief fracturing in an Appalachian Valley. US Geological Survey Water-Supply Paper 2177, US Government Printing Office.

TABLES

Table 1NOAA Station BRPU1 Bruin Point Precipitation Data

	Monthly Precipitation (in)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
2008	0.2	0.01	0.05	0.01	0.2	0.11	0.16	0.76	0.18	0	0.22	1.19
2009	1.48	0.17	0.07	0.1	0.29	0.11	0.21	2.26	2.1	0.86	0.47	0.75
2010	1.06	0.21	0.08	0.21	0.18	0.99	0.63	0.38	0.79	1.23	2.23	0.29
2011	3.96	0.08	0.15	0.65	0.16	0.7	1.53	1.51	1.29	3.32	1.16	1.72
2012	0.79	0.31	0.26	0.14	0.53	0.53	1.32	0.04	0	1.98	0.34	1.76
2013	0.57	0.38	0.27	0.8	0.88	0.75	2.09	1.34	0.15	1.48	0	0.53
2014	1.44	1.13	0.46	0.08	0.53	0.97	1.31	1.3	0.25	1.59	3.76	

		Cumulative Precipitation (in)										
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
2008	0.20	0.21	0.26	0.27	0.47	0.58	0.74	1.50	1.68	1.68	1.90	3.09
2009	1.48	1.65	1.72	1.82	2.11	2.22	2.43	4.69	6.79	7.65	8.12	8.87
2010	1.06	1.27	1.35	1.56	1.74	2.73	3.36	3.74	4.53	5.76	7.99	8.28
2011	3.96	4.04	4.19	4.84	5.00	5.70	7.23	8.74	10.03	13.35	14.51	16.23
2012	0.79	1.10	1.36	1.50	2.03	2.56	3.88	3.92	3.92	5.90	6.24	8.00
2013	0.57	0.95	1.22	2.02	2.90	3.65	5.74	7.08	7.23	8.71	8.71	9.24
2014	1.44	2.57	3.03	3.11	3.64	4.61	5.92	7.22	7.47	9.06	12.82	

	Average Temperature (°F)											
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
2008	37.5	31.5	14.8	13.2	20.5	25.0	31.6	39.9	53.9	63.2	59.8	50.5
2009	39.8	31.5	18.0	23.7	22.5	27.7	32.8	45.6	49.2	62.3	59.0	52.0
2010	33.1	30.5	14.4	21.6	18.9	26.7	33.5	38.3	54.8	61.1	56.9	54.2
2011	38.7	23.8	23.5	20.2	17.5	27.2	31.3	37.8	52.4	59.0	61.5	51.6
2012	38.4	26.0	21.1	24.1	19.6	33.2	38.2	47.5	60.7	61.4	61.8	53.1
2013	40.0	32.2	18.4	19.8	19.1	30.4	33.2	44.5	60.0	62.1	57.9	48.9
2014	35.1	27.7	19.1	24.6	22.8	28.6	33.6	44.0	54.7	61.9	54.3	

FIGURES

Figure 2 NOAA Station BRPU1 Bruin Point Precipitation Charts

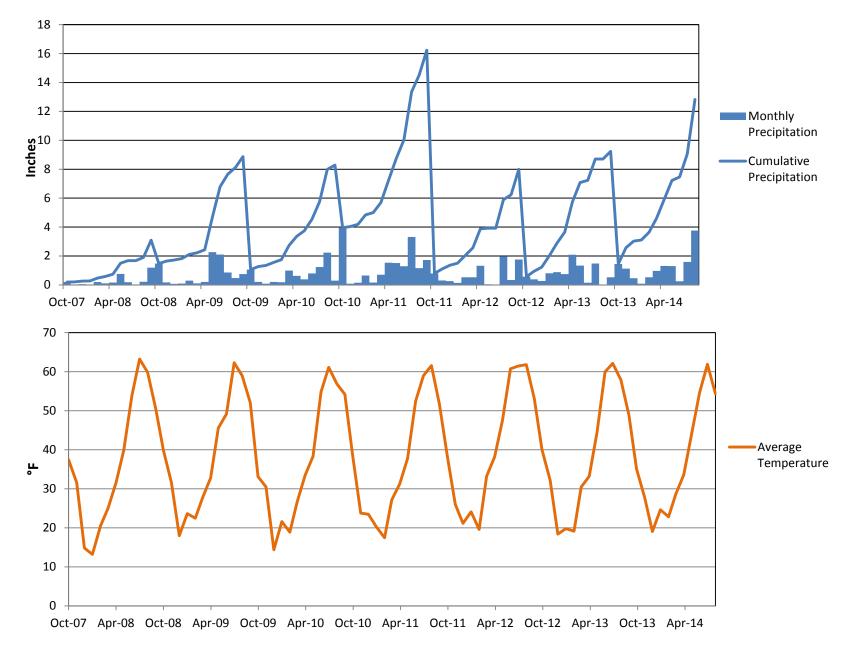
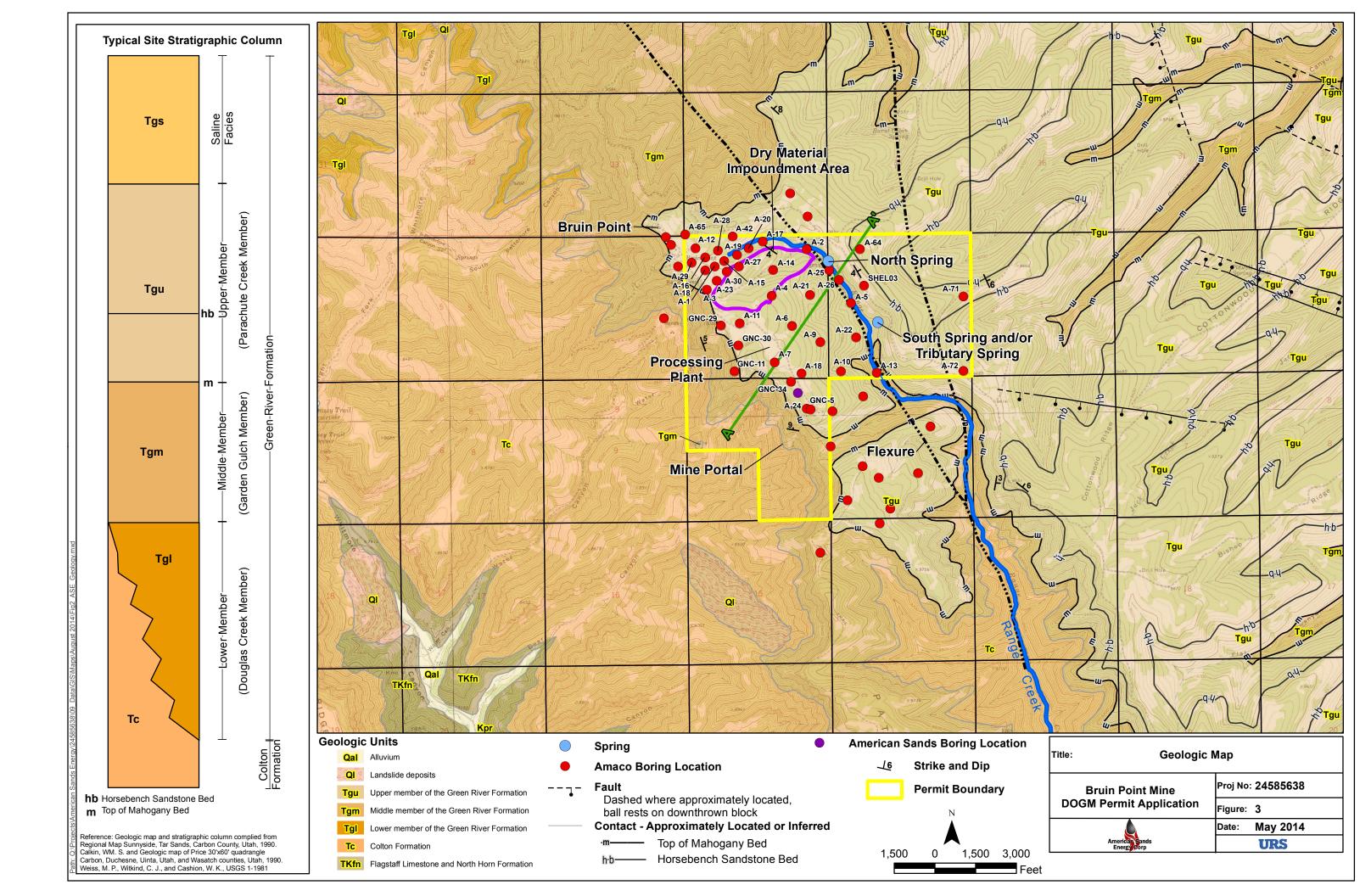
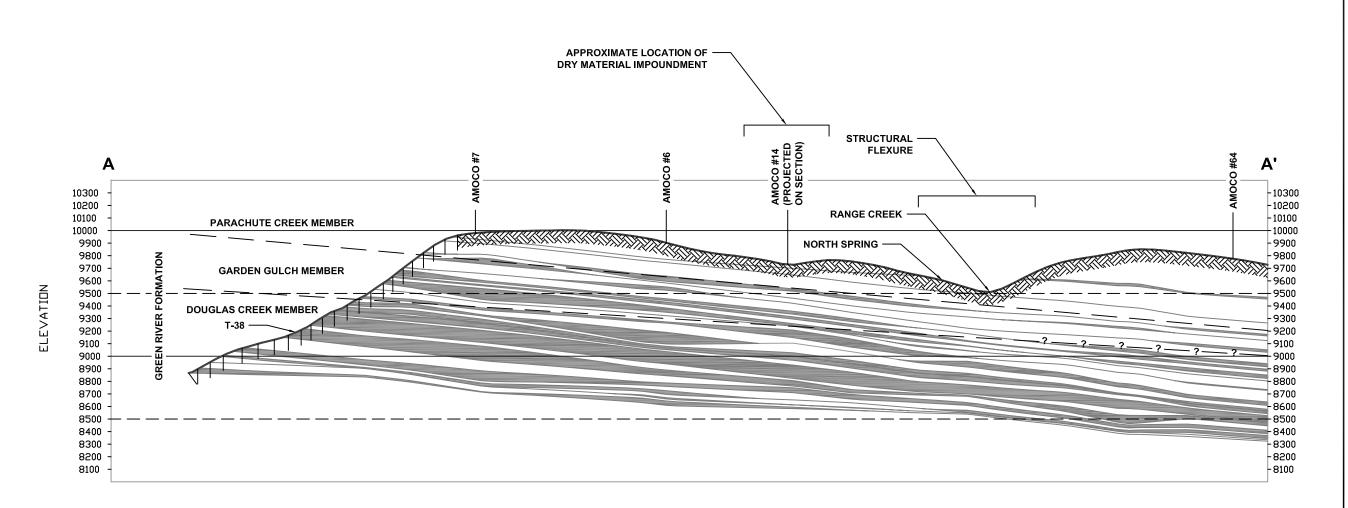
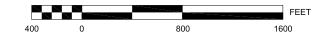




Figure 2: Precipitation, Snow depth, and Temperature data from October 2007 – August 2014, NOAA Bruin Point Station BRPU1



STRUCTURAL FACTORS AFFECTING GROUND WATER

GENERALIZED CROSS SECTION A-A'

2 X VERTICAL EXAGGERATION

LEGEND

TAR SANDS BITUMINOUS ZONE, > 10 GAL/TON

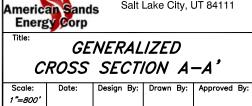
STRESS RELIEF FRACTURES

COORDINATE SYSTEM:

7

No.

URS


UT83-CF UTAH STATE PLANES: NAD 83 DATUM, CENTRAL ZONE, US FOOT.

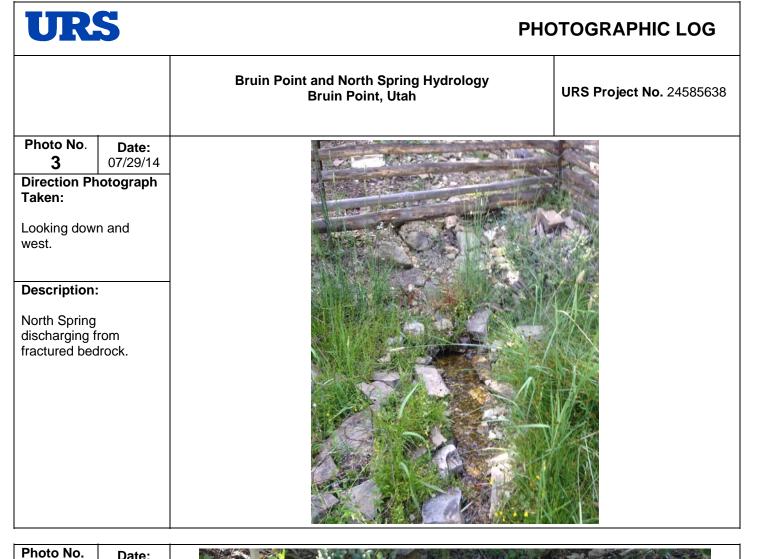
REVISION DATE BY CHKD

American Sands Energy Corp. 201 South Main 1800 Salt Lake City, UT 84111

FIGURE 4

56 East Winchester Street Ste 400 Salt Lake City, Utah 84107 Phone: (801) 904-4000

<u>APPENDIX A</u> <u>PHOTOGRAPH LOG</u>

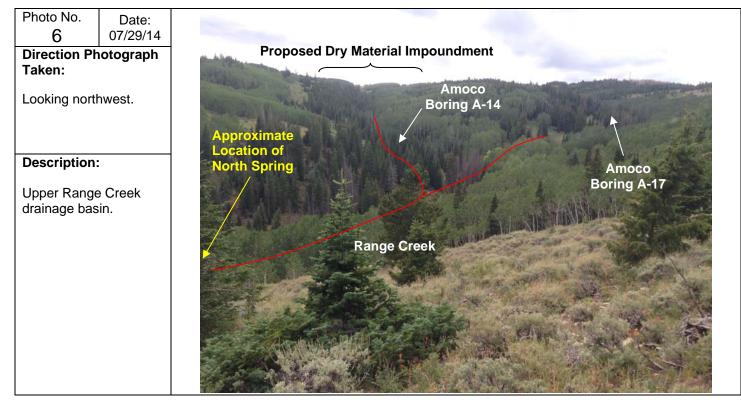

PHOTOGRAPHIC LOG

			d North Spring Hydrolc in Point, Utah	ogy	URS Project No. 24585638
	9ate: /29/14 graph	And the second s			
Looking down and northwest.	b				
Description:			A CA		
Bedrock outcropp access road north of proposed proce plant area.	neast essing ace				
soil layer on the ri and left side of ro	ight ad.				A Charles
Bedrock contains numerous fracture likely stress relief fractures.	es,				

Photo No. 2	Date: 07/29/14						
Direction Ph Taken:	Direction Photograph Taken:						
Looking down and west.							
Description:							
access road	Bedrock outcropping on access road northeast of proposed processing plant area.						
Note the thin soil layer on t and left side	the right						

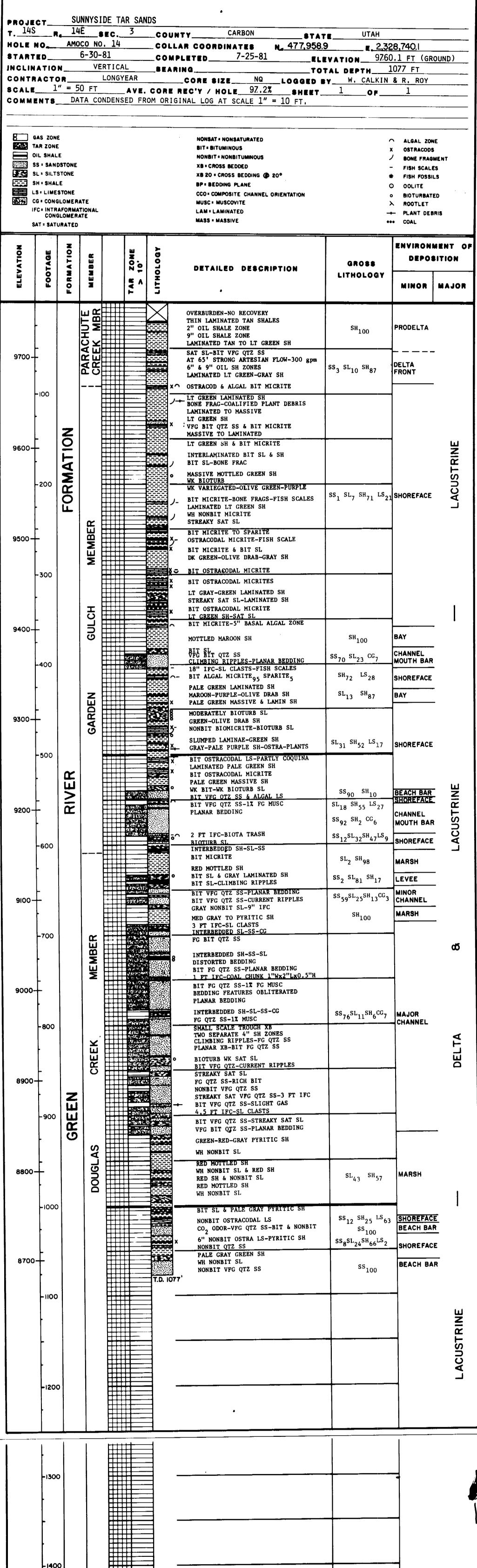
Bedrock contains numerous fractures, likely stress relief fractures.

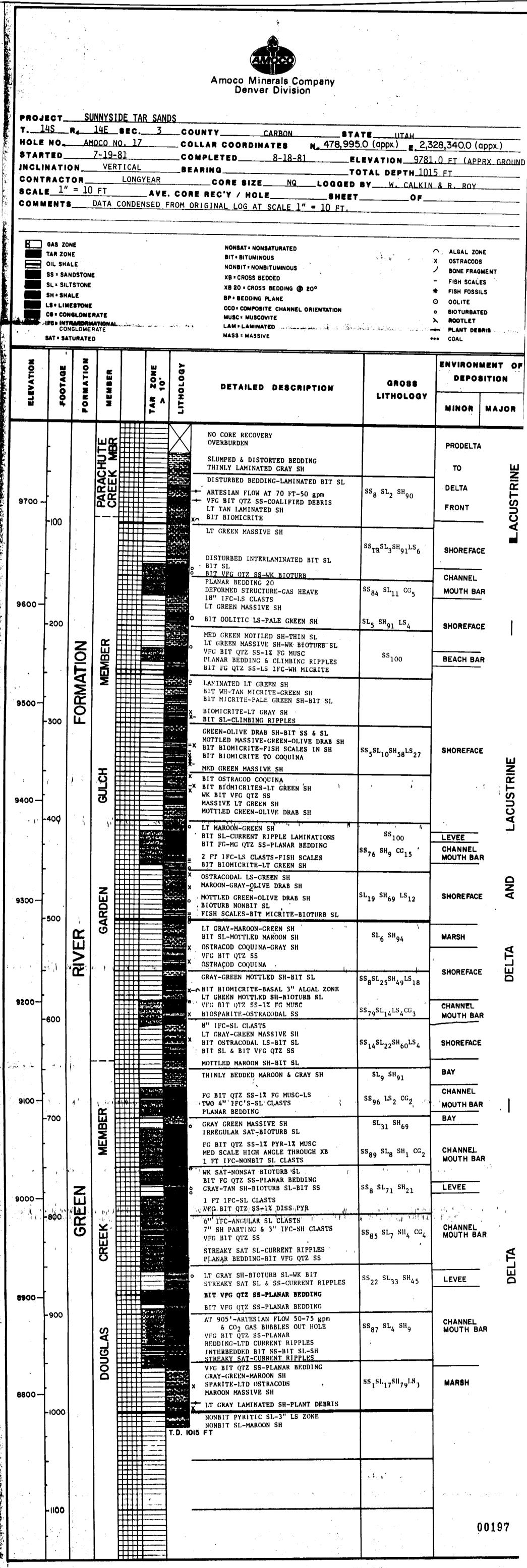
Photo No.Date:407/29/14Direction PhotographTaken:


Looking down and west.

Description:

Jointed and fractured bedrock approximately 10-50 feet northwest of North Spring.


UR	S	PHC	TOGRAPHIC LOG
		Bruin Point and North Spring Hydrology Bruin Point, Utah	URS Project No. 24585638
Photo No. 5	Date: 07/29/14		
Direction Ph Taken:	notograph		
Looking dow northwest.	n and		
Description	:		
Jointed and f bedrock with Creek approx	in Range ximately		
200-300 feet North Spring	north of		


APENDIX B AMOCO BORING LOGS

Amoco Minerals Company **Denver Division**

1 1 1	
1 1 1	
1 1	
1 1 1	
1 1 1	
1 1 1	
1 1 1	

APPENDIX C

HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE (HELP) MODEL RESULTS

Memorandum

Date: September 30, 2014

- To: American Sands Energy Green River Resources Inc. 201 South Main 1800 Salt Lake City, UT 84111
- From: Robert Snow, PE, Bryan Franke, EIT URS Corporation 756 East Winchester, Suite 400 Salt Lake City, UT 84107

Subject: Summary of Preliminary HELP Model Results Green River Resources – Bruin Point Mine URS Project No.: 24585638

Introduction

This memorandum summarizes the input, assumptions, and results, associated with the proposed tailings cap at the Green River Resources (GRR) Bruin Point Mine site. The performance of this preliminary design was analyzed using the Hydrologic Evaluation of Landfill Performance (HELP) model v. 3.07 (Schroeder et al., 1994). The HELP model is a widely-used application used to evaluate landfill liner and cap performance.

The proposed method for permanent closure of the tailings site includes placement of a final cap consisting of a low-permeability barrier soil overlain by a layer of vegetated topsoil. This is a common form of closure cap designed to minimize moisture infiltration from the surface into the tailings below by means of runoff and evapotranspiration from the vegetated cover. This document will summarize applicable parameters and assumptions used in the analysis.

Description of Proposed Cover

We anticipate that a single large tailings stockpile will remain at the conclusion of mining activities. Cross sections of the permanent tailings stockpile were based on AutoCAD drawing geometries, which were provided to URS by GRR. The proposed stockpile is anticipated to be up to 430feet (ft) in height, 3,600 ft in length, 2,000ft in width, and cover an area of approximately 93.5 acres. At the crest of the tailings stockpile, we anticipate a minimum slope angle of 3%.

The preliminary cover design is proposed to consist of a 4-ft-thick, low-permeability ($k \le 1 \ge 10^{-7}$ cm/s) soil layer [cap] immediately above the tailings sand stockpile overlain by 18 inches (in) of topsoil [growth layer] ($k \ge 6 \ge 10^{-5}$ cm/s). A summary of the model layers is shown in Table 1.

	Layer Thickness	Represents
Model Layer	<i>(in)</i>	(-)
1	18.0	Topsoil or Growth Layer
2	48.0	Low-Permeability Cap

Table 1. Summary of Model Layers

It was assumed that sufficient topsoil will be stripped from the site (prior to beginning mining operations) to provide sufficient topsoil to construct Layer 1 and that Layer 2 will consist of topsoil and/or mine partings. The cap soil should have an in situ permeability of at least that of the liner ($k \le 1 \ge 10^{-7}$ cm/s) following placement and compaction to prevent pooling of water at the liner interface, or "bathtub effect."

Model Weather Data

Moisture infiltration is highly dependent on weather patterns and growing seasons. To simulate weatherrelated impacts, the HELP model uses four types of weather data in the analysis. The following inputs are required:

- a. Evapotranspiration
- b. Precipitation
- c. Temperature
- d. Solar Radiation

To assist the user, the HELP model contains weather data and information for various cities across the country. Based on site-specific data for each of the cities, the HELP model can generate from 1 to 100 years of synthetic data stochastically for any of these locations.

The HELP model contains city-specific data for three separate cities in the state of Utah. These cities include Salt Lake City, Milford, and Cedar City. The data available in the HELP model for these three cities are dissimilar to weather and climate conditions at the proposed Bruin Point Mine site.

To adequately simulate conditions at the site, weather data from a nearby weather station was obtained for the period between January 1, 2007, and September 15, 2014. The weather station is located approximately 3.5 miles from the proposed tailings stockpile site (at N $39^{\circ} 36' 35'' W 110^{\circ} 17' 40''$, with and elevation of 9,341 ft) with similar elevation and topography. The mean monthly weather values measured at the weather station were used by the HELP model to stochastically generate daily synthetic data.

General Climatic Parameters

A summary of general climatic parameters is provided in Table 2 and parameters from the three cities in Utah provided in the HELP model are shown for comparison. Temperatures typically remain relatively mild throughout the summer at such a high elevation resulting in a shorter growing season. Based on weather station temperature data, the growing season was generally defined as the period where the mean daily temperature exceeded 50 to 55 degrees Fahrenheit.

The average wind speed (shown in miles per hour or mph) was determined using approximately 7 years of weather data obtained from the nearby weather station. The calculated average wind speed is low based on the altitude of the site and compared to the values provided for the nearby cities. The quarterly relative humidity was obtained from regional weather station readings and is consistent with values contained within the HELP model. The difference between the elevation of the site and the city-specific data provided in the HELP model was significant; consequently, the use of site-specific data was believed to provide a more reasonable estimation of climatic factors.

The Maximum Leaf Area Index (LAI) was based on the understanding of local vegetation. Pictures obtained from site visits show abundant grass. In similar conditions, a weak stand of grass might be expected. Therefore, a relatively low LAI was selected to reflect the limited presence of trees and shrubs anticipated for the growth layer of the cap.

Parameter	Bruin Point Mine Site ¹	Salt Lake City, Utah	Milford, Utah	Cedar City, Utah
Latitude	39.64	40.76	38.26	37.50
Growing Season Start Day	148	117	126	125
Growing Season End Day	274	289	282	284
Growing Season Length (days)	126	172	156	159
Average Wind Speed (mph)	2.0	8.8	8.8	8.8
1 st Quarter Relative Humidity	63.7	67.0	64.0	64.0
2 nd Quarter Relative Humidity	45.3	48.0	36.0	36.0
3 rd Quarter Relative Humidity	41.8	39.0	34.0	34.0
4 th Quarter Relative Humidity	59.6	65.0	58.0	58.0
Elevation [NOT from HELP] (ft)	~ 10,000	~ 4,300	~ 5,000	~ 5,800
Maximum Leaf Area Index (LAI)	1.0	1.6	1.6	1.6

Table 2. General Parameters

1. Values calculated or assumed from site-specific weather data, NOT determined using city-specific data provided in the HELP model.

Precipitation Data

The mean monthly precipitation for the project site is shown in Table 3. The values are based on a 7-year average weather data obtained from the weather station located approximately 3.5 miles away. The data provided in the HELP model for Salt Lake City, Utah, and Milford, Utah, is also shown in Table 3 for comparison. In general, magnitudes appear to be comparable to data provided in the HELP model. Considering the relatively small period for which weather data is available near the site, averages from the site-specific data may be affected by dry or wet years. Consequently, modeling results may be affected.

The total annual precipitation shown in Table 3was calculated as the sum of monthly averages; however, the stochastic approach may result in more or less precipitation than this amount in a particular year. Using the stochastic approach available in the HELP model for synthetic weather generation, the relatively intense periods of precipitation and annual variation provided a reasonable representation of precipitation at the site, even though the annual average used in HELP is slightly higher than the average value measured at the site. To generate the synthetic precipitation data for the modeling period, the site-specific values of mean monthly precipitation were used in conjunction with the Milford, Utah, coefficients.

URS

Month	Bruin Point Mine Site ¹	Salt Lake City, Utah	Milford, Utah
January	0.26	1.35	0.69
February	0.36	1.33	0.74
March	0.57	1.72	0.99
April	0.96	2.21	0.96
May	0.97	1.47	0.73
June	0.60	0.97	0.42
July	1.42	0.72	0.61
August	1.12	0.92	0.71
September	0.94	0.89	0.69
October	1.36	1.14	0.73
November	0.33	1.22	0.69
December	0.19	1.37	0.63
Total	8.89	15.31	8.59

Table 3. Mean Monthly Precipitation (inches)

Temperature Data

Temperature data is provided in the HELP model for two nearby cities: Salt Lake City, Utah, and Milford, Utah. As a result of the significantly higher elevation at the site, the temperature at the project site was expected to be cooler, on average, than these two cities. Table 4 shows the mean monthly temperature recorded at the previously-mentioned nearby weather station as well as the two HELP model cities for comparison. The measured temperatures follow the general trend shown for the two cities provided in the HELP model. The summer months are warmest and remaining relatively consistent throughout the winter months.

To generate the synthetic temperature data for the modeling period, the site-specific values of mean monthly temperature were used in conjunction with the Milford, Utah, coefficients. Although the temperatures were consistently higher in Milford, Utah, the general temperature trends most-closely matched the site-specific data.

Month	Bruin Point Mine Site ¹	Salt Lake City, Utah	Milford, Utah
January	20.6	28.6	26.4
February	19.7	34.1	32.1
March	27.9	40.7	38.2
April	33.4	49.2	46.3
May	41.7	58.8	55.9
June	54.0	68.3	65.8
July	61.4	77.5	74.3
August	59.9	74.9	72.1
September	52.3	65.0	62.6
October	37.1	53.0	50.3
November	29.0	39.7	36.8
December	19.3	30.3	28.2

Table 4. Mean Monthly Temperature (Fahrenheit)

Evapotranspiration

The evaporative zone was assumed to extend to a depth of approximately 12 inches. This is roughly the depth of root penetration by native grasses at the site. If similar grasses are used for vegetation above the cap, 12 inches would be considered the minimum anticipated evaporative depth.

An LAI value of 1.0 was chosen to explore a moderate case where a poor grass stand develops above the cap in the long term.

Solar Radiation

The site specific latitude was used with the Milford, Utah, coefficient to generate daily solar radiation values for the modeling period.

Cap Layers and Parameters

The cap consists of two components previously described. This section further describes the layers with relation to the HELP model. Input parameters and assumptions associated with each layer are also identified in this section. Default soil types are defined within the HELP model. Soil Type 11 and Barrier Soil were used to model the clayey topsoil layer cap materials respectively.

The topsoil and low-permeability cap were the only components considered in the model and no leachate collection or drainage systems were considered. It was assumed that any infiltration through the tailings cap will ultimately reach the top of the liner. A summary of assumed soil parameters is shown in Table 5.

	Soil	Layer
Parameter	1 - Topsoil or Growth Layer	2 - Low- Permeability Cap
Thickness (in)	18	48
HELP Model Layer Type	1	3
HELP Model Soil Texture No.	11	16
HELP Model Soil Description	Clay	Barrier Soil
Total Porosity (vol/vol)	0.464	0.427
Field Capacity (vol/vol)	0.310	0.418
Wilting Point (vol/vol)	0.187	0.367
Initial Soil Water Content (vol/vol)	0.234	0.418
Saturated Hydraulic Conductivity (cm/s)	6.4 x 10 ⁻⁵	1.0 x 10 ⁻⁷

Table 5. Model Soil Parameters

Notes: HELP model layer types are defined as follows: 1) Vertical Percolation Layer & 3) Barrier Soil Liner

Topsoil is anticipated to be stockpiled onsite and later used for cap construction. The hydraulic conductivity of native topsoil was not tested with samples obtained from GRR. Consequently, a hydraulic conductivity was inferred based on the soils index testing. Topsoil samples contained between 20 and 80 percent clay, which will largely control the rate of infiltration. Therefore, the HELP model soil texture 11 (clay) was selected to represent the growth layer above the cap.

The cap material was largely based on results from the permeability testing performed on crushed mine partings; however, the cap must be no more permeable than the tailings liner. Because the tailings liner was specified to be at least 1×10^{-7} cm/s, the tailings cap was also modeled at 1×10^{-7} cm/s.

Model Results

The help model was run for a period of 50 years and rerun until the initial and final moisture contents for each of the layers had reached a steady-state or equilibrium. The model results are provided in Table 6. The model results indicate less than 1 inches of surface water infiltration through the cap based on the selected parameters. Variations in precipitation, temperature, and permeability will impact these results.

Table 0. Would Results						
Average Annual Totals (inches) for Years 1 through 50						
Precipitatio	n Runoff	Evapotranspiration	Percolation through Cap	Average Head on Barrier Layer		
9.44	0.446	8.542	0.456	1.150		

Table 6. Model Results

Attachment 1: HELP Model Output File

References

Schroeder, P. R., Dozier, T.S., Zappi, P. A., McEnroe, B. M., Sjostrom, J.W., and Peyton, R. L. (1994).
 "The Hydrologic Evaluation of Landfill Performance (HELP) Model: Engineering Documentation for Version 3," EPA/600/R-94/168b, September 1994, U.S. Environmental Protection Agency Office of Research and Development, Washington, DC.

Attachment 1 HELP Model Output File 4 * * * * ** * * * * HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE * * * * HELP MODEL VERSION 3.07 (1 NOVEMBER 1997) * * * * * * DEVELOPED BY ENVIRONMENTAL LABORATORY ** * * USAE WATERWAYS EXPERIMENT STATION ** * * FOR USEPA RISK REDUCTION ENGINEERING LABORATORY * * ** * * * *

PRECIPITATION DATA FILE:	C:\HELP3\DATA\DATA4.D4
TEMPERATURE DATA FILE:	C:\HELP3\DATA\DATA7.D7
SOLAR RADIATION DATA FILE:	C:\HELP3\DATA\DATA13.D13
EVAPOTRANSPIRATION DATA:	C:\HELP3\DATA\DATA11.D11
SOIL AND DESIGN DATA FILE:	C:\HELP3\DATA\SOILS.D10
OUTPUT DATA FILE:	C:\HELP3\DATA\OUTPUT.OUT

TIME: 17:26 DATE: 9/29/2014

TITLE: AMERICAN SANDS ENERGY - BRUIN POINT MINE

NOTE: INITIAL MOISTURE CONTENT OF THE LAYERS AND SNOW WATER WERE SPECIFIED BY THE USER.

LAYER 1

TYPE 1 - VERTICAL PERCOLATION LAYER MATERIAL TEXTURE NUMBER 11 = 18.00 INCHES THICKNESS 0.4640 VOL/VOL POROSITY = FIELD CAPACITY 0.3100 VOL/VOL = 0.1870 VOL/VOL WILTING POINT = INITIAL SOIL WATER CONTENT = 0.2359 VOL/VOL EFFECTIVE SAT. HYD. COND. = 0.63999998000E-04 CM/SEC NOTE: SATURATED HYDRAULIC CONDUCTIVITY IS MULTIPLIED BY 1.80 FOR ROOT CHANNELS IN TOP HALF OF EVAPORATIVE ZONE.

LAYER 2

TYPE 3 - BARRIER SOIL LINER
MATERIAL TEXTURE NUMBER 16THICKNESS=POROSITY=0.4270 VOL/VOLFIELD CAPACITY=0.3670 VOL/VOLWILTING POINT=0.3670 VOL/VOLINITIAL SOIL WATER CONTENT=0.4270 VOL/VOLEFFECTIVE SAT. HYD. COND.=0.10000001000E-06 CM/SEC

GENERAL DESIGN AND EVAPORATIVE ZONE DATA

NOTE: SCS RUNOFF CURVE NUMBER WAS COMPUTED FROM DEFAULT SOIL DATA BASE USING SOIL TEXTURE #11 WITH A POOR STAND OF GRASS, A SURFACE SLOPE OF 3.% AND A SLOPE LENGTH OF 2000. FEET.

SCS RUNOFF CURVE NUMBER	=	90.00	
FRACTION OF AREA ALLOWING RUNOFF	=	100.0	PERCENT
AREA PROJECTED ON HORIZONTAL PLANE	=	1.000	ACRES
EVAPORATIVE ZONE DEPTH	=	12.0	INCHES
INITIAL WATER IN EVAPORATIVE ZONE	=	2.831	INCHES
UPPER LIMIT OF EVAPORATIVE STORAGE	=	5.568	INCHES
LOWER LIMIT OF EVAPORATIVE STORAGE	=	2.244	INCHES
INITIAL SNOW WATER	=	0.000	INCHES
INITIAL WATER IN LAYER MATERIALS	=	24.742	INCHES
TOTAL INITIAL WATER	=	24.742	INCHES
TOTAL SUBSURFACE INFLOW	=	0.00	INCHES/YEAR

EVAPOTRANSPIRATION AND WEATHER DATA

NOTE: EVAPOTRANSPIRATION DATA WAS OBTAINED FROM BRUIN POINT UTAH

STATION LATITUDE MAXIMUM LEAF AREA INDEX		39.64 1.00	DEGREES
START OF GROWING SEASON (JULIAN DATE)	=	148	
END OF GROWING SEASON (JULIAN DATE)	=	274	
EVAPORATIVE ZONE DEPTH	=	12.0	INCHES
AVERAGE ANNUAL WIND SPEED	=	2.00	MPH
AVERAGE 1ST QUARTER RELATIVE HUMIDITY	=	63.70	00
AVERAGE 2ND QUARTER RELATIVE HUMIDITY	=	45.30	00
AVERAGE 3RD QUARTER RELATIVE HUMIDITY	=	41.80	00
AVERAGE 4TH QUARTER RELATIVE HUMIDITY	=	59.60	00

NOTE: PRECIPITATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR MILFORD UTAH

NORMAL MEAN MONTHLY PRECIPITATION (INCHES)

JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
0.26	0.36	0.57	0.96	0.97	0.60
1.42	1.12	0.94	1.36	0.33	0.19

NOTE: TEMPERATURE DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR MILFORD UTAH

NORMAL MEAN MONTHLY TEMPERATURE (DEGREES FAHRENHEIT)

JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
20.60	19.70	27.90	33.40	41.70	54.00
61.40	59.90	52.30	38.10	29.00	19.30

NOTE: SOLAR RADIATION DATA WAS SYNTHETICALLY GENERATED USING COEFFICIENTS FOR MILFORD UTAH AND STATION LATITUDE = 38.26 DEGREES

ANNUAL TOTALS FOR YEAR 1					
	INCHES	CU. FEET	PERCENT		
PRECIPITATION	7.27	26390.104	100.00		
RUNOFF	0.205	742.802	2.81		
EVAPOTRANSPIRATION	6.367	23112.344	87.58		
PERC./LEAKAGE THROUGH LAYER 2	0.00000	0.000	0.00		
AVG. HEAD ON TOP OF LAYER 2	0.0000				
CHANGE IN WATER STORAGE	0.698	2534.945	9.61		
SOIL WATER AT START OF YEAR	24.742	89814.008			
SOIL WATER AT END OF YEAR	25.440	92348.953			
SNOW WATER AT START OF YEAR	0.000	0.000	0.00		
SNOW WATER AT END OF YEAR	0.000	0.000	0.00		
ANNUAL WATER BUDGET BALANCE	0.0000	0.013	0.00		

	ANNUAL TOTALS FOR YEAR	2	
	INCHES	CU. FEET	PERCENT
PRECIPITATION	11.42	41454.605	100.00
RUNOFF	0.228	829.348	2.00

EVAPOTRANSPIRATION	9.811	35613.426	85.91		
PERC./LEAKAGE THROUGH LAYER 2	0.231270	839.511	2.03		
AVG. HEAD ON TOP OF LAYER 2	0.5215				
CHANGE IN WATER STORAGE	1.149	4172.304	10.06		
SOIL WATER AT START OF YEAR	25.440	92348.953			
SOIL WATER AT END OF YEAR	26.590	96521.258			
SNOW WATER AT START OF YEAR	0.000	0.000	0.00		
SNOW WATER AT END OF YEAR	0.000	0.000	0.00		
ANNUAL WATER BUDGET BALANCE	0.0000	0.017	0.00		

ANNUAI	TOTALS	FOR	YEAR	3

ANNUAL IOTALS FOR IEAR 5					
	INCHES	CU. FEET	PERCENT		
PRECIPITATION	9.88	35864.406	100.00		
RUNOFF	0.131	475.509	1.33		
EVAPOTRANSPIRATION	10.528	38217.687	106.56		
PERC./LEAKAGE THROUGH LAYER 2	0.832377	3021.530	8.42		
AVG. HEAD ON TOP OF LAYER 2	0.8875				
CHANGE IN WATER STORAGE	-1.612	-5850.314	-16.31		
SOIL WATER AT START OF YEAR	26.590	96521.258			
SOIL WATER AT END OF YEAR	24.763	89888.937			
SNOW WATER AT START OF YEAR	0.000	0.000	0.00		
SNOW WATER AT END OF YEAR	0.215	782.006	2.18		
ANNUAL WATER BUDGET BALANCE	0.0000	-0.006	0.00		
* * * * * * * * * * * * * * * * * * * *					

* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * *
	ANNUAL TOTALS FOR YEAR	4	
	INCHES	CU. FEET	PERCENT
PRECIPITATION	9.93	36045.902	100.00

RUNOFF	0.500	1814.673	5.03
EVAPOTRANSPIRATION	9.452	34310.867	95.19
PERC./LEAKAGE THROUGH LAYER 2	0.057994	210.517	0.58
AVG. HEAD ON TOP OF LAYER 2	0.0054		
CHANGE IN WATER STORAGE	-0.080	-290.169	-0.80
SOIL WATER AT START OF YEAR	24.763	89888.937	
SOIL WATER AT END OF YEAR	24.898	90380.773	
SNOW WATER AT START OF YEAR	0.215	782.006	2.17
SNOW WATER AT END OF YEAR	0.000	0.000	0.00
ANNUAL WATER BUDGET BALANCE	0.0000	0.014	0.00
* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * *	*****

ANNUAL TOTALS FOR YEAR 5

ANNOAL IOTALS FOR TEAR 5			
	INCHES	CU. FEET	PERCENT
PRECIPITATION	11.41	41418.305	100.00
RUNOFF	0.265	963.429	2.33
EVAPOTRANSPIRATION	11.101	40295.914	97.29
PERC./LEAKAGE THROUGH LAYER 2	0.005891	21.386	0.05
AVG. HEAD ON TOP OF LAYER 2	0.0001		
CHANGE IN WATER STORAGE	0.038	137.560	0.33
SOIL WATER AT START OF YEAR	24.898	90380.773	
SOIL WATER AT END OF YEAR	24.936	90518.336	
SNOW WATER AT START OF YEAR	0.000	0.000	0.00
SNOW WATER AT END OF YEAR	0.000	0.000	0.00
ANNUAL WATER BUDGET BALANCE	0.0000	0.019	0.00
******	* * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * *	* * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *
ANNUAL TOTALS FOR YEA	.R 6
INCHES	G CU. FEET PERCENT

PRECIPITATION	8.75	31762.496	100.00
RUNOFF	0.264	956.648	3.01
EVAPOTRANSPIRATION	7.549	27401.473	86.27
PERC./LEAKAGE THROUGH LAYER 2	0.000250	0.908	0.00
AVG. HEAD ON TOP OF LAYER 2	0.0000		
CHANGE IN WATER STORAGE	0.938	3403.478	10.72
SOIL WATER AT START OF YEAR	24.936	90518.336	
SOIL WATER AT END OF YEAR	25.874	93921.812	
SNOW WATER AT START OF YEAR	0.000	0.000	0.00
SNOW WATER AT END OF YEAR	0.000	0.000	0.00
ANNUAL WATER BUDGET BALANCE	0.0000	-0.011	0.00
* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * *	****	* * * * * * * * * * *

ANNUAL TOTALS FOR YEAR 7

	INCHES	CU. FEET	PERCENT
PRECIPITATION	8.69	31544.705	100.00
RUNOFF	0.134	485.751	1.54
EVAPOTRANSPIRATION	9.570	34738.910	110.13
PERC./LEAKAGE THROUGH LAYER 2	0.003498	12.699	0.04
AVG. HEAD ON TOP OF LAYER 2	0.0000		
CHANGE IN WATER STORAGE	-1.017	-3692.666	-11.71
SOIL WATER AT START OF YEAR	25.874	93921.812	
SOIL WATER AT END OF YEAR	24.857	90229.148	
SNOW WATER AT START OF YEAR	0.000	0.000	0.00
SNOW WATER AT END OF YEAR	0.000	0.000	0.00
ANNUAL WATER BUDGET BALANCE	0.0000	0.013	0.00

ANNUAL TOTALS FOR YEAR 8

	INCHES	CU. FEET	PERCENT
PRECIPITATION	9.85	35755.508	100.00
RUNOFF	0.161	585.894	1.64
EVAPOTRANSPIRATION	9.799	35568.969	99.48
PERC./LEAKAGE THROUGH LAYER 2	0.001640	5.954	0.02
AVG. HEAD ON TOP OF LAYER 2	0.0000		
CHANGE IN WATER STORAGE	-0.112	-405.296	-1.13
SOIL WATER AT START OF YEAR	24.857	90229.148	
SOIL WATER AT END OF YEAR	24.600	89297.773	
SNOW WATER AT START OF YEAR	0.000	0.000	0.00
SNOW WATER AT END OF YEAR	0.145	526.077	1.47
ANNUAL WATER BUDGET BALANCE	0.0000	-0.010	0.00

ANNUAL TOTALS FOR YEAR 9

	INCHES	CU. FEET	PERCENI
PRECIPITATION	8.72	31653.607	100.00
RUNOFF	0.299	1086.009	3.43
EVAPOTRANSPIRATION	8.443	30648.566	96.82
PERC./LEAKAGE THROUGH LAYER 2	0.119312	433.103	1.37
AVG. HEAD ON TOP OF LAYER 2	0.0287		
CHANGE IN WATER STORAGE	-0.142	-514.074	-1.62
SOIL WATER AT START OF YEAR	24.600	89297.773	
SOIL WATER AT END OF YEAR	24.600	89297.828	
SNOW WATER AT START OF YEAR	0.145	526.077	1.66
SNOW WATER AT END OF YEAR	0.003	11.947	0.04
ANNUAL WATER BUDGET BALANCE	0.0000	0.003	0.00

ANNUAL TOTALS FOR YEAR 10

	INCHES	CU. FEET	PERCENT
PRECIPITATION	10.51	38151.312	100.00
RUNOFF	0.881	3196.598	8.38
EVAPOTRANSPIRATION	6.155	22343.750	58.57
PERC./LEAKAGE THROUGH LAYER 2	0.677494	2459.303	6.45
AVG. HEAD ON TOP OF LAYER 2	2.3279		
CHANGE IN WATER STORAGE	2.797	10151.659	26.61
SOIL WATER AT START OF YEAR	24.600	89297.828	
SOIL WATER AT END OF YEAR	27.150	98555.914	
SNOW WATER AT START OF YEAR	0.003	11.947	0.03
SNOW WATER AT END OF YEAR	0.249	905.523	2.37
ANNUAL WATER BUDGET BALANCE	0.0000	0.002	0.00
* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * *	******

ANNUAL TOTALS FOR YEAR 11

	INCHES	CU. FEET	PERCENT
PRECIPITATION	8.40	30492.002	100.00
RUNOFF	0.467	1696.126	5.56
EVAPOTRANSPIRATION	8.956	32509.250	106.62
PERC./LEAKAGE THROUGH LAYER 2	1.322270	4799.838	15.74
AVG. HEAD ON TOP OF LAYER 2	3.1147		
CHANGE IN WATER STORAGE	-2.345	-8513.202	-27.92
SOIL WATER AT START OF YEAR	27.150	98555.914	
SOIL WATER AT END OF YEAR	25.055	90948.234	
SNOW WATER AT START OF YEAR	0.249	905.523	2.97
SNOW WATER AT END OF YEAR	0.000	0.000	0.00
ANNUAL WATER BUDGET BALANCE	0.0000	-0.009	0.00
* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * *	* * * * * * * * * *

	INCHES	CU. FEET	PERCENT
PRECIPITATION	9.41	34158.305	100.00
RUNOFF	0.498	1808.742	5.30
EVAPOTRANSPIRATION	8.656	31419.516	91.98
PERC./LEAKAGE THROUGH LAYER 2	0.345108	1252.741	3.67
AVG. HEAD ON TOP OF LAYER 2	0.1453		
CHANGE IN WATER STORAGE	-0.089	-322.689	-0.94
SOIL WATER AT START OF YEAR	25.055	90948.234	
SOIL WATER AT END OF YEAR	24.948	90562.281	
SNOW WATER AT START OF YEAR	0.000	0.000	0.00
SNOW WATER AT END OF YEAR	0.017	63.264	0.19
ANNUAL WATER BUDGET BALANCE	0.0000	-0.007	0.00
******	* * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * *	****

ANNUAL TOTALS FOR YEAR 12

ANNUAL TOTALS FOR YEAR 13

	тисцер	CU. FEET	PERCENT
PRECIPITATION	7.04	25555.201	100.00
RUNOFF	0.043	154.638	0.61
EVAPOTRANSPIRATION	7.188	26092.275	102.10
PERC./LEAKAGE THROUGH LAYER 2	0.001021	3.708	0.01
AVG. HEAD ON TOP OF LAYER 2	0.0000		
CHANGE IN WATER STORAGE	-0.192	-695.431	-2.72
SOIL WATER AT START OF YEAR	24.948	90562.281	
SOIL WATER AT END OF YEAR	24.774	89930.109	
SNOW WATER AT START OF YEAR	0.017	63.264	0.25
SNOW WATER AT END OF YEAR	0.000	0.000	0.00
ANNUAL WATER BUDGET BALANCE	0.0000	0.009	0.00

ANNUAL TOTALS FOR YEAR 14

ANNUAL TOTALS FOR YEAR 14					
	INCHES	CU. FEET	PERCENT		
PRECIPITATION	7.65	27769.512	100.00		
RUNOFF	0.064	231.291	0.83		
EVAPOTRANSPIRATION	6.977	25327.107	91.20		
PERC./LEAKAGE THROUGH LAYER 2	0.000010	0.035	0.00		
AVG. HEAD ON TOP OF LAYER 2	0.0000				
CHANGE IN WATER STORAGE	0.609	2211.061	7.96		
SOIL WATER AT START OF YEAR	24.774	89930.109			
SOIL WATER AT END OF YEAR	25.344	91997.680			
SNOW WATER AT START OF YEAR	0.000	0.000	0.00		
SNOW WATER AT END OF YEAR	0.040	143.492	0.52		
ANNUAL WATER BUDGET BALANCE	0.0000	0.018	0.00		

	INCHES	CU. FEET	PERCENT
PRECIPITATION	7.04	25555.203	100.00
RUNOFF	0.129	466.677	1.83
EVAPOTRANSPIRATION	6.361	23091.707	90.36
PERC./LEAKAGE THROUGH LAYER 2	0.001826	6.630	0.03
AVG. HEAD ON TOP OF LAYER 2	0.0000		
CHANGE IN WATER STORAGE	0.548	1990.177	7.79
SOIL WATER AT START OF YEAR	25.344	91997.680	
SOIL WATER AT END OF YEAR	25.932	94131.352	
SNOW WATER AT START OF YEAR	0.040	143.492	0.56
SNOW WATER AT END OF YEAR	0.000	0.000	0.00
ANNUAL WATER BUDGET BALANCE	0.0000	0.012	0.00

***************************************	* *

* * * * * * * * * * * * * * * * * * * *	*****	*******	
ANNUAL TOTALS FOR YEAR 16			
INCHES	CU. FEET	PERCENT	
7.15	25954.500	100.00	
0.358	1298.916	5.00	
6.779	24607.064	94.81	
0.273748	993.707	3.83	
0.2540			
-0.260	-945.172	-3.64	
25.932	94131.352		
25.671	93186.180		
0.000	0.000	0.00	
0.000	0.000	0.00	
0.0000	-0.016	0.00	
	ALS FOR YEAR 16 INCHES 7.15 0.358 6.779 0.273748 0.2540 -0.260 25.932 25.671 0.000 0.000	INCHES CU. FEET 7.15 25954.500 0.358 1298.916 6.779 24607.064 0.273748 993.707 0.2540 - -0.260 -945.172 25.932 94131.352 25.671 93186.180 0.000 0.000	

ANNUAL TOTALS FOR YEAR 17				
	INCHES	CU. FEET	PERCENT	
PRECIPITATION	7.84	28459.203	100.00	
RUNOFF	0.234	848.040	2.98	
EVAPOTRANSPIRATION	8.453	30683.162	107.81	
PERC./LEAKAGE THROUGH LAYER 2	0.146095	530.326	1.86	
AVG. HEAD ON TOP OF LAYER 2	0.0512			
CHANGE IN WATER STORAGE	-0.992	-3602.329	-12.66	
SOIL WATER AT START OF YEAR	25.671	93186.180		
SOIL WATER AT END OF YEAR	24.600	89297.773		
SNOW WATER AT START OF YEAR	0.000	0.000	0.00	
SNOW WATER AT END OF YEAR	0.079	286.076	1.01	

ANNUAL WATER BUDGET BALANCE	0.0000	0.006	0.00
*****	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * *	* * * * * * * * * *

ANNUAL TOTALS FOR YEAR 18

	INCHES	CU. FEET	PERCENT
PRECIPITATION	10.15	36844.500	100.00
RUNOFF	0.645	2340.801	6.35
EVAPOTRANSPIRATION	9.154	33230.668	90.19
PERC./LEAKAGE THROUGH LAYER 2	0.002876	10.441	0.03
AVG. HEAD ON TOP OF LAYER 2	0.0000		
CHANGE IN WATER STORAGE	0.348	1262.598	3.43
SOIL WATER AT START OF YEAR	24.600	89297.773	
SOIL WATER AT END OF YEAR	25.027	90846.445	
SNOW WATER AT START OF YEAR	0.079	286.076	0.78
SNOW WATER AT END OF YEAR	0.000	0.000	0.00
ANNUAL WATER BUDGET BALANCE	0.0000	-0.010	0.00

-		INCHES	CU. FEET	PERCENT	
	PRECIPITATION	10.93	39675.906	100.00	
	RUNOFF	0.396	1436.737	3.62	
	EVAPOTRANSPIRATION	6.729	24426.051	61.56	
	PERC./LEAKAGE THROUGH LAYER 2	0.598995	2174.352	5.48	
	AVG. HEAD ON TOP OF LAYER 2	1.9838			
	CHANGE IN WATER STORAGE	3.206	11638.768	29.33	
	SOIL WATER AT START OF YEAR	25.027	90846.445		
	SOIL WATER AT END OF YEAR	28.233	102485.211		
	SNOW WATER AT START OF YEAR	0.000	0.000	0.00	

SNOW WATER AT END OF YEAR	0.000	0.000	0.00		
ANNUAL WATER BUDGET BALANCE	0.0000	-0.003	0.00		

ANNUAL TOTALS FOR YEAR 20

	INCHES	CU. FEET	PERCENT
PRECIPITATION	8.01	29076.305	100.00
RUNOFF	0.126	457.136	1.57
EVAPOTRANSPIRATION	8.821	32019.504	110.12
PERC./LEAKAGE THROUGH LAYER 2	1.368154	4966.400	17.08
AVG. HEAD ON TOP OF LAYER 2	4.7525		
CHANGE IN WATER STORAGE	-2.305	-8366.748	-28.78
SOIL WATER AT START OF YEAR	28.233	102485.211	
SOIL WATER AT END OF YEAR	25.777	93572.117	
SNOW WATER AT START OF YEAR	0.000	0.000	0.00
SNOW WATER AT END OF YEAR	0.151	546.349	1.88
ANNUAL WATER BUDGET BALANCE	0.0000	0.012	0.00

	INCHES	CU. FEET	PERCENT
PRECIPITATION	5.99	21743.701	100.00
RUNOFF	0.252	913.338	4.20
EVAPOTRANSPIRATION	6.810	24719.799	113.69
PERC./LEAKAGE THROUGH LAYER 2	0.245018	889.414	4.09
AVG. HEAD ON TOP OF LAYER 2	0.1497		
CHANGE IN WATER STORAGE	-1.316	-4778.854	-21.98
SOIL WATER AT START OF YEAR	25.777	93572.117	
SOIL WATER AT END OF YEAR	24.611	89339.609	

SNOW WATER AT START OF YEAR	0.151	546.349	2.51	
SNOW WATER AT END OF YEAR	0.000	0.000	0.00	
ANNUAL WATER BUDGET BALANCE	0.0000	0.004	0.00	

ANNUAL TOTALS FOR YEAR 22

ANNUAL IUTALS FOR IEAR 22				
	INCHES	CU. FEET	PERCENT	
PRECIPITATION	5.13	18621.906	100.00	
RUNOFF	0.000	0.000	0.00	
EVAPOTRANSPIRATION	4.739	17202.768	92.38	
PERC./LEAKAGE THROUGH LAYER 2	0.000010	0.036	0.00	
AVG. HEAD ON TOP OF LAYER 2	0.0000			
CHANGE IN WATER STORAGE	0.391	1419.097	7.62	
SOIL WATER AT START OF YEAR	24.611	89339.609		
SOIL WATER AT END OF YEAR	25.002	90758.711		
SNOW WATER AT START OF YEAR	0.000	0.000	0.00	
SNOW WATER AT END OF YEAR	0.000	0.000	0.00	
ANNUAL WATER BUDGET BALANCE	0.0000	0.005	0.00	

	INCHES	CU. FEET	PERCENT	
PRECIPITATION	13.26	48133.797	100.00	
RUNOFF	1.302	4725.676	9.82	
EVAPOTRANSPIRATION	8.694	31557.410	65.56	
PERC./LEAKAGE THROUGH LAYER 2	0.581057	2109.238	4.38	
AVG. HEAD ON TOP OF LAYER 2	1.6099			
CHANGE IN WATER STORAGE	2.684	9741.484	20.24	
SOIL WATER AT START OF YEAR	25.002	90758.711		

SOIL WATER AT END OF YEAR	27.645	100352.641	
SNOW WATER AT START OF YEAR	0.000	0.000	0.00
SNOW WATER AT END OF YEAR	0.041	147.554	0.31
ANNUAL WATER BUDGET BALANCE	0.0000	-0.011	0.00
*****	* * * * * * * * * * * * * *	****	* * * * * * * * * *

	INCHES	CU. FEET	PERCENI
PRECIPITATION	8.63	31326.904	100.00
RUNOFF	0.474	1721.444	5.50
EVAPOTRANSPIRATION	8.980	32596.387	104.05
PERC./LEAKAGE THROUGH LAYER 2	1.348091	4893.570	15.62
AVG. HEAD ON TOP OF LAYER 2	3.9781		
CHANGE IN WATER STORAGE	-2.172	-7884.506	-25.17
SOIL WATER AT START OF YEAR	27.645	100352.641	
SOIL WATER AT END OF YEAR	25.514	92615.687	
SNOW WATER AT START OF YEAR	0.041	147.554	0.47
SNOW WATER AT END OF YEAR	0.000	0.000	0.00
ANNUAL WATER BUDGET BALANCE	0.0000	0.007	0.00

	INCHES	CU. FEET	PERCENT	
PRECIPITATION	8.29	30092.703	100.00	
RUNOFF	0.843	3059.697	10.17	
EVAPOTRANSPIRATION	7.246	26301.535	87.40	
PERC./LEAKAGE THROUGH LAYER 2	0.122796	445.748	1.48	
AVG. HEAD ON TOP OF LAYER 2	0.0386			
CHANGE IN WATER STORAGE	0.079	285.721	0.95	

SOIL WATER AT START OF YEAR	25.514	92615.687		
SOIL WATER AT END OF YEAR	25.571	92821.539		
SNOW WATER AT START OF YEAR	0.000	0.000	0.00	
SNOW WATER AT END OF YEAR	0.022	79.874	0.27	
ANNUAL WATER BUDGET BALANCE	0.0000	0.001	0.00	

ANNUAL TOTALS FOR YEAR 26				
	INCHES	CU. FEET	PERCENT	
PRECIPITATION	10.38	37679.410	100.00	
RUNOFF	0.646	2345.705	6.23	
EVAPOTRANSPIRATION	9.906	35960.168	95.44	
PERC./LEAKAGE THROUGH LAYER 2	0.403701	1465.434	3.89	
AVG. HEAD ON TOP OF LAYER 2	0.3953			
CHANGE IN WATER STORAGE	-0.576	-2091.901	-5.55	
SOIL WATER AT START OF YEAR	25.571	92821.539		
SOIL WATER AT END OF YEAR	25.016	90809.508		
SNOW WATER AT START OF YEAR	0.022	79.874	0.21	
SNOW WATER AT END OF YEAR	0.000	0.000	0.00	
ANNUAL WATER BUDGET BALANCE	0.0000	0.004	0.00	

	INCHES	CU. FEET	PERCENT	
PRECIPITATION	7.63	27696.902	100.00	
RUNOFF	0.011	38.890	0.14	
EVAPOTRANSPIRATION	7.423	26943.918	97.28	
PERC./LEAKAGE THROUGH LAYER 2	0.275986	1001.828	3.62	
AVG. HEAD ON TOP OF LAYER 2	0.3022			

	CHANGE IN WATER STORAGE	-0.079	-287.741	-1.04
	SOIL WATER AT START OF YEAR	25.016	90809.508	
	SOIL WATER AT END OF YEAR	24.937	90521.766	
	SNOW WATER AT START OF YEAR	0.000	0.000	0.00
	SNOW WATER AT END OF YEAR	0.000	0.000	0.00
	ANNUAL WATER BUDGET BALANCE	0.0000	0.008	0.00
*	******	* * * * * * * * * * * * * * *	* * * * * * * * * * * * * * *	* * * * * * * * *

ANNUAL TOTALS FOR YEAR 28						
INCHES CU. FEET PERCENT						
PRECIPITATION	11.53	41853.898	100.00			
RUNOFF	0.445	1616.159	3.86			
EVAPOTRANSPIRATION	8.653	31409.248	75.04			
PERC./LEAKAGE THROUGH LAYER 2	0.400599	1454.175	3.47			
AVG. HEAD ON TOP OF LAYER 2	1.3278					
CHANGE IN WATER STORAGE	2.031	7374.310	17.62			
SOIL WATER AT START OF YEAR	24.937	90521.766				
SOIL WATER AT END OF YEAR	26.969	97896.078				
SNOW WATER AT START OF YEAR	0.000	0.000	0.00			
SNOW WATER AT END OF YEAR	0.000	0.000	0.00			
ANNUAL WATER BUDGET BALANCE	0.0000	0.008	0.00			

ANNUAL TO	DTALS FOR YEAR 29		
	INCHES	CU. FEET	PERCENT
PRECIPITATION	6.44	23377.203	100.00
RUNOFF	0.002	5.875	0.03
EVAPOTRANSPIRATION	7.339	26639.320	113.95
PERC./LEAKAGE THROUGH LAYER 2	1.244176	4516.360	19.32

AVG. HEAD ON TOP OF LAYER 2	3.1321		
CHANGE IN WATER STORAGE	-2.144	-7784.357	-33.30
SOIL WATER AT START OF YEAR	26.969	97896.078	
SOIL WATER AT END OF YEAR	24.824	90111.719	
SNOW WATER AT START OF YEAR	0.000	0.000	0.00
SNOW WATER AT END OF YEAR	0.000	0.000	0.00
ANNUAL WATER BUDGET BALANCE	0.0000	0.005	0.00
* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * *	* * * * * * * * * * *

ANNUAL TOTALS FOR YEAR 30

ANNOAL IOTALS FOR TEAR 50				
	INCHES	CU. FEET	PERCENT	
PRECIPITATION	12.20	44286.000	100.00	
RUNOFF	0.394	1431.892	3.23	
EVAPOTRANSPIRATION	9.582	34782.082	78.54	
PERC./LEAKAGE THROUGH LAYER 2	0.361932	1313.812	2.97	
AVG. HEAD ON TOP OF LAYER 2	0.7462			
CHANGE IN WATER STORAGE	1.862	6758.224	15.26	
SOIL WATER AT START OF YEAR	24.824	90111.719		
SOIL WATER AT END OF YEAR	26.675	96830.828		
SNOW WATER AT START OF YEAR	0.000	0.000	0.00	
SNOW WATER AT END OF YEAR	0.011	39.115	0.09	
ANNUAL WATER BUDGET BALANCE	0.0000	-0.010	0.00	

	ANNUAL TOTALS FOR YEAR	31	
	INCHES	CU. FEET	PERCENT
PRECIPITATION	12.16	44140.805	100.00
RUNOFF	1.612	5850.303	13.25
EVAPOTRANSPIRATION	8.563	31082.187	70.42

PERC./LEAKAGE THROUGH LAYER 2	1.333929	4842.162	10.97	
AVG. HEAD ON TOP OF LAYER 2	3.5695			
CHANGE IN WATER STORAGE	0.652	2366.164	5.36	
SOIL WATER AT START OF YEAR	26.675	96830.828		
SOIL WATER AT END OF YEAR	27.050	98191.164		
SNOW WATER AT START OF YEAR	0.011	39.115	0.09	
SNOW WATER AT END OF YEAR	0.288	1044.943	2.37	
ANNUAL WATER BUDGET BALANCE	0.0000	-0.010	0.00	

ANNUAL TOTALS FOR YEAR 32

	INCHES	CU. FEET	PERCENT
PRECIPITATION	15.28	55466.406	100.00
RUNOFF	2.515	9129.822	16.46
EVAPOTRANSPIRATION	10.661	38697.625	69.77
PERC./LEAKAGE THROUGH LAYER 2	1.378678	5004.601	9.02
AVG. HEAD ON TOP OF LAYER 2	5.1613		
CHANGE IN WATER STORAGE	0.726	2634.338	4.75
SOIL WATER AT START OF YEAR	27.050	98191.164	
SOIL WATER AT END OF YEAR	27.941	101424.727	
SNOW WATER AT START OF YEAR	0.288	1044.943	1.88
SNOW WATER AT END OF YEAR	0.123	445.717	0.80
ANNUAL WATER BUDGET BALANCE	0.0000	0.020	0.00

ANNUAL :	TOTALS	FOR	YEAR	33
----------	--------	-----	------	----

	INCHES	CU. FEET	PERCENT	
PRECIPITATION	10.75	39022.500	100.00	
RUNOFF	0.764	2772.525	7.10	

EVAPOTRANSPIRATION	9.938	36074.867	92.45	
PERC./LEAKAGE THROUGH LAYER 2	1.378016	5002.197	12.82	
AVG. HEAD ON TOP OF LAYER 2	5.2701			
CHANGE IN WATER STORAGE	-1.330	-4827.095	-12.37	
SOIL WATER AT START OF YEAR	27.941	101424.727		
SOIL WATER AT END OF YEAR	26.353	95661.477		
SNOW WATER AT START OF YEAR	0.123	445.717	1.14	
SNOW WATER AT END OF YEAR	0.381	1381.875	3.54	
ANNUAL WATER BUDGET BALANCE	0.0000	0.007	0.00	

ANNUAL TOTALS FOR YEAR 34				
	INCHES	CU. FEET	PERCENT	
PRECIPITATION	8.01	29076.305	100.00	
RUNOFF	0.178	647.872	2.23	
EVAPOTRANSPIRATION	8.832	32058.682	110.26	
PERC./LEAKAGE THROUGH LAYER 2	0.609094	2211.010	7.60	
AVG. HEAD ON TOP OF LAYER 2	0.6193			
CHANGE IN WATER STORAGE	-1.609	-5841.262	-20.09	
SOIL WATER AT START OF YEAR	26.353	95661.477		
SOIL WATER AT END OF YEAR	25.125	91202.086		
SNOW WATER AT START OF YEAR	0.381	1381.875	4.75	
SNOW WATER AT END OF YEAR	0.000	0.000	0.00	
ANNUAL WATER BUDGET BALANCE	0.0000	0.004	0.00	

 ANNUAL TOTALS FOR YEAR
 35

 INCHES
 CU. FEET
 PERCENT

 PRECIPITATION
 10.14
 36808.211
 100.00

RUNOFF	0.266	964.556	2.62	
EVAPOTRANSPIRATION	10.168	36911.430	100.28	
PERC./LEAKAGE THROUGH LAYER 2	0.000232	0.844	0.00	
AVG. HEAD ON TOP OF LAYER 2	0.0000			
CHANGE IN WATER STORAGE	-0.294	-1068.640	-2.90	
SOIL WATER AT START OF YEAR	25.125	91202.086		
SOIL WATER AT END OF YEAR	24.819	90091.953		
SNOW WATER AT START OF YEAR	0.000	0.000	0.00	
SNOW WATER AT END OF YEAR	0.011	41.495	0.11	
ANNUAL WATER BUDGET BALANCE	0.0000	0.022	0.00	

	INCHES	CU. FEET	PERCENT
PRECIPITATION	8.39	30455.697	100.00
RUNOFF	0.063	229.611	0.75
EVAPOTRANSPIRATION	7.654	27784.623	91.23
PERC./LEAKAGE THROUGH LAYER 2	0.219564	797.018	2.62
AVG. HEAD ON TOP OF LAYER 2	0.0996		
CHANGE IN WATER STORAGE	0.453	1644.462	5.40
SOIL WATER AT START OF YEAR	24.819	90091.953	
SOIL WATER AT END OF YEAR	25.283	91777.906	
SNOW WATER AT START OF YEAR	0.011	41.495	0.14
SNOW WATER AT END OF YEAR	0.000	0.000	0.00
ANNUAL WATER BUDGET BALANCE	0.0000	-0.017	0.00

***************************************	* * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * *	* * * * * * * * * * *
ANNUAL TOTALS	S FOR YEAR 37		
	INCHES	CU. FEET	PERCENT

PRECIPITATION	7.91	28713.303	100.00	
RUNOFF	0.119	432.742	1.51	
EVAPOTRANSPIRATION	8.387	30444.686	106.03	
PERC./LEAKAGE THROUGH LAYER 2	0.022421	81.390	0.28	
AVG. HEAD ON TOP OF LAYER 2	0.0006			
CHANGE IN WATER STORAGE	-0.619	-2245.521	-7.82	
SOIL WATER AT START OF YEAR	25.283	91777.906		
SOIL WATER AT END OF YEAR	24.665	89532.391		
SNOW WATER AT START OF YEAR	0.000	0.000	0.00	
SNOW WATER AT END OF YEAR	0.000	0.000	0.00	
ANNUAL WATER BUDGET BALANCE	0.0000	0.007	0.00	

ANNUAL TOTALS FOR YEAR 38

	INCHES	CU. FEET	PERCENT
PRECIPITATION	8.75	31762.500	100.00
RUNOFF	0.116	421.041	1.33
EVAPOTRANSPIRATION	8.168	29651.246	93.35
PERC./LEAKAGE THROUGH LAYER 2	0.009320	33.833	0.11
AVG. HEAD ON TOP OF LAYER 2	0.0001		
CHANGE IN WATER STORAGE	0.456	1656.392	5.21
SOIL WATER AT START OF YEAR	24.665	89532.391	
SOIL WATER AT END OF YEAR	25.121	91188.781	
SNOW WATER AT START OF YEAR	0.000	0.000	0.00
SNOW WATER AT END OF YEAR	0.000	0.000	0.00
ANNUAL WATER BUDGET BALANCE	0.0000	-0.013	0.00

	INCHES	CU. FEET	PERCENT
PRECIPITATION	8.28	30056.398	100.00
RUNOFF	0.602	2186.522	7.27
EVAPOTRANSPIRATION	7.159	25988.699	86.47
PERC./LEAKAGE THROUGH LAYER 2	0.312657	1134.945	3.78
AVG. HEAD ON TOP OF LAYER 2	0.8785		
CHANGE IN WATER STORAGE	0.206	746.237	2.48
SOIL WATER AT START OF YEAR	25.121	91188.781	
SOIL WATER AT END OF YEAR	25.297	91828.344	
SNOW WATER AT START OF YEAR	0.000	0.000	0.00
SNOW WATER AT END OF YEAR	0.029	106.676	0.35
ANNUAL WATER BUDGET BALANCE	0.0000	-0.005	0.00
* * * * * * * * * * * * * * * * * * * *	****	* * * * * * * * * * * * * *	* * * * * * * * * * *

ANNUAL TOTALS FOR YEAR 40

	INCHES	CU. FEET	PERCENT
PRECIPITATION	6.61	23994.305	100.00
RUNOFF	0.161	582.656	2.43
EVAPOTRANSPIRATION	5.504	19981.035	83.27
PERC./LEAKAGE THROUGH LAYER 2	0.469465	1704.158	7.10
AVG. HEAD ON TOP OF LAYER 2	0.5498		
CHANGE IN WATER STORAGE	0.476	1726.450	7.20
SOIL WATER AT START OF YEAR	25.297	91828.344	
SOIL WATER AT END OF YEAR	25.802	93661.469	
SNOW WATER AT START OF YEAR	0.029	106.676	0.44
SNOW WATER AT END OF YEAR	0.000	0.000	0.00
ANNUAL WATER BUDGET BALANCE	0.0000	0.005	0.00

	INCHES	CU. FEET	PERCENT
PRECIPITATION	10.26	37243.801	100.00
RUNOFF	0.363	1318.303	3.54
EVAPOTRANSPIRATION	9.248	33571.070	90.14
PERC./LEAKAGE THROUGH LAYER 2	0.028681	104.113	0.28
AVG. HEAD ON TOP OF LAYER 2	0.0005		
CHANGE IN WATER STORAGE	0.620	2250.317	6.04
SOIL WATER AT START OF YEAR	25.802	93661.469	
SOIL WATER AT END OF YEAR	26.206	95127.477	
SNOW WATER AT START OF YEAR	0.000	0.000	0.00
SNOW WATER AT END OF YEAR	0.216	784.305	2.11
ANNUAL WATER BUDGET BALANCE	0.0000	-0.004	0.00

ANNUAL TOTALS FOR YEAR 42			
	INCHES	CU. FEET	PERCENT
PRECIPITATION	9.49	34448.703	100.00
RUNOFF	0.095	346.658	1.01
EVAPOTRANSPIRATION	10.499	38112.969	110.64
PERC./LEAKAGE THROUGH LAYER 2	0.246538	894.933	2.60
AVG. HEAD ON TOP OF LAYER 2	0.0746		
CHANGE IN WATER STORAGE	-1.351	-4905.841	-14.24
SOIL WATER AT START OF YEAR	26.206	95127.477	
SOIL WATER AT END OF YEAR	24.991	90716.367	
SNOW WATER AT START OF YEAR	0.216	784.305	2.28
SNOW WATER AT END OF YEAR	0.080	289.580	0.84
ANNUAL WATER BUDGET BALANCE	0.0000	-0.015	0.00
*********	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * *	* * * * * * * * * * *

	INCHES	CU. FEET	PERCENT
PRECIPITATION	9.42	34194.605	100.00
RUNOFF	0.231	837.253	2.45
EVAPOTRANSPIRATION	8.326	30224.561	88.39
PERC./LEAKAGE THROUGH LAYER 2	0.246056	893.185	2.61
AVG. HEAD ON TOP OF LAYER 2	0.1096		
CHANGE IN WATER STORAGE	0.617	2239.611	6.55
SOIL WATER AT START OF YEAR	24.991	90716.367	
SOIL WATER AT END OF YEAR	25.687	93245.555	
SNOW WATER AT START OF YEAR	0.080	289.580	0.85
SNOW WATER AT END OF YEAR	0.000	0.000	0.00
ANNUAL WATER BUDGET BALANCE	0.0000	-0.006	0.00

ANNUAL TOTALS FOR YEAR 43

	INCHES	CU. FEET	PERCENI
PRECIPITATION	6.99	25373.703	100.00
RUNOFF	0.133	483.779	1.91
EVAPOTRANSPIRATION	7.590	27550.518	108.58
PERC./LEAKAGE THROUGH LAYER 2	0.009088	32.990	0.13
AVG. HEAD ON TOP OF LAYER 2	0.0002		
CHANGE IN WATER STORAGE	-0.742	-2693.587	-10.62
SOIL WATER AT START OF YEAR	25.687	93245.555	
SOIL WATER AT END OF YEAR	24.945	90551.969	
SNOW WATER AT START OF YEAR	0.000	0.000	0.00
SNOW WATER AT END OF YEAR	0.000	0.000	0.00
ANNUAL WATER BUDGET BALANCE	0.0000	0.002	0.00

ANNUAL TOTALS FOR YEAR 45			
	INCHES	CU. FEET	PERCENT
PRECIPITATION	13.06	47407.797	100.00
RUNOFF	1.022	3708.819	7.82
EVAPOTRANSPIRATION	10.107	36687.531	77.39
PERC./LEAKAGE THROUGH LAYER 2	0.261829	950.440	2.00
AVG. HEAD ON TOP OF LAYER 2	1.3212		
CHANGE IN WATER STORAGE	1.670	6061.027	12.78
SOIL WATER AT START OF YEAR	24.945	90551.969	
SOIL WATER AT END OF YEAR	26.615	96613.000	
SNOW WATER AT START OF YEAR	0.000	0.000	0.00
SNOW WATER AT END OF YEAR	0.000	0.000	0.00
ANNUAL WATER BUDGET BALANCE	0.0000	-0.020	0.00
* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * *	****

ANNUAL TOTALS FOR YEAR 45

	INCHES	CU. FEET	PERCENT	
PRECIPITATION	10.02	36372.605	100.00	
RUNOFF	0.689	2499.377	6.87	
EVAPOTRANSPIRATION	9.791	35540.922	97.71	
PERC./LEAKAGE THROUGH LAYER 2	1.208018	4385.106	12.06	
AVG. HEAD ON TOP OF LAYER 2	2.9061			
CHANGE IN WATER STORAGE	-1.667	-6052.788	-16.64	
SOIL WATER AT START OF YEAR	26.615	96613.000		
SOIL WATER AT END OF YEAR	24.948	90560.211		
SNOW WATER AT START OF YEAR	0.000	0.000	0.00	
SNOW WATER AT END OF YEAR	0.000	0.000	0.00	
ANNUAL WATER BUDGET BALANCE	0.0000	-0.013	0.00	
*****	* * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * *	****	

ANNUAL TOTALS FOR YEAR 47

INCHES	CU. FEET	PERCENT
13.81	50130.301	100.00
1.079	3915.139	7.81
10.973	39832.051	79.46
0.575141	2087.761	4.16
2.0007		
1.183	4295.331	8.57
24.948	90560.211	
26.131	94855.539	
0.000	0.000	0.00
0.000	0.000	0.00
0.0000	0.021	0.00
	1.079 10.973 0.575141 2.0007 1.183 24.948 26.131 0.000 0.000	1.0793915.13910.97339832.0510.5751412087.7612.0007

ANNUAL TOTALS FOR YEAR 48				
	INCHES	CU. FEET	PERCENT	
PRECIPITATION	7.51	27261.301	100.00	
RUNOFF	0.088	317.894	1.17	
EVAPOTRANSPIRATION	7.324	26584.881	97.52	
PERC./LEAKAGE THROUGH LAYER 2	0.964041	3499.469	12.84	
AVG. HEAD ON TOP OF LAYER 2	1.0808			
CHANGE IN WATER STORAGE	-0.865	-3140.946	-11.52	
SOIL WATER AT START OF YEAR	26.131	94855.539		
SOIL WATER AT END OF YEAR	25.266	91714.594		
SNOW WATER AT START OF YEAR	0.000	0.000	0.00	
SNOW WATER AT END OF YEAR	0.000	0.000	0.00	
ANNUAL WATER BUDGET BALANCE	0.0000	0.003	0.00	

ANNUAL TOTA	ALS FOR YEAR 49		
	INCHES	CU. FEET	PERCENT
PRECIPITATION	18.47	67046.109	100.00
RUNOFF	1.564	5676.140	8.47
EVAPOTRANSPIRATION	13.675	49640.437	74.04
PERC./LEAKAGE THROUGH LAYER 2	0.864157	3136.891	4.68
AVG. HEAD ON TOP OF LAYER 2	2.9650		
CHANGE IN WATER STORAGE	2.367	8592.638	12.82
SOIL WATER AT START OF YEAR	25.266	91714.594	
SOIL WATER AT END OF YEAR	27.619	100257.672	
SNOW WATER AT START OF YEAR	0.000	0.000	0.00
SNOW WATER AT END OF YEAR	0.014	49.556	0.07
ANNUAL WATER BUDGET BALANCE	0.0000	0.005	0.00
* * * * * * * * * * * * * * * * * * * *	****	* * * * * * * * * * * * * * *	*****

	INCHES	CU. FEET	PERCENT		
PRECIPITATION	7.31	26535.301	100.00		
RUNOFF	0.249	902.295	3.40		
EVAPOTRANSPIRATION	8.612	31260.748	117.81		
PERC./LEAKAGE THROUGH LAYER 2	1.337610	4855.524	18.30		
AVG. HEAD ON TOP OF LAYER 2	3.7169				
CHANGE IN WATER STORAGE	-2.888	-10483.251	-39.51		
SOIL WATER AT START OF YEAR	27.619	100257.672			
SOIL WATER AT END OF YEAR	24.745	89823.977			
SNOW WATER AT START OF YEAR	0.014	49.556	0.19		
SNOW WATER AT END OF YEAR	0.000	0.000	0.00		

ANNUAL WATER BUDGE	T BALANCE	0.0000	-0.015	0.00

AVERAGE MONTHLY	VALUES I	N INCHES	FOR YEARS	1 THR	OUGH 50	
	JAN/JUL	FEB/AUG	MAR/SEP	APR/OCT	MAY/NOV	JUN/DEC
RECIPITATION						
TOTALS			0.58 0.92			
STD. DEVIATIONS	0.16 1.29	0.14 0.67	0.32 0.69	0.62 1.35	0.88 0.32	
JNOFF						
TOTALS	0.000 0.090	0.002 0.008	0.041 0.026		0.026 0.022	0.004 0.000
STD. DEVIATIONS	0.001 0.193	0.010 0.021	0.088 0.051	0.270 0.270		
/APOTRANSPIRATION						
TOTALS	0.238 1.369	0.295 1.215	0.504 0.738	0.994 0.790	1.157 0.453	0.574 0.220
STD. DEVIATIONS			0.234 0.579			0.343 0.124
ERCOLATION/LEAKAGE TH	ROUGH LAY	er 2				
TOTALS	0.0408 0.0303	0.0304 0.0388			0.0327 0.0539	
STD. DEVIATIONS	0.0537 0.0473		0.0493 0.0504			0.0472 0.0550
AVERAGES (OF MONTHL	Y AVERAGE	D DAILY HI	EADS (INC	 HES)	
AILY AVERAGE HEAD ON '	 TOP OF LA	YER 2				
AVERAGES			0.7607	1.0680	1,1210	0.9401
	1.0310		0.9848			
STD. DEVIATIONS			1.4836 1.6459		2.3125 3.1091	

AVERAGE ANNUAL TOTALS & (S	TD. DEVIAT	'I0I	NS) FOR YEA	ARS 1 THROUG	н 50
	INCH	IES		CU. FEET	PERCENT
PRECIPITATION	9.44	(2.493)	34278.1	100.00
RUNOFF	0.446	(0.4871)	1619.15	4.724
EVAPOTRANSPIRATION	8.548	(1.6436)	31029.04	90.521
PERCOLATION/LEAKAGE THROUGH LAYER 2	0.44895	(0.48258)	1629.705	4.75436
AVERAGE HEAD ON TOP OF LAYER 2	1.122 (1.547)		
CHANGE IN WATER STORAGE	0.000	(1.3907)	0.20	0.001
* * * * * * * * * * * * * * * * * * * *	******	***	* * * * * * * * * * *	* * * * * * * * * * * * * * *	* * * * * * * * * * *

AVERACE ANNULAT MOMALS (COMP. DEVITAMIONS) FOR VEADS 1 MUDOLICUE 50

PEAK DAILY VALUES FOR YEARS	1 THROUGH 5	50
	(INCHES)	(CU. FT.)
PRECIPITATION	2.22	8058.600
RUNOFF	1.003	3641.5430
PERCOLATION/LEAKAGE THROUGH LAYER 2	0.004677	16.97779
AVERAGE HEAD ON TOP OF LAYER 2	18.000	
SNOW WATER	1.73	6284.2925
MAXIMUM VEG. SOIL WATER (VOL/VOL)	0.4	1640
MINIMUM VEG. SOIL WATER (VOL/VOL)	0.1	.870
* * * * * * * * * * * * * * * * * * * *	****	****

♀ ★★★

* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *

FINAL	WATER STORAGE AT	END OF YEAR 50)
LAYEF	R (INCHES)	(VOL/VOL)	
1	4.2489	0.2360	
2	20.4960	0.4270	

SNOW WATER	0.000
*****	***************************************
* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *

APPENDIX D

FATE AND TRANSPORT EVALUATION OF RESIDUAL SOLVENT IN SAND TAILINGS AND TAILINGS QUALITY CONTROL

FATE AND TRANSPORT EVALUATION OF RESIDUAL SOLVENT IN SAND TAILINGS

American Sands Energy Corporation (American Sands) has developed a proprietary extraction process to separate crude oil from oil sands using a proprietary solvent. This solvent is denser than water and has a low water solubility. The process produces tailings that consist of dry, clean sand as a byproduct. Based on pilot testing results, the sand tailings will contain between 2 and 25 parts per million (ppm) of the proprietary solvent. The consistency of the tailings is coarse grained sand with a very low organic carbon content after processing. It is estimated that approximately 14 million tons of sand tailings will be generated and placed in the permanent tailings impoundment over a five year period. American Sands plans to place the sand tailings into a lined impoundment that is sloped toward a leachate collection basin and is equipped with a weeping tile system designed to collect fluid accumulating within the impoundment area delivering it to the collection basin. The impoundment liner will consist of a clay barrier with very low permeability (10^{-7} cm/sec). The system in its entirety will be designed to exclude water from the tailings while collecting water that does enter the tailings and delivering it to the collection basin and thereby excluding it from the environment. An analysis was conducted to evaluate the behavior of residual solvent remaining in the tailings impoundment. The evaluation consisted of: (1) performing quantitative calculations to estimate the mass of solvent contained in the tailings in the impoundment, (2) estimating the retention capacity of the sand tailings to evaluate how much solvent can be held immobile in the pore space of the sands, (3) comparing the mass of solvent to the retention capacity to estimate whether sufficient mass of solvent will be present to allow downward vertical migration of free phase solvent, and (4) qualitatively evaluating the fate of any free phase solvent that may exist in the impoundment.

Mass of Solvent in Tailings Impoundment

The mass of solvent (M_s) in the tailings impoundment was estimated using the total mass of tailings anticipated to be produced over the five-year lifetime of the tailings impoundment (M_T) and the concentration of solvent in the tailings at the maximum allowable level (25 ppm) as opposed to that level measured during pilot testing (2 ppm). This was accomplished by multiplying the total mass of sand tailings by the maximum solvent concentration as follows:

 $M_T = (14 \times 10^6 \text{ tons})(2000 \text{ lb/ton})(453.6 \text{ g/lb})(1 \text{ kg}/1000 \text{ g}) = 13 \times 10^9 \text{ kg tailings}$

 $M_s = (13 \times 10^9 \text{ kg})(25 \text{ mg/kg solvent})(1 \text{ kg}/10^6 \text{ mg}) = 3.3 \times 10^5 \text{ kg solvent}$

Therefore, the total mass of solvent in the tailings impoundment is estimated to be 3.3×10^5 kg at the conclusion of the tailings impoundment based on the assumption that the process will operate producing sand with the maximum allowable residual solvent concentration (25 ppm) as opposed to that measured during pilot plant operations (2 ppm). Assuming the continuous production of sand over the 5 year period with a residual solvent concentration as observed in pilot plant operations (2 ppm), the total mass of solvent in the tailings impoundment would be 2.6 x 10^4 kg. It is therefore fair to assume that the actual solvent content of the tailings pile will be between 3.3×10^5 kg and 2.6×10^4 kg.

Retention Capacity of Impoundment Sand Tailings

The Retention Capacity is the volume of solvent that will be held immobilized in the pore space of the sand tailings (Liters solvent/m³ porous media). A certain quantity of free phase solvent will be immobilized due to interfacial tension within the sand pore space. According to Adamski, et al (2013), Retention Capacity (RC) in unsaturated conditions can be calculated as follows:

RC = (S_{or})η x 1000,

where, S_{or} = Residual Saturation η = Soil Porosity

Residual saturation is defined as the volume of non-aqueous phase liquid/volume of voids in the porous media. Residual saturation values have been measured in multiple laboratory experiments (Adamski, et al, 2013). Residual saturation and porosity values from experiments conducted by Wilson et al (1990) were used in these calculations because the experiments were conducted on disturbed, unsaturated sands with low organic carbon content. Of all the experiments reviewed, these conditions appear to best represent the conditions anticipated for the American Sands tailings. These literature values estimate residual saturation and porosity values of 0.091 and 0.33, respectively for these conditions. Using these values, the Retention Capacity was calculated as follows:

$$RC = (0.091)(0.33) \times 1000 = 30$$
 Liters solvent/m³ tailings

The volume of solvent (V_s) that can remain trapped in the pore space was calculated by multiplying the Retention Capacity by the volume of tailings. The volume of tailings (V_T) was calculated by dividing the tailings mass by its bulk density (ρ_T) and applying the appropriate conversion factors. Tailings bulk density was measured by Inberg Miller Engineers and found to range from a minimum of 89.3 lb/ft³ to a maximum of 94.7 lb/ft³ (see attached laboratory report). An average of the maximum and minimum values was used for the calculations ($\rho_T = 92 \text{ lb/ft}^3$). The unit conversion for bulk density was performed as follows:

$$\rho_{T} = (92 \text{ lb/ft}^{3})(1 \text{ ft/12 in})^{3}(1 \text{ in}/2.54 \text{ cm})^{3}(453.6 \text{ g/lb}) = 1.5 \text{ g/cm}^{3}$$

The volume of tailings was calculated using the measured average bulk density as follows:

$$V_T = (13 \times 10^9 \text{ kg})(1 \text{ cm}^3/1.5 \text{ g})(1000 \text{ g/kg})(1 \text{ m}/100 \text{ cm})^3 = 8.7 \times 10^6 \text{ m}^3 \text{ tailings}$$

Volume of solvent residual is therefore:

$$V_{R} = (RC)V_{T} = (30 L/m^{3})(8.7 \times 10^{6} m^{3}) = 2.6 \times 10^{8} L$$

Converting to mass using the solvent density of 1.33 kg/L obtained from the MSDS provided by American Sands:

$$M_{RC} = V_R \rho_S = (2.6 \times 10^8 \text{ L})(1.33 \text{ kg/L}) = 3.5 \times 10^8 \text{ kg}$$

Therefore, the capacity of the sand tailings for immobilizing the solvent is 3.5×10^8 kg of immobile solvent, i.e. the solvent should be held in the pore space but unable to drain under the force of gravity.

Comparison of Tailings Retention Capacity to Actual Solvent Mass

Comparing the estimated mass of solvent in the tailings after processing, which is from 2.6×10^4 kg to 3.3×10^5 kg, to the retention capacity of the sand tailings (3.5×10^8 kg), the calculations indicate that the capacity for immobilizing the solvent far exceeds the actual amount of solvent anticipated to be present. Therefore, it is reasonable to conclude that any residual solvent will remain immobile in the sand tailings and will not travel to the bottom of the impoundment.

Free Phase Solvent Behavior

Free phase solvent is very unlikely to be introduced at sufficient quantities to allow downward vertical migration. However, if mobile free phase solvent does enter the impoundment, or if heterogeneities or any other phenomena exist that allow free phase solvent migration, the impoundment is designed to allow preferential flow of all liquids into the retention basin. The impoundment liner will consist of a clay barrier with very low permeability (10⁻⁷ cm/sec). A weeping tile drain will be placed above the clay liner at the bottom of the impoundment. These structures provide an effective barrier against downward vertical migration and a preferential flow path (weeping tile drain) that will direct liquid flow into the retention basin. The construction phase of the project will have very strict quality assurance/quality control program to ensure proper construction. Therefore, based on a qualitative evaluation, it is unlikely that free phase solvent will migrate vertically past the clay liner. Any liquids draining from the impoundment will be collected in the retention basin.

References

Adamski, Kremesec, and Charbeneau, *Residual Saturation: What is it? How is it measured? How should we use it?*, Group Environmental Management (BP Affiliate), March 2013.

Wilson, Conrad, Mason, Peplinski, and Hagan, *Laboratory Investigation of Residual Liquid Organics*, EPA/600/6-90/004, April 1990.

US Department of Labor, Occupational Health Administration, *Material Safety Data Sheet (MSDS), Product UOR-1776*, September 22, 2014.

Aggregate-Soil Testing Summary

Inberg-Miller Engineers 350 Parsley Blvd Cheyenne WY 82001 Ph: 307-635-6827 Fax: 307-635-2713 cheyenne@inberg-miller.com

Client: Mine Engineers, Inc. Address: 3901 South Industrial Rd. Cheyenne, WY 82007

Attention: Eldon Strid

IME Project No: 16484-HM Project Name: General Testing Project Location:

Sample Location/ID: American Sands Energy - Utah

Partie	cle Size Analys	sis
ASTI	M C117 & C13	6
Sieve	% Passing	Specification
2 1/2" (63.5mm)		
2" (50.8mm)		
1 1/2" (37.5mm)		
1" (25mm)		
3/4" (19mm)		
1/2" (12.5mm)		
3/8" (9.5mm)		
No. 4 (4.75mm)	100%	:
No. 8 (2.36mm)	100%	
No. 16 (1.18mm)	99%	
No. 30 (600µm)	98%	
No. 40 (425µm)		
No. 50 (300μm)	87%	
No. 100 (150μm)	21%	
No. 200 (75µm)	9.6%	
0.020 mm (20μm)		
Att	erberg Limits	
А	STM D4318	
Test	Result	Specification
Liquid Limit (%)		
Plastic Limit (%)		
Plasticity Index (%)		
Remarks:		

IME Sample No: 16484-2 Sampled By: Client Sample Date: Date Received in Lab: 12/19/2013 Type of Material: Source: American Sands Energy - Utah Sample Description: Light brown fine SAND

> Report Date: 1/15/14 Reviewed By: MTJ

Other Testing					
Test	Result	Specifications /Notes	ASTM		
Fineness Modulus:	0.95		C136		
Moisture Content (%):	0.1%	(from sieve sample)	D2216		
Relative Density (pcf)			D4254		
Minimum Density	89.3				
Maximum Density	94.7				
Angle of Repose		: 			
Moisture Content (%)					
0%	26.5°				
4%	33.8°				
6%	37.7°				
Specific Gravity	Fine /	Coarse			
Absorption %			C128/C127		
Bulk (Dry)			C128/C127		
Bulk (SSD)			C128/C127		
Apparent			C128/C127		

TAILINGS QUALITY CONTROL

Objectives:

One of our system's objectives is to evaporate the solvent off the sand and condense and reuse the solvent, before the sand is disposed into the dry tailings impoundment. To do so, we will implement two operating practices to help minimize solvent losses: 1) Process sand with a large margin between the minimum required and actual operating conditions and 2) Continuously monitor sand quality through instrumentation and operator observation. These quality controls will help confirm the sand solvent content.

Process:

Sand will be dried under a vacuum (-6 psig) at an elevated temperature (300°F). This will drive all solvent and any trace water in the sand to the vapor state. Solvent vapors driven off the sand will be condensed and used in the process, as described in the Groundwater Discharge Permit Application. Water driven off the sand will be condensed and used for dust control.

Figure 1 demonstrates the required and actual sand operating conditions. Specifically, it demonstrates two boiling-point curves: one for the solvent and one for water. Sand fed to the dryers will be wetted with solvent from the washing process but will have little or no water on it. The figure also indicates the point at which a process alarm will inform personnel of an upset condition, such as a drop in temperature or a rise in pressure. The following operating parameters are shown on Figure 1:

- 1. Sand will be processed at 300°F and -6 psig
- 2. Water boils off at 186 °F at -6 psig
- 3. Solvent boils off at 127 °F at -6 psig
- 4. The system will be equipped with alarms at the following set points:
 - i. Low temp alarm: 275°F (and falling)
 - ii. High pressure alarm: -5 psig (and rising)
- 5. At the normal operating temperature, the system will operate with 173 °F of superheat, with respect to the solvent
- 6. At the low temperature alarm, the system will operate with 148 °F of superheat with respect to the solvent
- 7. At the high pressure alarm, the system will operate with 169 °F of superheat with respect to the solvent

The low temperature and high pressure alarm systems will be used as process safeguards, to help guarantee proper operation conditions and to maintain a clean sand product. As explained at the end of this document, the final sand product will be subject to quality assurance checks prior to moving from the plant to the sand pile.

As shown in Figure 1, the system will continuously operate above the temperature required to evaporate the solvent off the sand. In addition, at the normal operating pressure, the boiling point of water is 60°F above the boiling point of the solvent. With these operating parameters and safe-guards in place, there will always be several indicators available to demonstrate the solvent is evaporated from the sand. These indications are as follows:

- 1. <u>Sand Water Content:</u> We will monitor the water content of the sand using a probe system (see attached). When the probe system indicates the sand is dry with respect to water, it can safely be assumed that the sand is also free of solvent. As can be seen from figure 1, the solvent will evaporate off before the water does, or the water will only evaporate after the solvent. This assumption is valid due to the lower boiling temperature of the solvent when compared to water. Pilot plant operations have shown that if the process produces wet sand, the flow of sand and the process will stop. Due to constraint, the production of solvent wet sand will not occur.
- 2. <u>Sand Odor</u>: Operations will inspect the sand on an hourly basis, log their observations and take measures as needed should sand quality not be sufficient to meet the companies commitments.
- 3. <u>Gas Detection</u>: The sand storage pile will be equipped with a gas detection system (see attached) capable of detecting solvent vapors in the air above the sand down to a minimum concentration of 50 ppm (in air). Reading's will be collected every five minutes and logged electronically into a data logging system. Should a reading of 50 ppm be detected, an alarm will be sounded and operations shall take the necessary measures to maintain a clean sand product.

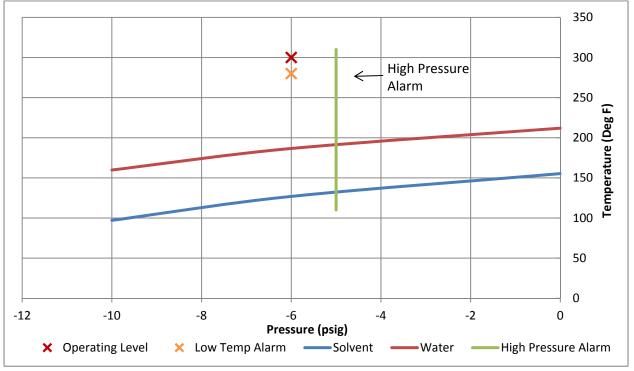
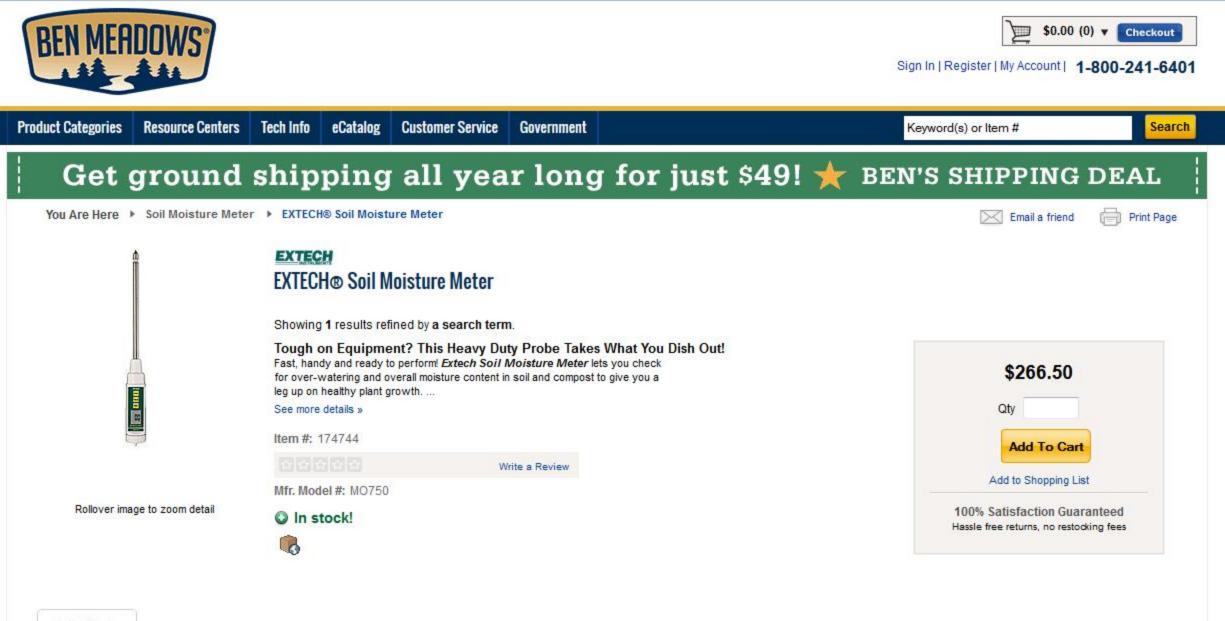



Figure 1: Solvent and Water Boiling-Point Curves vs. Pressure

Quality Assurance Processes:

 The moisture probe will be used to inspect and record the moisture content of each load of sand moved from the plant to the tailings pile. In this way, an inspection will be performed for every 60 tons of sand produced resulting in 166 such inspections being performed each day. Moisture is not to exceed 10%. If moisture content exceeds 10% operations will be adjusted. Additional tailings sampling is further discuss in the Sample and Analysis Plan (SAP) in the Groundwater Discharge Permit Application, Appendix F. Actual moisture readings will be recorded as observed.

- 2. Hourly the sand will be inspected by operations personal. The observed quality of the sand recorded in the plant operating logs.
- 3. Gas detection equipment will collect solvent vapor concentration readings above the sand pile and archive those to a server for at least a year. Best available technology (BAT) will be used to detect solvent vapors in air. At time of writing, BAT is based on gas chromatography and can detect solvent vapors in air down to 50 ppm in air with a minimum sampling time of 5 minutes. Using the then current BAT, if a solvent is found in the air at the minimum detectable concentration, an alarm will sound and operators will intervene to reestablish proper sand drying practices. All plant alarms will be logged electronically.
- 4. A sand sampling and analysis program will be established prior to startup to provide a statistically relevant analysis of the sand quality and provide a record of the solvent deposited to the disposed sand. It is anticipated that upon startup the sand will be sampled daily and analyzed. Operating data will also be collected daily and recorded against the results of the analysis of each sample thereby establishing a correlation between sand quality and plant operating conditions. After a record of successful sand quality has been established showing sand is being produced with a residual solvent concentration of 25 ppm or less, the operating data collected to that point will be analyzed and a correlation will be established between good sand quality and operating conditions. These operating conditions if more stringent that those outlined herein will be adopted as the new operating envelope for the process. Following the completion of that work, the program will revert to a second tier of testing frequency. It is anticipated that at that point every guarter a series of samples will be taken from the sand pile and subjected to analysis for the presence of solvent by an independent laboratory. The sampling and analysis program will be designed to collect samples in a pattern and quantity in order to produce a statistically significant addition to the quality assurance program. The details of this program will be documented and submitted to the department for approval prior to startup.

DETAILS

EXTECH® Soil Moisture Meter

Tough on Equipment? This Heavy Duty Probe Takes What You Dish Out!

Fast, handy and ready to perform! Extech Soil Moisture Meter lets you check for over-watering and overall moisture content in soil and compost to give you a leg up on healthy plant growth. Functions with three simple buttons: Power, Hold and Record. Hold freezes reading on display so you can see what you get if you need to measure in a place where you can't see the unit in use. Record allows you to save min./max. moisture readings. Water-resistant housing. Range: 0 to 50%. Resolution: 0.1%. Accuracy: ±(5% + 5 digits) full scale. Includes 4AAA batteries and sensor cap. Measures 14.7"L overall.

Need Help / More Info?

Email us or call a Product Pro™ at 1-800-241-6401.

This item appears on page 240 of the Ben Meadows Company (JB5) catalog. View in eCatalog.

PLGC3 NATURAL GAS CHROMATOGRAPH

Single, Compact Unit

FEATURES

Rugged Thermistor Based Detector.

The PLGC3 thermal conductivity detector (TCD) is less susceptible to fouling as compared to micro-machined technology. The TCD will not burn out on loss of carrier gas and it is able to withstand corrosive compounds such as H_2S .

Current Stream	St	ream 1	TCD Re	ading	-3.3	71 mV	Run
2.3-						Time	196 s
1.5-	I ^a						
1.0-							
0.5-							
-0.0				1.1			
	3.5 3.0 Mi		2.0 1.5	1.0 0.5	Ó	Uptime:	0d 01:05:53
TCD Excitation 25	.00 mA	Zero Ba	se Line	-40.97 m	/		
TCD Gain	10	Oven	Temp.	70.00 °(Control	Manual

High Resolution Display.

A high resolution 640 x 480 VGA color display provides operator with at a glance status and results. Items such as chromatograms, analysis results, previous calibration information, and alarm statuses can be viewed. Menu access is done via an intrinsically safe Keypad.

Operator Interface.

The Windows based software provides a powerful tool for operation, diagnostics and data handling. The operator can view and save chromatograms and analysis results, review or modify analysis settings, set up networking, generate reports, as well as several other parameters.

	Note Image: Control of the second contrel of the second contrel of the second contrel of the	S TangOdo Pesse Au							
			Intelligities PagePall	al fun fin					
					 -				
								1 TT	
Nada- Nada- Marta- Marta- Marta- Marta- Marta- Marta- Marta- Marta-									
Warr- Image: Comparison of the comparison of									
								~	
Mand- Image: Comparison of the comparison of		10.8eV-						\smile	
		646.60 mV							
		05.00							
All Services		145.10 17							
348av		45.00-11-							
348av									
30.847-	Norm								
	11.50 V- 11.50 J								
	11847-								
							1		
	< 2047-						1	1	
			A			III V	 1	1	
					di la	10	 de .	101 101	100

Analyzer Networking and Data Communications.

alt

The PLGC3 will support Ethernet Modbus TCP/IP as well as up to 8 additional serial ports. A standard industry compliant modbus list may be selected or customized modbus lists may also be easily generated. Multiple Modbus lists can be created and acccessed via Scada. The TCP port can be operated as either master or slave.

Data Archiving.

The PLGC3 has expandable memory capability up to 32 GB for the storage of individual analysis, hourly averages, daily averages and chromatograms. C alibration/validation chromatograms may also be stored for later viewing. A complete audit trail is also incorporated.

WW.GALVANIC.COM

Airless Heat Sink Oven.

An airless heat sink oven maintains a constant temperature of columns, valves and TCD for reliable and accurate results.

Durable Valves.

The chromatograph uses industry-leading valves. Tough and long lasting, the valves are rated for up to 1 million injections. Simple mechanical design makes it easy and inexpensive to service.

Micro-packed Columns.

Columns are manufactured by Galvanic to ensure quality and consistency. Consistent and reproducible product ensures reliable results over the lifetime of the chromatograph.

								Indysis Results								
Base Line (eV)	Cal 1 Ref 1	Component Name	Dry Analysis	Saturated Analysis	Dry Analysis	Saturated	Dry Anolysis	Saturated Analysis	Dry Analysis	Saturated Applysis	Dry Analysis	Saturated	Dry Analysis	Soturated Applysis	Dry Analysis	
1.1	Steam 1	Analysis Tane	21/05/2013 3:55 PM	21/05/2013 3:55 PM	21/05/2013 3:50 PM	21.05/2013 3.50 PM	21/05/2013 3:45 PM	21/05/2013 3:46 PM	21/05/2013 3.41 PM	21/05/2013 3.41 PM	21/05/2013 3:36 PM	21/05/2013 3:36 PM	21/05/2013 3:31 PM	21/05/2013 3:31 PM	21/05/2013 3:27 Ps	м
Excitation (eA)	Concease 1	05+	0.0298	0.0293	0.0000	0.0295	0.0299	0.0294	0.0002	0.0296	0.0299	0.0294	0.0298	0.0293	0.0301	
Distation (MA)		Propane	0.9996	0.9812	0.9996	0.5822	0.9990	0.9816	0.9987	0.5613	0.9905	0.9811	0.9993	0.5019	0.9975	7
		iso-Butane	0.2999	0.2547	0.3001	0.2948	0.2997	0.2945	0.2999	0.2546	0.3004	0.2951	0.2996	0.2944	0.3004	
Gain:		o-Butane	0.3010	0.2950	0.3007	0.2954	0.2904	0.2932	0.2906	0.2934	0.2995	0.2943	0.2996	0.2944	0.3003	
		iso-Pertane	0.0990	0.0901	0.0968	0.0951	0.1012	0.0995	0.0998	0 0981	0.1025	0.1007	0.9321	0.1003	0.1025	- 0
		n-Pertane	0.1006	0.0968	0.1000	0.0982	0.0982	0.0965	0.0995	0.0979	0.0985	0.0968	0.0987	0.0970	0.1007	-
Reading (mV):		Nitrogen	2,4976	2,4541	2,4992	2,4557	2,5006	2.4570	2,4997	2,4562	2.4981	2.4546	2,4967	2.4532	2,5040	
5.5		Methane	90.1714	88.6020	90.1697	88.6004	90.1713	88.6079	90 1732	88.6038	90.1690	88.5958	90.1728	88.6034	90.1654	1
Temperature		002	0.5007	0.4920	0.4557	0.4510	0.4900	0.4901	0.4395	0.4908	0.5002	0.4515	0.5001	0.4914	0.4991	
001		Dhane	5.0007	4.9137	5.0044	4.9173	5.0020	4.9157	5.0009	4.9130	5.0004	4.9163	5.0014	4.5143	4.9999	
		Water Vapor	0.000.0	0.0174	0.0000	0.0176	0.0000	0.0174	0.0000	0.0174	0.0000	0.0174	0.0000	0.0174	0.0000	
le Tane (sec.):																
1.0		Normalized Total	100.0000		100.0000		100.0000		100.0000		100.0000		100.0000		100.0000	
ent Stream:		Un-Normalized Total	99.9726		99 3734		99.8452		99.3868		99.5427		99.7695		100.0755	т
ream 1																
Ivaer Time:		Gross Heating Value(Ideal Gas)	1055.96	1037.58	1055.90	1007.52	1255.09	1007.51	1055.89	1237.51	1055.90	1037.60	1055.97	1037.50	1055.90	1
01:26 PM		Net Heating Value(Ideal Gas)	\$53.23	\$36.64	953.17	906.59	\$53.17	336.50	953.17	906.50	953.25	335.66	953.24	\$36.65	953.26	2
J1:20 PM		Specific Gravity(Ideal Gas)	0.6178	0.6179	0.6178	0.6179	0.6178	0.6179	0.6178	0.6179	0.6178	0.6179	0.6178	0.6179	0.6179	0
		Gross Heating Value(Real Gas)	1058.44	1040.39	1058.38	1040.33	1058.37	1040.32	1058-37	1040.32	1058.45	1040.41	1058.45	1040.40	1058.47	
		Net Heating Value(Real Gas)	955.48	\$39.18	955.42	909.12	955.41	\$39.11	955.41	909.11	955.49	939.20	955.48	\$09.18	955.50	9
		Specific Gravity(Real Gas)	0.6150	0.6133	0.6190	0.6153	0.6150	0.6193	0.6190	0 \$153	0.6150	0.6193	0.6190	0.6153	0.6191	0
		Wobbe Index	1345.31	1322.00	1345.20	1321.99	1345.27	1321.50	1345.27	1321.98	1345.33	1322.04	1345.34	1322.05	1345.20	1
		Compressibility	0.9977	0.9973	0.9977	0.9973	0.9977	0.9973	0.9977	0.9973	0.9977	0.9973	0.9977	0.9973	0.9977	0
		GPM(corrected for concreasibility)	17.535	17.335	17.535	17.205	17.534	17.326	17.534	17.335	17.535	17.335	17.535	17.335	17.535	1

Reporting.

A report generating feature allows users to produce printable reports of standard measured and calculated values based on GPA or ISO standards. These reports can also be customized to included location, technician name and comments.

Auto Calibration and Validation.

The PLGC3 supports auto calibration as well as validation. The validation feature allows the user to analyze the calibration standard without adjusting response factors or retention times. The PLGC3 will support two calibration standards for enhanced measurement of streams with widely varying hydrocarbon concentrations.

BENEFITS

APPLICATIONS

Transmission / Custody Transfer

- > Custody transfer stations
- > Metering stations

Distribution

- City gate measurement
- > Large industrial / commercial consumers

Gas Processing

- > Inlet Gas
- > Sales / Outlet Gas

Upstream / Field Gathering

> Sour Gas Pipeline Blending

NGL, GTL and LNG Plants

- > De-ethernizer
- > De-propenizer unit
- > De-butzanizer unit
- > Liquids / condensate unit

Bio-Gas Plants, Land-Fill Gas Recovery Units, Power Plants

- > Power Generation
- > Gas Turbine Control

Amine Units

> Acid Gas

PLGC3 SPECIFICATIONS

Analysis Configurations	C6+: Methane, Ethane, Propane, iso-Butane, n-Butane, iso-Pentane, n-Pentane, Hexanes Plus, Nitrogen, Carbon Dioxide	Modbus Protocols	Modicon 16 Modicon 32 (with floating point) Enron/Daniel
	C6+ plus Oxygen and Carbon Monoxide: Methane, Ethane, Propane, iso-Butane, n-Butane. iso-Pentane. n-Pentane. Hexanes	Outputs	4 - Field Replaceable Form C Relays (SPDT 8A 250 VAC)
	Plus, Oxygen, Nitrogen, Carbon Dioxide, Carbon Monoxide		4 - 4-20 mA (User selectable, loop powered or self powered with 3 way isolation)
	C7+: Methane, Ethane, Propane, iso-Butane,		1 – PID controller with PWM control 3A/280VAC or 60VDC max.
	n-Butane, iso-Pentane, n-Pentane, Hexanes, Heptanes Plus, Nitrogen, Carbon Dioxide	Inputs	3 - Universal Analog Inputs with programmable gain and excitation
	C7+ plus Oxygen and Carbon Monoxide: Methane, Ethane, Propane, iso-Butane,		(RTD, pressure transducer, 4-20mA etc.) 2 – Isolated Digital Inputs WET 12-24VDC
	n-Butane, iso-Pentane, n-Pentane, Hexanes, Heptanes Plus, Oxygen, Nitrogen, Carbon Dioxide, Carbon Monoxide		2 – Digital Inputs DRY
	neo-Pentane: Can be added to any of the above configurations	Local Display	Industrial VGA 640 x 480, 5.7", color TFT display with intrinsically safe keypad (20 keys), and 8 LED status indicators.
	H_2S : Can be added to any of the above configurations	Data Storage	2 GB for analysis results, hourly averages, daily averages, chromatograms
Measurement Range	800 -1500 BTU/scf (29.8 MJ/m3 to 55.9 MJ/m3)	Oven	Airless heat sink oven
Calculations	GPA2172-09 (or newest) and GPA2145-09 (or newest)	Valves	6 port Valco DV22 10 port Valco DV22
	or ISO6976	Detector	Thermistor based Thermal Conductivity Detector (TCD), with software programmable excitation, gain/attenuatio and zero offset.
Analysis Time	4 to 5 minutes		
Repeatability	+/- 0.25 BTU/scf per 1000 BTU/scf (+/- 0.0093 MJ/m3 per 37.3 MJ/m3)	Streams	Up to 8 plus calibration
	over temperature range of 0 oF to 130 oF (-18 oC to +55 oC)	Certifications	CSA Class 1, Division 1, Groups BCD CSA Class 1, Division 2, Groups BCD
Environment	0 oF to 130 oF (-18 oC to +55 oC) 0 – 95 % relative humidity non-condensing	Dimensions	Class 1 Division 1: 33" (838 mm) H x 27" (686 mm) W x 11" (279 mm) D
nput Voltage	24 VDC Standard 90 – 240 VAC 50/60 Hz Optional		Class 1 Division 2: 33" (838 mm) H x 27" (686 mm) W x 11" (279 mm) D
Power Consumption	100 watts startup, 50 watts running	Weight	Class 1 Division 1: 120 lbs (54.4 kg) Class 1 Division 2: 85 lbs (38.6 kg)
Communication	3 - Serial Ports (2 RS 232, 1 RS 485), Modbus RTU or Modbus ASCII compliant	Carrier Gas	UHP Helium, 80 to 100 psig (5.5 barg to 6.9 barg), 0.042 scfh (20 cc/min)
	(up to 5 additional serial ports optional) 1 – Ethernet port, Modbus TCP Compliant		or UHP Hydrogen, 80 to 100 psig (5.5 barg
	1 – Ethernet port for local GUI (Direct Connect)		to 6.9 barg), 0.042 scfh (20 cc/min)

ISO 9001:2000

0020422:800260

7000 Fisher Road SE, Calgary, Alberta T2H 0W3 Tel: 403-252-8470 Fax: 403-255-6287 Email: info@galvanic.com

www.galvanic.com

APPENDIX E

SOLVENT MSDS SHEET

MATERIAL SAFETY DATA SHEET

SECTION I: - PRODUCTION INFORMATION

Product Name/Identifier:	UOR-1776
Product Number:	TS-101
Product Use:	Hydrocarbon Extraction Solvent
SUPPLIER:	UNIVERSAL OIL RECOVERY LLC 26027 S. Nottingham Dr. Sun Lakes, Arizona, 85248
EMERGENCY PHONE NUMBER:	(480) 239-7700
DATE PREPARED:	February 02, 2012, Revised Sept 22 2014

Read this MSDS prior to use or disposal of the product. Share this information with employees, customers, and other users of this product.

SECTION II: - CHEMICAL COMPOSITION

This product is a blend of various chemical components that are based upon and composed of non-carcinogenic chemical compounds.

None of these components or compounds are identified on the Ca1EPA List of Lists, Dated November 1991, or in the National Toxicology Program Annual Report on Carcinogens, Twelfth Edition 2011.

This chemical compound and its various applications are considered Trade Secrets and may be the subject of patents or patent applications. Upon the granting of the patent(s) related to the compound, the identity of the components may be released. Based upon the foregoing, at this time the identity of the components are considered to be protected as proprietary under the Uniform Trade Secrets Act.

Use maximum protection when handling the product, as detailed below.

SECTION III: - HAZARDS IDENTIFICATION

UOR-1776 is non-flammable and does not have a flash point, but its vapors can form a mixture that could be flammable at >4.0%-9.0% volume concentration with air.

INHALATION	May irritate nose, throat, and respiratory systems, with symptoms of
	headache, nausea, dizziness, coughing or shortness of breath. Prolonged
	overexposure may adversely affect the liver, kidney and respiratory,
	reproductive and central nervous systems.
EYES	May cause irritation with symptoms of redness, tearing, stinging
SKIN	Through cuts, punctures and abrasions; may cause irritation with
	symptoms of rash, burning, itching or swelling
INGESTION	Through accidental drinking or swallowing; may cause irritation of mouth
	and intestinal tract, with symptoms of nausea, vomiting or headaches.
	Aspiration into the lungs after ingestion could result in lung damage.

SECTION IV: - FIRST AID MEASURES

INHALATION	Immediately remove person to fresh air. If breathing stops, provide CPR	
	rescue breathing. If breathing is difficult, administer oxygen by qualified	
	personnel. Obtain medical attention immediately.	
EYES	For direct eye contact, flush eyes with large quantities of running water	
	for at least 15 minutes and obtain medical attention:	
	1) for external areas, treat as a burn due to the fact that the epidermal layer	
	may blister from rapid de-oiling;	
	2) for direct eye contact, treat as an eye abrasion.	
SKIN	Remove contaminated clothing and wash skin with mild soap and running	
	water. If irritation persists, obtain medical attention. Wash clothing before	
	re-use. For dry skin, apply hand lotion. Drying of exposed skin can be	
	mitigated with a high oil / high lanolin / vitamin E lotion treatment.	
INGESTION	If swallowed, DO NOT induce vomiting. Obtain medical attention	

SECTION V: - FIRE-FIGHTING MEASURES

FLASH POINT:	None, per ASTM Methods
FLAMMABLE LIMITS:	4.0%-9.0% by volume in air
METHOD USED:	OSHA 29 CFR 1910.106 criteria
AUTO-IGNITION TEMPERATURE	>480° C
EXTINGUISHING MEDIA:	Water may not be effective
	Use carbon dioxide, dry chemical powder, alcohol
	foam or polymer foam
SPECIAL FIRE FIGHTING	Wear NIOSH/MSHA-approved self-contained
PROCEDURES	breathing apparatus and protective fire-retardant
	clothing to prevent eye and skin contact. Water
	may be used to cool containers and equipment
	exposed to heat or flame. Dike area to prevent
	runoff.
UNUSUAL FIRE AND	Vapor may form a flammable mixture in a
EXPLOSION HAZARDS:	concentration of 4.0%-9.0% by volume in air.
	Carbon monoxide, carbon dioxide, and other
	oxides may be generated as products of
	combustion. Containers exposed to intense heat or
	flame may explode due to increased internal
	pressures.

SECTION VI: - ACCIDENTAL RELEASE MEASURES

Cordon off spill site and warn all people in vicinity. For large spills, evacuate and ventilate the effected site. If the product has contaminated the ground water, inform the appropriate authority. Wear self-contained breathing apparatus and recommended personal protective equipment. Contain spillage or leakage with dams or absorbent material to prevent migration into sewer, waterway or confined spaces. Dam and absorb spillages with earth, sand, or other non-combustible absorbent material (sawdust or vermiculite) and sweep into sealable containers for disposal in accordance with local, state, and federal disposal regulations.

SECTION VII: - HANDLING AND STORAGE

HANDLING	Avoid inhalation, skin and eye contact by wearing protective clothing, including
	safety glasses and non-rubber gloves. Use full face plastic shield to avoid injury
	from accidental splashing. Always wash hands and face thoroughly before
	eating, drinking, and smoking. Do not eat in the vicinity of operations.
STORAGE	Store in dry, ventilated, cool area in clearly labeled closed containers away from
	ignition sources and other incompatible chemicals

SECTION VIII: - EXPOSURE CONTROLS AND PERSONAL PROTECTION

EXPOSURE CONTROLS	Do not use in confined spaces without use of ambient or mechanical exhaust ventilation.	
EXPOSURE LIMITS	OSHA Permissible Exposure Limit not established. A workplace exposure guideline of 99 ppm 8 hour time weighted average (TWA) is recommended based on information for compounds contained in the product.	
EYE PROTECTION	Use safety goggles or full face shield.	
RESPIRATORY PROTECTION	Use NIOSH-approved vapor respirators with carbon filters or self-contained breathing apparatus with full face shield, due to possible exposure to other reactive agents, if ventilation is insufficient or depending on concentration of product in air.	
GLOVES AND CLOTHING	Wear cover-all uniforms and use non-rubber gloves that are resistant to the product (Teflon or polyethylene gloves)	
OTHER PROTECTIONS	On-site safety-shower and eye-wash station	

SECTION IX: - PHYSICAL AND CHEMICAL PROPERTIES

CHEMICAL FAMILY:	Trade-Secret Chemical Blend
APPEARANCE:	Clear, colorless or yellow liquid; mild odor
BOILING POINT (Degrees F):	<175° F
VAPOR PRESSURE: (mm Hg):	~110-114 mm fig at 20° C
VAPOR DENSITY (Air=1):	~4.2-44
SOLUBILITY IN WATER:	~0.22-0.27 g/100ml at 20° C
SPECIFIC GRAVITY (H ₂ 0 = 1)	1.30-1.33 at 20° C
MELTING/FREEZING POINT:	Less than at -74° F
FLASH POINT:	None
AUTO IGNITION TEMPERATURE:	>450° C

SECTION X: - REACTIVITY AND STABILITY DATA

STABILITY: CONDITIONS TO AVOID: INCOMPATIBILITY: Stable under recommended storage and handling Avoid all sources of ignition, oxidation and sunlight May react with strong oxidizing agents, alkalis, bases, reactive metals and natural rubber. Carbon monoxide, carbon dioxide

HAZARDOUS DECOMPOSITION OR BY-PRODUCTS:

SECTION XI: - TOXICOLOGICAL INFORMATION

Exposure may cause eye, nose and respiratory irritation.

LD50 Oral – Rat	>4000 mg/kg
LC50 Inhalation – Rat	>235,000 mg per m ³ /one-half hour
Ames Test	Negative (no harmful results)
Eyes	Irritates
Skin	Irritates
Ingestion	Irritates mucous membranes
Inhalation	Irritates respiratory system
NTP / IARC / OSHA Listing	None (not on list of carcinogens)
Pre-existing Disorders	Pre-existing skin, lung, liver and kidney disorders
	may be aggravated by exposure

Component data showed no known teratogen, mutagen or other reproductive effects or genetic impairment.

SECTION XII: - ECOLOGICAL INFORMATION

The product is heavier than, and is immiscible in water. It should not be used or disposed of in any manner where it can enter or be mixed with ground or surface water.

SECTION XIII: - WASTE DISPOSAL

The product is heavier than, and is immiscible in water. It should not be used or disposed of in any manner where it can enter or be mixed with ground or surface water. All materials containing the product as well as the product itself, should be sealed in containers for disposal in accordance with all applicable local, state and federal regulations.

SECTION XIV - TRANSPORTATION INFORMATION

Shipping Information:

Not regulated as dangerous goods according to TDG Regulations or DOT Hazard Class. Not regulated as hazardous material according to 49 CFR Hazardous Materials Regulations.

Not regulated as dangerous goods according to ICAO Technical Instructions or IATA Regulations.

SECTION XV – REGULATORY INFORMATION

See Section XIV. This product's components are listed in and comply with TSCA requirements.

SECTION XVI – OTHER INFORMATION

The information presented herein is based on data from the component chemical suppliers, which is considered to be accurate to the best knowledge of Universal Oil Recovery LLC, as of the date of this Material Safety Data Sheet. Universal Oil Recovery disclaims all expressed or implied warranties or representations of any kind, including but not limited to the completeness of the foregoing data and safety information or applicability of the product for a specific use. Universal Oil Recovery LLC assumes no responsibility or liability for any damage or injury resulting from reliance on this information or from the use or misuse of this product or from any failure to adhere to recommended practices detailed herein. The user is responsible for determining if the product is suitable for the user's intended use, and assumes all risk and liability for such use and for ultimate disposal of the product, in compliance with all applicable federal, state and local regulations.

END OF MSDS

Avg. Liq. Density [lbmole/ft3]	0.606532
Cost Based on Flow [Cost/s]	0
Cp/(Cp - R)	1.060829
Cp/Cv	1.425443
Cp/Cv (Ent. Method)	1.317154
Cv [Btu/lbmole-F]	24.29583
Cv (Ent. Method) [Btu/lbmole-F]	26.29331
Cv (Semi-Ideal) [Btu/lbmole-F]	32.64648
Heat Capacity [Btu/lbmole-F]	34.63233
Heat of Vap. [Btu/lbmole]	13046.29
Kinematic Viscosity [cSt]	0.365614
Liq. Mass Density (Std. Cond) [lb/ft3]	68.01687
Liq. Vol. Flow (Std. Cond) [barrel/day]	0.992885
Liq. Vol. Flow - Sum(Std. Cond) [barrel/day]	0.992885
Liquid Fraction	1
Mass Cv [Btu/lb-F]	0.218207
Mass Cv (Ent. Method) [Btu/lb-F]	0.236147
Mass Cv (Semi-Ideal) [Btu/Ib-F]	0.293207
Mass Density [lb/ft3]	67.96754
Mass Enthalpy [Btu/lb]	-566.892
Mass Entropy [Btu/lb-F]	0.194906
Mass Heat Capacity [Btu/lb-F]	0.311042
Mass Heat of Vap. [Btu/lb]	117.1722
Molar Density [lbmole/ft3]	0.610435
Molar Volume [ft3/lbmole]	1.638178
Molecular Weight	111.3429
Partial Pressure of CO2 [psia]	0
Partial Pressure of H2S [psia]	0
Phase Fraction [Act. Vol. Basis]	0
Phase Fraction [Mass Basis]	0
Phase Fraction [Molar Basis]	0
Phase Fraction [Vol. Basis]	0
Reid VP at 37.8 C [psia]	4.827108
Specific Heat [Btu/lbmole-F]	34.63233
Std. Gas Flow [MMSCFD]	1.29E-03
Std. Ideal Liq. Mass Density [lb/ft3]	67.53296
Surface Tension [dyne/cm]	25.48794
Thermal Conductivity [Btu/hr-ft-F]	6.63E-02
True VP at 37.8 C [psia]	4.827478
Viscosity [cP]	0.398057
Viscosity Index	-16.2888
Watson K	7.858378
Z Factor	3.97E-03

APPENDIX F

SEEP AND SPRING INVENTORY

AMERICAN SANDS ENERGY CORPORATION PROPOSED BRUIN POINT MINE

SEEP AND SPRING INVENTORY

February 2014

American Sands Energy Corporation

4760 South Highland Drive, Suite 341 Salt Lake City, Utah 84117 (403) 650-5384

Prepared by:

JBR Environmental Consultants, Inc. 8160 South Highland Drive Sandy, Utah 84093 (801) 943-4144

TABLE OF CONTENTS

Introduction	1
Inventory Boundary	1
Background	
Environmental Setting	
Inventory Methods	
Inventory Results	
Summary	14
References	15

TABLES

Table 1. General Water Chemistry and Nutrients	6
Table 2. Metals and Metalloids (mg/L)	7
Table 3. Upper Range Creek sampling results	
Table 4. Cliff seep sampling results	
Table 5. Data Summary	14

FIGURES

Figure 1 Seep and Spring Inventory Boundary	2
Figure 2 Inventory Results and Sampling Locations	10

APPENDICES

Appendix A	Water Quality Analytical Reports
Appendix B	Photographs

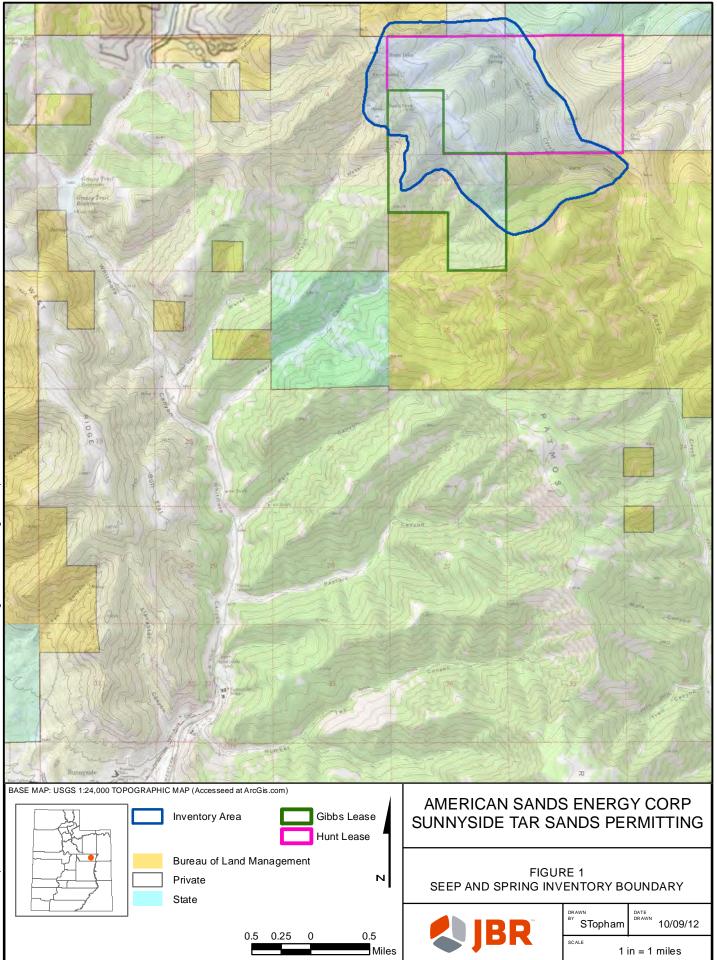
ACRONYMS AND ABBREVIATIONS

amsl	above mean sea level	cfs	cubic feet per second
GRR	Green River Resources	JBR	JBR Environmental
			Consultants
Ma	million years	NOI	Notice of Intent
UDOGM	Utah Division of Oil, Gas,		
	and Mining		

GREEN RIVER RESOURCES PROPOSED BRUIN POINT MINE

SEEP AND SPRING INVENTORY

Introduction


American Sands Energy Corporation (ASEC), a Utah corporation, is preparing a Notice of Intent (NOI) to commence large mining activities, to be submitted for review to the Utah Division of Oil, Gas, and Mining (UDOGM). ASEC proposes to develop an oil sands mine and an associated processing facility within a contiguous 1,760-acre lease area. ASEC plans to restrict their activities and development to private lands within the lease area. The limited amounts of water required for construction, mining, or processing operations would be purchased and trucked in for use at the site.

The ASEC lease area is located approximately six miles northeast of Sunnyside, Utah, in Carbon County, on Patmos Ridge directly east of Bruin Point (located at 39° 38' 38.87"N, 110° 20' 53.06"W). The property is located in the southwest portion of the Uinta Basin and consists of two adjacent parcels identified as the Hunt Lease and the Gibbs Lease. Both parcels are located in Township 14 South, Range 14 East, Salt Lake Base and Meridian. The Hunt Lease comprises all of Section 2 and the northwest, northeast and southeast quarter-sections of Section 3 (totaling approximately 1,120 acres). The Gibbs Lease consists of the southwest quarter-section of Section 10 (totaling approximately 640 acres; **Figure 1**). The combined area of the two parcels totals approximately 1,760 acres).

This report presents the results of the seep and spring inventory in the ASEC lease area, conducted in October 2012. Relevant data from an initial hydrologic survey and sampling event in May 2012 is also included.

Inventory Boundary

The area included in the seep and spring inventory was determined by observations made during an initial hydrologic survey by JBR hydrologists in May 2012, as well as current knowledge of the proposed project surface disturbances and the extent of proposed underground mining. The latter information was approximated through standard angle of draw measurements applied to ASEC's summer 2012 mine plan. A conservative assumption was made that regardless of cover depth and geologic conditions, all lands above the mined area and extending outside it to a 30° angle of draw (UDOGM's default as stipulated under Utah regulations R645-301-525) were included. This analysis extended the Inventory Area to non-ASEC property to the north, east, and west of the property. Further, a buffer was applied to the west, east, and south to accommodate natural borders, property boundaries, and other physical features (**Figure 1**).

This document is for reference purposes only and should not be used as a legal document. JBR makes no guarantees to the accuracy of the data contained herein or any loss resulting therefrom.

Background

The Sunnyside Tar Sands Area is located in central-east Utah, and was known from small commercial asphalt operations dating back to the 1890s and intermittent bitumen exploration programs by major oil and gas companies from the 1950s through 1980s.

ASEC and JBR Environmental Consultants, Inc. (JBR), met with UDOGM representatives in September of 2011 to kick off the project. During the meeting, ASEC presented its general mining strategy, and UDOGM and JBR discussed the requisite baseline data gathering. The UDOGM representatives referred to baseline requirements for underground coal mining permits in the vicinity of Sunnyside. In addition, intense scrutiny is expected for the Division of Water Quality (DWQ) permit, thus an inventory of seeps and springs within the Inventory Area was recommended. ASEC wishes to avoid any streams, wetlands, springs, or other waters of the U.S.

An initial hydrologic survey and water sampling event was conducted by two JBR hydrologists on May 30 and 31st 2012. The purpose of the sampling was to document flow conditions and water quality of the known major surface water occurrences in and near the lease areas. Other areas that were relatively easy to access were also observed for the presence or absence of surface water, in preparation for the seep and spring inventory.

Environmental Setting

General

The Inventory Area is located within the Book Cliffs and Roan Cliffs area in the Colorado Plateau Physiographic Province. The topography in the Inventory Area is mountainous, with nearly 2,000' of relief. Elevations range from approximately 8,200' above mean sea level (amsl) at the southern extreme of the property, to over 10,150' amsl at Bruin Point in the northwest. The area has an annual average temperature range from 15° F to 88° F, with local climate classified as sub-humid to semi-arid. Average annual precipitation includes 12.5" of rainfall, with September having the highest levels, and an additional 20" of snowfall occurring from November through March.

Geology

The Sunnyside Tar Sands are located along the crest of the Roan Cliffs near Bruin Point, which crests at an elevation of 10,131' amsl. The Roan Cliffs contain rocks of Paleocene and Eocene age (ca. 60-40 Ma). In the early stages of this time period a mountain range existed in central Utah while a sea was located in eastern Utah and Colorado. During a period of sea level regression the marine environment was replaced by a coastal plains fluvial environment. During subsequent orogenic events a large lake, Lake Uinta, formed in an intermontane basin. Sediment deposited in Lake Unita during the middle Eocene epoch (ca. 50-40 Ma) formed the sandstone and shale of the Green River Formation. The Green River Formation sandstones would later become the reservoir rocks for the bitumen of the Sunnyside Tar Sands.

The Green River Formation consists of three formal members subdivided on the basis of depositional environment: Parachute Creek Member (lake facies); Garden Gulch Member (shore facies); and Douglas Creek Member (delta facies). The Parachute Creek Member (lake facies) is dominated by gray shale and oil shale and contains limited volumes of bituminous sandstone. The member exists at the top of the Roan Cliffs and is up to 600' thick. The Garden Gulch Member (shore facies) is dominated by green shale and fossiliferous limestone containing ostracods, algal structures, and garpike fish scales and contains minor volumes of bituminous sandstone. The member (delta facies) is dominated by red shale, bituminous sandstone, non-bituminous sandstone, and minor fossiliferous limestone. The member (delta facies) is dominated by red shale, bituminous sandstone, non-bituminous sandstone, and minor fossiliferous limestone. The member is 1,500' to 2,000' thick.

Soils

Soils within the Inventory Area are comprised predominantly of the Senchert family, which is associated with natural grassland areas, and the Uintah-Toze families complex, which is associated with the naturally wooded areas of the Inventory Area (NRCS 2009). The Senchert family soils are found on plateaus and ridges and are generally 20 to 40 inches deep with parent material derived from colluvium and slope alluvium over residuum weathered from sandstone and shale. Soils are well-drained and organic matter is as high as eight percent. The soils are in the High Mountain Loam (Thurber

fescue) ecological site (R048AY515UT) (NRCS 2009). The Uinta-Toze families complex soils are generally 40 to 60 inches or deeper. They are found on mountain slopes of 35 to 70 percent. Parent material of both soil families is derived from colluviums derived from sandstone, shale and siltstone. Soils are well-drained and organic matter is as high as eight percent. Both soil families are in the High Mountain Loam (Engelmann spruce) ecological site (R048AY532UT) (NRCS 2009).

Vegetation

Vegetation in the Inventory Area varies with elevation, aspect, and soil characteristics. The pleateau is dominated by mixed conifer forests including Engelmann spruce (*Picea engelmanii*) and subalpine fir (*Abies lasiocarpa*), open grassland-shrublands, and occasional aspen (*Populus tremuloides*) stands. Some previously logged areas are currently dominated by grasses. Small, localized corridors of riparian-type vegetation are associated with drainages in the Inventory Area; wetland grasses and shrubs can be found in association with springs and other seeps/wallows.

Water

The headwaters of Range Creek, which flows near the eastern boundary of the Inventory Area, and eventually drains to the Green River (Uinta Watershed), are located within the Inventory Area boundary. Range Creek is not within the area proposed for disturbance.

The south and west side of the lease area drops steeply off a plateau into the headwaters of Water Canyon, which drains to Whitmore Canyon (i.e., Grassy Trail Creek; Price Watershed; **Figure 1**) above the town of Sunnyside. Grassy Trail Creek eventually drains to the Price River before joining the Green River.

Water Quality

Tables 1 and **2** show water quality data collected in and around the lease areas during the initial hydrologic survey (May 2012). Site locations correspond with sample locations described in this report (see Inventory Results section). Complete lab results are contained in **Appendix A**.

General Water Chemistry (mg/L except where noted)									
	Range Cree Lower Gree Desolation (Watershed	n –	Lower Grass and Tributar Price Waters						
	North Spring	Range Creek (Flume)	Cliff Seep (#1)	Water Canyon					
Acidity	<15.0	<15.0	<15.0	<15.0					
Alkalinity as CaCO ₃	181	221	254	348					
Bicarbonate as CaCO ₃	181	221	240	348					
Carbonate as CaCO ₃	<20.0	<20.0	<20.0	<40.0					
Chloride	0.471	0.676	2.05	3.85					
Specific conductance (umhos/cm)	338	389	504	860					
Hardness as CaCO ₃	166	192	218	395					
pH @ 25° C (std units)	7.68	8.21	8.28	8.14					
Sulfate	8.34	12.1	35.0	160					
Total Dissolved Solids	176	192	276	520					
Total Suspended Solids	<3.00	<3.00	<3.00	<3.00					
Nutrients (mg/L)	•	-		-					
Ammonia as N	<0.0500	<0.0500	<0.0500	<0.0500					
Nitrate as N	0.396	0.206	<0.0100	0.0458					
Nitrite as N	<0.0100	<0.0100	<0.0100	<0.0100					
Total Orthophosphate as P	<0.0500	<0.0500	<0.0500	<0.0500					

 Table 1.
 General Water Chemistry and Nutrients

State-designated beneficial uses for Range Creek and its tributaries (Lower Green – Desolation Canyon Watershed, HUC 14060005) are 1C (domestic purposes), 2B (secondary contact recreation), 3A (cold water game fish and aquatic life), and 4 (agriculture). State-designated beneficial uses for Lower Grassy Trail Creek and its tributaries (including Water Canyon; Price Watershed, HUC 14060007) are 2B (secondary contact recreation), 3C (non-game fish and other aquatic life), and 4 (agriculture). The latest 305(d) report to Congress (UDWQ 2006) indicates that there is insufficient data to determine whether the stream beneficial uses are being met for either Lower Grassy Trail Creek or Range Creek. The 2010 integrated report indicated that Upper Range Creek had not been assessed (UDWQ 2010).

Grassy Trail Creek was listed as impaired for pH in the 2002 and 2008 303(d) List. However, the 2010 integrated report was amended to state that a review of the data showed no pH impairment (UDWQ 2010).

	Range Cree	ek			Lower Grassy Trail Creek and Tributaries					
	Lower Gree	n – Desolatio	n Canyon Wa	atershed	Price Watershed					
	HUC 14060	HUC 14060005			HUC 14060	HUC 14060007				
	North Sprin	ng	Range Cree	ek (Flume)	Cliff Seep (#1)		Water Canyon			
	Total	Dissolved	Total	Dissolved	Total	Dissolved	Total	Dissolved		
Aluminum	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	0.420	<0.100		
Arsenic	0.00241	0.00284	0.00297	0.00305	0.000796	0.000855	0.00135	0.00106		
Boron	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500		
Cadmium	<0.000180	<0.000180	<0.000180	<0.000180	<0.000180	<0.000180	<0.000180	<0.000180		
Calcium		40.8		44.7		46.3		62.4		
Copper	<0.00800	<0.00160	<0.00800	<0.00160	0.00104	<0.00160	0.00173	0.00242		
Iron	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	0.424	<0.100		
Lead	<0.000400	<0.000400	< 0.000400	<0.000400	<0.000400	<0.000400	0.000420	< 0.000400		
Magnesium		15.6		19.5		24.8		58.0		
Manganese	<0.00120	<0.00120	0.00149	0.00127	<0.00120	0.00165	0.0300	0.0154		
Molybdenum	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200		
Potassium		<1.00		<1.00		<1.00		1.45		
Selenium	<0.000800	<0.000800	<0.000800	<0.00800	<0.00800	<0.000800	0.00139	<0.008000		
Sodium		5.33		6.34		22.1		45.2		
Zinc	0.00585	<0.00500	<0.00500	<0.00500	<0.00500	<0.00500	<0.00500	<0.00500		

 Table 2.
 Metals and Metalloids (mg/L)

Inventory Methods

Initial data gathering included: water rights research; aerial photograph review; literature research; general site reconnaissance; and discussions with adjacent property owners and others familiar with the area. The literature review included geologic reports, mine records, and USGS and state water resources reports. Three water rights for stock-watering use on point-to-point reaches of Range Creek were located within the Inventory Area boundary.

An initial hydrologic survey and surface water sampling was conducted by two JBR hydrologists on May 30 and 31st, 2012. The purpose of the sampling was to document flow conditions and water quality of the known major surface water occurrences in and near the lease areas. Other areas that were relatively easy to access were also observed for the presence or absence of surface water, in preparation for the seep and spring inventory. During the May survey, four water samples (North Spring, Range Creek (2 locations), and a cliff seep) were collected from the Bruin Point area, and flow velocity measurements were made where possible using a March-McBirney Flo-Mate portable velocity meter with discharge reported as cubic feet per second (cfs).

The seep and spring inventory was conducted by four JBR aquatic biologists or hydrologists on October 1-3rd, 2012. All data collected in 2012 represent the flow and water quality characteristics after a lower-than-normal winter snow pack.

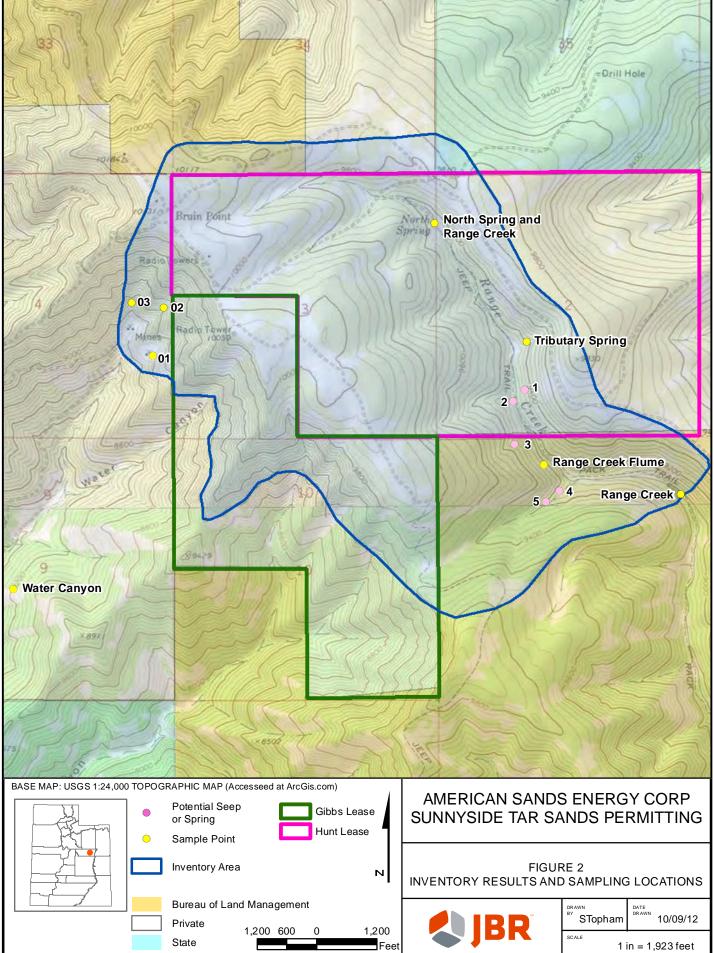
The rugged Inventory Area was covered primarily on foot. Where appropriate, binocular scoping was used to scan cliff faces and other inaccessible terrain. Drainage bottoms and major side channels, including headwater areas, were covered on foot because those areas were thought to be the most likely locations for spring occurrences and because of the expected localized nature of those water sources.

Each member of an inventory team carried a topographic map, gps unit, binoculars, camera, flagging, field notebook, ph meter, conductivity meter, water thermometer, and flow measuring equipment (stop watch, container, piping, and shovel). Where no springs or seeps were identified within a given area of coverage, field notes reflected the lack. Sites were recorded where, based upon vegetation indicators, a seasonal spring may be present, even if currently dry. Where springs were identified, the site was flagged and photographed, and the following was recorded:

- Site name or assigned site number;
- Location (using gps where sky coverage allows, verified by map reading, or map reading alone where a gps reading was not possible);
- Photographs of the site;
- Geologic, topographic, landscape features;
- Vegetation type and extent;
- Type of development if the site had been developed as part of a water right;
- Usage (wildlife or livestock sign);

- Field parameters, including pH, conductivity, water temperature, and flow rate; and
- Where flow rate could not be measured, it was estimated and noted as such.

Water temperature, pH, and conductivity were measured in the field using equipment properly maintained and calibrated. These field parameters were measured as near to the source as possible.


Flow rate was measured at all accessible spring sites using equipment and methods appropriate for the amount of flow, using the standard velocity-area method outlined in Stream Channel Reference Sites: An Illustrated Guide to Field Technique (Harrelson et al. 1994). Springs and streams were measured volumetrically with piping, a known-volume container, and a stopwatch. If flow rate was so reduced that it was not possible to measure (i.e. at a seasonal spring where saturated areas are present but no flow is visible), or if no flow was occurring (i.e. at an ephemeral stream site), notes were made describing the site condition (saturation, ponding, dry but recent flows apparent, etc.)

Inventory Results

Water features in the Inventory Area were confined to Water Canyon and tributaries on the west side of the plateau and Range Creek on the east side. The plateau area in the north and central portion of the Inventory Area, including the Range Creek headwaters, as well as the drainages southeast of Water Canyon (southeast portion of the Inventory Area) were dry.

Flow measurements and water samples were taken in five areas within Range Creek. These areas are two springs that contribute to Range Creek flows, and three points along the Range Creek mainstem. Flow measurements were also taken in two areas within Water Canyon and its tributaries: a cluster of cliff seeps that drain to an unnamed tributary to Water Canyon, and one point along the Water Canyon mainstem (flowing only outside the Inventory Area).

Sample areas are described in the following sections. Figure 2 shows sample locations.

This document is for reference purposes only and should not be used as a legal document. JBR makes no guarantees to the accuracy of the data contained herein or any loss resulting therefrom.

Range Creek

The upper headwater area of Range Creek (north end of the Inventory Area) consisted of open areas that were heavily grazed, and forested areas with sloping side hills (no steep drainages; **Photo 1, Appendix B**). Two springs (North Spring and Tributary Spring) that contribute to Range Creek were identified in the Inventory Area further downstream. Several potential seep or spring areas were also identified downstream of these springs.

Sample results for the two springs and three locations on the Range Creek mainstem are described below, in addition to a summary of potential seep and spring areas that were encountered.

Potential seeps and springs (October)

Three potential seeps and two potential springs were found in the Range Creek drainage area during the inventory (October). Locations are numbered on **Figure 2** ("01" to "05" starting upstream), and shown in **Photos 2-6** in **Appendix B** (potential seeps in **Photos 2-4**; potential springs in **Photos 5 and 6**). All five areas contained some wetland grasses that indicated saturated conditions during the growing season. Some contained evidence of cattle or big game use when wet. The three potential seeps were located on side hills near the Range Creek canyon bottom, and did not have associated drainage channels. Both potential springs were marked by depression/slump areas that resembled spring heads, and contained channels (dry in October) downslope to the Range Creek mainstem.

North Spring (May)

North Spring is located in the north-central portion of the Hunt Lease (**Figure 2**). This spring was serving as the headwaters of Range Creek In May, although the Range Creek channel initiates further upstream. North Spring issues adjacent to Range Creek and is fenced, piped, and flows are directed to a small, dammed stock pond (**Photo 7**, **Appendix B**), before continuing to Range Creek through a culvert. The general condition of North Spring was disturbed and overgrazed with an entrenched channel. Vegetation consisted of (grazed) riparian grasses. In the adjacent Range Creek channel, seepage was also emanating from the channel bottom in May. North Spring was sampled from where it issues inside the fenced area (**Photo 8, Appendix B**).

Flow was calculated at 0.045 cfs. Conductivity was measured at 340 μ S, pH at 8.10 std. units, and water temperature at 7° C. There is no water right record on file with the State Engineers Office that appears to be associated with this location.

Tributary Spring (October)

Tributary Spring is located about 0.5-mile downstream from North Spring (**Figure 2**). Tributary Spring is in a steep, mostly forested drainage upslope (east) from the Range

Creek jeep trail (**Photo 9, Appendix B**). In October, water was observed coming out of the rock in several places about halfway up the drainage (**Photo 10, Appendix B**). This spring appeared to be heavily used by deer.

Flow was calculated at 0.010 cfs. Conductivity was measured at 400 μ S, pH at 6.71 std. units, and water temperature at 6° C. There is no water right record on file with the State Engineers Office that appears to be associated with this location.

<u>Upper Range Creek – Mainstem (May and October)</u>

Flows in upper Range Creek from North Spring downstream to the Inventory Area boundary fluctuate with influent and effluent tributary reaches from the east. Many reaches of the Range Creek mainstem are dry. In May, flows were strongest for approximately 1,000 feet below the confluence with Tributary Spring (**Photo 11**, **Appendix B**). Along this flowing reach, many pools, runs, and drops were observed over an entrenched channel. In October, flows were present for approximately 100 feet at the downstream end of this previously flowing reach. Water was flowing in one other location along Range Creek in October, at about 1,000 feet (upstream) from the Inventory Area boundary, for approximately 200 feet.

Range Creek was sampled in three locations between May and October: 1) below the confluence from North Spring (May), 2) near the southern lease boundary where a nonfunctional flume is present (May; **Photos 12 and 13, Appendix B**), and 3) at the southeastern boundary of the Inventory Area (October; **Photo 14, Appendix B**). Sampling results are summarized in **Table 3**.

Range Creek Sample Location	Flow (cfs)	Cond (µS)	рН	Temp (°C)
North Spring (May)	0.094	350	7.86	9
Flume (May)	0.092	390	8.37	13
Inventory Area boundary (October)	0.017	470	7.25	7

Table 3.Upper Range Creek sampling results

There are three water rights on file with the State Engineers Office associated with Range Creek within the inventory boundary. All are point-to-point rights along the Range Creek mainstem for the purposes of stock watering (UDWR 2011). None correspond to sampling locations.

Water Canyon

The named mainstem of Water Canyon originates on the northern portion of the Gibbs Lease and drains southwest, out of the Inventory Area. Water Canyon is mapped on US Geological Service maps as intermittent or ephemeral. The mainstem originates at approx 9,500' with a small intermittent channel that contained rock outcrops and wet areas in October, within the Inventory Area. The mainstem within the Inventory Area was wet but not flowing in either May or October. Thus, a Water Canyon mainstem sample was taken outside the Inventory Area boundary (described below).

Several cliff seeps were identified that contributed to an unnamed fork of Water Canyon (containing a historic mining area, approximately 0.25-mile down-canyon from the cliffs; **Figure 2**). Sample results for cliff seeps are described below.

Cliff Seeps (May and October)

A large cliff seepage area is located in the far western portion of the Inventory Area, near the boundary of both leases, where water was cascading in several pour-overs from the cliffs. Several sources appeared to be seeping or flowing over the cliffs. In addition, water also appeared to be seeping out of the rock face near the base of several pour-overs. The cliff seeps drain to an unnamed fork of Water Canyon. Vegetation was varied, but contained mostly mosses at rock outcroppings and Douglas-fir with scattered willows where there was soil.

In May, it was not clear whether the water in this area simply reflected the tail end of snowmelt runoff, or a series of seeps or small springs. At that time it was not possible to scale the cliffs and locate the source(s) of the seepage. The largest seepage occurrence (Cliff Seep #1, Photos 15 and 16, Appendix B) was sampled in May. Flow data was not collected from Cliff Seep #1 due to the wide outcrop area over which the water flowed. In October, the sources of several cliff seeps were located above the cliffs, originating in intermittent channels (dry in most places) that flowed down and over the cliffs. Sampling at these upper locations was not possible, thus all cliff seep samples were collected as the water cascaded over the cliff or below the cliff. Two different pour-over locations – Cliff Seep #2 and #3 – were sampled in October (shown in Photo 17, Appendix B). Results are summarized in Table 4.

	Flow (cfs)	Cond (µS)	рН	Temp (ºC)
Cliff Seep #1 (May)	(not collected)	490	8.49	19
Cliff Seep #2 (October)	0.0002	720	8.47	5
Cliff Seep #3 (October)	0.00002	570	8.85	5

Table 4.Cliff seep sampling results

Water Canyon – Mainstem–(May)

The named mainstem of Water Canyon joins the previously mentioned unnamed fork in which the cliff seeps and old mining area are located, and then continues southwest to join Grassy Trail Creek (which drains to the Green River). During the May 2012 sampling visit, flow was present at the confluence of the Water Canyon mainstem and the unnamed fork (**Photo 18, Appendix B**); at that time, flow originated from the unnamed fork and the mainstem fork was dry. The Water Canyon mainstem sample was collected about 1/3-mile downstream from this confluence. A small amount of water was also being contributed from flow crossing the road, from a small tributary drainage. Vegetation consisted mainly of horsetail and wetland grasses at the sampling location.

Flow was calculated at 0.052 cfs. Conductivity was measured at 850 μ S, pH at 8.26 std. units, and water temperature at 13° C. There is no water right record on file with the

State Engineers Office that appears to be associated with this location and no evidence of wildlife or stock usage.

Summary

JBR conducted a seep and spring inventory for ASEC in early October 2012, in the vicinity of the planned mining operations. The intent of this inventory was to obtain baseline seep and spring locations to be avoided in support of a mine permit application. Seep and spring resources were sparse in the vicinity of proposed mine operations: only two springs and a cluster of cliff seeps were found in addition to several dry features (at the time of the inventory), which may constitute seeps or springs during runoff.

This report also summarizes the results from an initial hydrologic survey and water sampling event conducted by JBR in late May 2012, during which flow conditions and water quality of the known major surface waters were sampled. The two main surface waters in the vicinity of proposed mine operations are Water Canyon (drains to Grassy Trail Creek) and Range Creek.

Table 5 provides a summary of the field parameter data collected from major surface waters and all flowing springs or seeps in the vicinity of proposed mine operations.

Sample Locati	on	Flow (cfs)	Cond (µS)	рН	Temp (°C)
	North Spring	0.045	340	8.10	7
	Tributary Spring	0.010	400	6.71	6
	Mainstem	0.094	350	7.86	9
Range Creek	(North Spring)				
Range Creek	Mainstem	0.092	390	8.37	13
	(Flume)				
	Mainstem	0.017	470	7.25	7
	(Inventory Area boundary)				
	Cliff Seep #1		490	8.49	19
	Cliff Seep #2	0.0002	720	8.47	5
Water Canyon	Cliff Seep #3	0.00002	570	8.85	5
	Mainstem	0.052	850	8.26	13
	(Outside Inventory Area)				

Table 5.Data Summary

References

- Harrelson, C. C., C. L. Rawlins, and J. P. Potyondy. 1994. Stream Channel Reference Sites: An Illustrated Guide to Field Technique. General Technical Report RM-245. US Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station.
- Natural Resource Conservation Service (NRCS). 2009. Soil Survey Geographic (SSURGO) Database. Available online at <u>http://soildatamart.nrcs.usda.gov</u>.
- Utah Division of Water Quality (UDWQ). 2006. Utah's 2006 305(b) Integrated Report Water Quality Assessment Report to Congress. June 15, 2006
- Utah Division of Water Quality (UDWQ). 2010. Water Quality Assessment: Utah's 2010 Integrated Report. Available online at <u>http://www.waterquality.utah.gov/WQAssess/currentIR.htm</u>.
- Utah Division of Water Rights (UDWR). 2011. Water rights database for Utah, accessed online October 11, 2011 at <u>http://www.waterrights.utah.gov/wrinfo/query.asp</u>

APPENDIX A WATER QUALITY ANALYTICAL REPORTS

William Gibbs American Sands Energy Corp. 2610 Hillsden Dr. Salt Lake City, UT 84117 TEL: (801) 699-3966

RE: Bruin Point Project Lab Set ID: 1206001 Dear William Gibbs: 463 West 3600 South Salt Lake City, UT 84115 American West Analytical Laboratories received 4 sample(s) on 6/1/2012 for the analyses presented in the following report. All analyses were performed in accordance to The NELAC Institute protocols unless Phone: (801) 263-8686 noted otherwise. American West Analytical Laboratories is accredited by The NELAC Toll Free: (888) 263-8686 Institute in Utah and Texas; and is state accredited in Colorado, Idaho, and Missouri. Fax: (801) 263-8687 Accreditation documents are available upon request. If you have any questions or concerns regarding this report please feel free to call. e-mail: awal@awal-labs.com The abbreviation "Surr" found in organic reports indicates a surrogate compound that is web: www.awal-labs.com intentionally added by the laboratory to determine sample injection, extraction, and/or purging efficiency. The "Reporting Limit" found on the report is equivalent to the practical quantitation limit (PQL). This is the minimum concentration that can be Kyle F. Gross reported by the method referenced and the sample matrix. The reporting limit must not be Laboratory Director confused with any regulatory limit. Analytical results are reported to three significant figures for quality control and calculation purposes. Jose Rocha **OA Officer** Thank You,

Approved by:

y: Kyle F. Digitally signed by Kyle F. Gross. Dist: cn=Kyle F. Gross. o=AWAL, ou=AWAL, email=kyle@awallabs.com, c=US Date: 2012.06.18 12:04:52 -06'00' Laboratory Director or designee

Client:American Sands Energy Corp.Project:Bruin Point ProjectLab Sample ID:1206001-001Client Sample ID:Old Mine Canyon #1Collection Date:5/30/2012Sid V20121340hReceived Date:6/1/2012700h

Contact: William Gibbs

Analytical Results

TOTAL METALS

463 West 3600 South	Compound	Units	Date Prepared	Date Analyze	ed	Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84115	Aluminum	mg/L	6/1/2012 1520h	6/14/2012 1	1408h	E200.7	0.100	< 0.100	
	Arsenic	mg/L	6/1/2012 1520h	6/6/2012	836h	E200.8	0.000600	0.000796	
	Boron	mg/L	6/1/2012 1520h	6/13/2012 2	2119h	E200.7	0.500	< 0.500	
Phone: (801) 263-8686	Cadmium	mg/L	6/1/2012 1520h	6/6/2012	836h	E200.8	0.000180	< 0.000180	
Toll Free: (888) 263-8686	Copper	mg/L	6/1/2012 1520h	6/6/2012	836h	E200.8	0.000800	0.00104	
Fax: (801) 263-8687	Iron	mg/L	6/1/2012 1520h	6/14/2012 1	140 8 h	E200.7	0.100	< 0.100	
e-mail: awal@awal-labs.com	Lead	mg/L	6/1/2012 1520h	6/6/2012	836h	E200.8	0.000400	< 0.000400	
	Manganese	mg/L	6/1/2012 1520h	6/12/2012	432h	E200.8	0.00120	< 0.00120	
web: www.awal-labs.com	Molybdenum	mg/L	6/1/2012 1520h	6/13/2012 2	2119h	E200.7	0.0200	< 0.0200	
	Selenium	mg/L	6/1/2012 1520h	6/6/2012	836h	E200.8	0.000800	< 0.000800	
Kyle F. Gross	Zinc	mg/L	6/1/2012 1520h	6/6/2012	836h	E200.8	0.00500	< 0.00500	

Laboratory Director

Jose Rocha QA Officer

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. This report is provided for the exclusive use of the addressee Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

6/1/2012 1520h 6/13/2012 2152h

6/1/2012 1520h 6/6/2012

6/1/2012 1520h 6/6/2012

Client: American Sands Energy Corp. **Bruin Point Project Project:** Lab Sample ID: 1206001-002 Client Sample ID: Water Canyon #1 **Collection Date:** 5/30/2012 1750h **Received Date:** 6/1/2012 700h

Contact: William Gibbs

Reporting

Limit

0.100

0.000600

0.500

0.000180

0.000800

0.100

0.000400

0.00120

0.0200

0.000800

0.00500

E200.7

E200.8

E200 8

924h

924h

Analytical Results

Molybdenum

Selenium

Zinc

TOTAL METALS

Analytical

Result

0.420

0.00135

< 0.500

< 0.000180

0.00173

0.424

0.000420

0.0300

< 0.0200

0.00139

< 0.00500

Qual

463 West 3600 South	Compound	Units	Date Prepared	Date Analyzed	Method Used
Salt Lake City, UT 84115	Aluminum	mg/L	6/1/2012 1520h	6/14/2012 1420h	E200 7
	Arsenic	mg/L	6/1/2012 1520h	6/6/2012 924h	E200.8
	Boron	mg/L	6/1/2012 1520h	6/13/2012 2152h	E200.7
Phone: (801) 263-8686	Cadmium	mg/L	6/1/2012 1520h	6/6/2012 924h	E200.8
Toll Free: (888) 263-8686	Copper	mg/L	6/1/2012 1520h	6/6/2012 924h	E200.8
Fax: (801) 263-8687	Iron	mg/L	6/1/2012 1520h	6/14/2012 1420h	E200.7
e-mail: awal@awal-labs.com	Lead	mg/L	6/1/2012 1520h	6/6/2012 924h	E200.8
	Manganese	mg/L	6/1/2012 1520h	6/12/2012 453h	E200.8

mg/L

mg/L

mg/L

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

American West

Client:American Sands Energy Corp.Project:Bruin Point ProjectLab Sample ID:1206001-003Client Sample ID:North SpringCollection Date:5/31/2012945hReceived Date:6/1/2012700h

Contact: William Gibbs

INORGANIC ANALYTICAL REPORT

Analytical Results

TOTAL METALS

463 West 3600 South	Compound	Units	Date Prepared	Date Analy:	-	Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84115	Aluminum	mg/L	6/1/2012 1520h	6/14/2012	1424h	E200.7	0.100	< 0.100	·
	Arsenic	mg/L	6/1/2012 1520h	6/6/2012	929h	E200.8	0.000600	0.00241	
	Boron	mg/L	6/1/2012 1520h	6/13/2012	2156h	E200.7	0.500	< 0.500	
Phone: (801) 263-8686	Cadmium	mg/L	6/1/2012 1520h	6/6/2012	929h	E200.8	0.000180	< 0.000180	
Toll Free: (888) 263-8686	Copper	mg/L	6/1/2012 1520h	6/6/2012	929h	E200 8	0.000800	< 0.000800	
Fax: (801) 263-8687	Iron	mg/L	6/1/2012 1520h	6/14/2012	1424h	E200.7	0.100	< 0.100	
e-mail: awal@awal-labs.com	Lead	mg/L	6/1/2012 1520h	6/6/2012	929h	E200.8	0.000400	< 0.000400	
	Manganese	mg/L	6/1/2012 1520h	6/12/2012	500h	E200.8	0.00120	< 0.00120	
web: www.awal-labs.com	Molybdenum	mg/L	6/1/2012 1520h	6/13/2012	2156h	E200 7	0.0200	< 0.0200	
	Selenium	mg/L	6/1/2012 1520h	6/6/2012	929h	E200.8	0.000800	< 0.000800	
Kyle F. Gross	Zinc	mg/L	6/1/2012 1520h	6/6/2012	929h	E200.8	0.00500	0.00585	

Laboratory Director

Jose Rocha QA Officer

Client:American Sands Energy Corp.Project:Bruin Point ProjectLab Sample ID:1206001-004Client Sample ID:Range Creek FlumeCollection Date:5/31/20121155hReceived Date:6/1/2012700h

Contact: William Gibbs

Analytical Results

TOTAL METALS

463 West 3600 South	Compound	Units	Date Prepared	Date Analyz		Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84115	Aluminum	mg/L	6/1/2012 1520h	6/14/2012	1440h	E200 7	0.100	< 0.100	
	Arsenic	mg/L	6/1/2012 1520h	6/6/2012	934h	E200.8	0.000600	0.00297	
	Boron	mg/L	6/1/2012 1520h	6/13/2012	2200h	E200.7	0.500	< 0.500	
Phone: (801) 263-8686	Cadmium	mg/L	6/1/2012 1520h	6/6/2012	934h	E200.8	0.000180	< 0.000180	
Toll Free: (888) 263-8686	Copper	mg/L	6/1/2012 1520h	6/6/2012	934h	E200.8	0.000800	< 0.000800	
Fax: (801) 263-8687	Iron	mg/L	6/1/2012 1520h	6/14/2012	1440h	E200.7	0.100	< 0.100	
e-mail: awal@awal-labs.com	Lead	mg/L	6/1/2012 1520h	6/6/2012	934h	E200.8	0.000400	< 0.000400	
	Manganese	mg/L	6/1/2012 1520h	6/12/2012	507h	E200.8	0.00120	0.00149	
web: www.awal-labs.com	Molybdenum	mg/L	6/1/2012 1520h	6/13/2012	2200h	E200.7	0.0200	< 0.0200	
	Selenium	mg/L	6/1/2012 1520h	6/6/2012	934h	E200.8	0.000800	< 0.000800	
Kyle F. Gross	Zinc	mg/L	6/1/2012 1520h	6/6/2012	934h	E200.8	0.00500	< 0.00500	

Laboratory Director

Jose Rocha QA Officer

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

Client:American Sands Energy Corp.Project:Bruin Point ProjectLab Sample ID:1206001-001Client Sample ID:Old Mine Canyon #1Collection Date:5/30/2012Sample ID:1340hReceived Date:6/1/2012700h

Contact: William Gibbs

Analytical Results

DISSOL DED METALS

463 West 3600 South	Compound	Units	Date Prepared	Date Analyze	Methoo d Used	d Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84115	Aluminum	mg/L	6/1/2012 1520h	6/16/2012 15	556h E200.7	0.100	< 0.100	
	Arsenic	mg/L	6/1/2012 1520h	6/13/2012 23	302h E200,8	0.000600	0.000855	
	Boron	mg/L	6/1/2012 1520h	6/16/2012 15	556h E200.7	0.500	< 0.500	
Phone: (801) 263-8686	Cadmium	mg/L	6/1/2012 1520h	6/13/2012 23	802h E200.8	0.000180	< 0.000180	
Toll Free: (888) 263-8686 Fax: (801) 263-8687	Calcium	mg/L	6/1/2012 1520h	6/16/2012 14	141h E200,7	10.0	46.3	
	Copper	mg/L	6/1/2012 1520h	6/15/2012 14	159h E200.8	0.00160	< 0.00160	
e-mail: awal@awal-labs.com	Iron	mg/L	6/1/2012 1520h	6/16/2012 15	556h E200.7	0.100	< 0.100	
	Lead	mg/L	6/1/2012 1520h	6/15/2012 10	008h E200,8	0.000400	< 0.000400	
web: www.awal-labs.com	Magnesium	mg/L	6/1/2012 1520h	6/16/2012 14	141h E200.7	10.0	24.8	
	Manganese	mg/L	6/1/2012 1520h	6/15/2012 10	008h E200.8	0.00120	0.00165	
Kula E. Creat	Molybdenum	mg/L	6/1/2012 1520h	6/16/2012 15	556h E200.7	0.0200	< 0.0200	
Kyle F. Gross	Potassium	mg/L	6/1/2012 1520h	6/16/2012 15	556h E200.7	1.00	< 1.00	
Laboratory Director	Selenium	mg/L	6/1/2012 1520h	6/13/2012 23	802h E200.8	0.000800	< 0.000800	
Jose Rocha	Sodium	mg/L	6/1/2012 1520h	6/16/2012 14	141h E200.7	10.0	22.1	
QA Officer	Zinc	mg/L	6/1/2012 1520h	6/13/2012 23	802h E200.8	0.00500	< 0.00500	

Client:American Sands Energy Corp.Project:Bruin Point ProjectLab Sample ID:1206001-002Client Sample ID:Water Canyon #1Collection Date:5/30/20121750hReceived Date:6/1/2012700h

Contact: William Gibbs

Analytical Results

DISSOL DED METALS

463 West 3600 South	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84115	Aluminum	mg/L	6/1/2012 1520h	6/16/2012 1620h	E200.7	0.100	< 0.100	
	Arsenic	mg/L	6/1/2012 1520h	6/13/2012 2355h	E200.8	0.000600	0.00106	
	Boron	mg/L	6/1/2012 1520h	6/16/2012 1620h	E200 7	0.500	< 0.500	
Phone: (801) 263-8686	Cadmium	mg/L	6/1/2012 1520h	6/13/2012 2355h	E200.8	0.000180	< 0.000180	
Toll Free: (888) 263-8686 Fax: (801) 263-8687	Calcium	mg/L	6/1/2012 1520h	6/16/2012 1457h	E200.7	10.0	62.4	
	Copper	mg/L	6/1/2012 1520h	6/15/2012 1507h	E200.8	0.00160	0.00242	
e-mail: awal@awal-labs.com	Iron	mg/L	6/1/2012 1520h	6/16/2012 1620h	E200.7	0.100	< 0.100	
web: www.awal-labs.com	Lead	mg/L	6/1/2012 1520h	6/15/2012 1048h	E200.8	0.000400	< 0.000400	
	Magnesium	mg/L	6/1/2012 1520h	6/16/2012 1457h	E200.7	10.0	58.0	
	Manganese	mg/L	6/1/2012 1520h	6/15/2012 1048h	E200.8	0.00120	0.0154	
Kyle F. Gross Laboratory Director	Molybdenum	mg/L	6/1/2012 1520h	6/16/2012 1620h	E200.7	0.0200	< 0.0200	
	Potassium	mg/L	6/1/2012 1520h	6/16/2012 1620h	E200.7	1.00	1.45	
	Selenium	mg/L	6/1/2012 1520h	6/13/2012 2355h	E200.8	0.000800	< 0.000800	
Jose Rocha	Sodium	mg/L	6/1/2012 1520h	6/16/2012 1457h	E200.7	10.0	45.2	
QA Officer	Zinc	mg/L	6/1/2012 1520h	6/13/2012 2355h	E200.8	0.00500	< 0.00500	

Client:American Samds Energy Corp.Project:Bruin Point ProjectLab Sample ID:1206001-003Client Sample ID:North SpringCollection Date:5/31/2012945hReceived Date:6/1/2012700h

Contact: William Gibbs

Analytical Results

DISSOL DED METALS

463 West 3600 South	Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84115	Aluminum	mg/L	6/1/2012 1520h	6/16/2012 1624	E200.7	0.100	< 0.100	
	Arsenic	mg/L	6/1/2012 1520h	6/14/2012 000	E200.8	0.000600	0.00284	
	Boron	mg/L	6/1/2012 1520h	6/16/2012 1624	E200.7	0.500	< 0.500	
Phone: (801) 263-8686	Cadmium	mg/L	6/1/2012 1520h	6/14/2012 000	E200.8	0.000180	< 0.000180	
Toll Free: (888) 263-8686 Fax: (801) 263-8687	Calcium	mg/L	6/1/2012 1520h	6/16/2012 1501	E200.7	10.0	40.8	
	Copper	mg/L	6/1/2012 1520h	6/15/2012 1510	E200.8	0.00160	< 0.00160	
e-mail: awal@awal-labs.com	Iron	mg/L	6/1/2012 1520h	6/16/2012 1624	E200.7	0.100	< 0.100	
web: www.awal-labs.com	Lead	mg/L	6/1/2012 1520h	6/15/2012 1052	E200.8	0.000400	< 0.000400	
	Magnesium	mg/L	6/1/2012 1520h	6/16/2012 1501	E200.7	10.0	15.6	
	Manganese	mg/L	6/1/2012 1520h	6/15/2012 1052	E200.8	0.00120	< 0.00120	
Kyle F. Gross Laboratory Director	Molybdenum	mg/L	6/1/2012 1520h	6/16/2012 1624	E200.7	0.0200	< 0.0200	
	Potassium	mg/L	6/1/2012 1520h	6/16/2012 1624	E200.7	1.00	< 1.00	
	Selenium	mg/L	6/1/2012 1520h	6/14/2012 000	E200.8	0.000800	< 0.000800	
Jose Rocha	Sodium	mg/L	6/1/2012 1520h	6/16/2012 1624	E200.7	1.00	5.33	
QA Officer	Zinc	mg/L	6/1/2012 1520h	6/14/2012 000	E200.8	0.00500	< 0.00500	

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

Client:American Sands Energy Corp.Project:Bruin Point ProjectLab Sample ID:1206001-004Client Sample ID:Range Creek FlumeCollection Date:5/31/20121155hReceived Date:6/1/2012700h

Contact: William Gibbs

Analytical Results

DISSOL DED METALS

463 West 3600 South	Compound	Units	Date Prepared	Date Analyz		Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84115	Aluminum	mg/L	6/1/2012 1520h	6/16/2012	1628h	E200.7	0.100	< 0.100	
	Arsenic	mg/L	6/1/2012 1520h	6/14/2012	005h	E200.8	0.000600	0.00305	
	Boron	mg/L	6/1/2012 1520h	6/16/2012	1628h	E200.7	0.500	< 0.500	
Phone: (801) 263-8686	Cadmium	mg/L	6/1/2012 1520h	6/14/2012	005h	E200.8	0.000180	< 0.000180	
Toll Free: (888) 263-8686	Calcium	mg/L	6/1/2012 1520h	6/16/2012	1505h	E200.7	10.0	44.7	
Fax: (801) 263-8687	Copper	mg/L	6/1/2012 1520h	6/15/2012	1513h	E200.8	0.00160	< 0.00160	
e-mail: awal@awal-labs.com	Iron	mg/L	6/1/2012 1520h	6/16/2012	1628h	E200,7	0.100	< 0.100	
web: www.awal-labs.com	Lead	mg/L	6/1/2012 1520h	6/15/2012	1056h	E200.8	0.000400	< 0.000400	
	Magnesium	mg/L	6/1/2012 1520h	6/16/2012	1505h	E200.7	10.0	19.5	
	Manganese	mg/L	6/1/2012 1520h	6/15/2012	1056h	E200.8	0.00120	0.00127	
Kyle F. Gross Laboratory Director	Molybdenum	mg/L	6/1/2012 1520h	6/16/2012	1628h	E200.7	0.0200	< 0.0200	
	Potassium	mg/L	6/1/2012 1520h	6/16/2012	1628h	E200.7	1.00	< 1.00	
	Selenium	mg/L	6/1/2012 1520h	6/14/2012	005h	E200.8	0.000800	< 0.000800	
Jose Rocha	Sodium	mg/L	6/1/2012 1520h	6/16/2012	1628h	E200.7	1.00	6.34	
QA Officer	Zinc	mg/L	6/1/2012 1520h	6/14/2012	005h	E200.8	0.00500	< 0.00500	

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

Client:American Sands Energy Corp.Project:Bruin Point ProjectLab Sample ID:1206001-001Client Sample ID:Old Mine Canyon #1Collection Date:5/30/20121340hReceived Date:6/1/2012700h

Contact: William Gibbs

Analytical Results

463 West 3600 South	Compound	Units	Date Date Prepared Analyzed		Method Used	Reporting Limit	Analytical Result	Qual	
Salt Lake City, UT 84115	Acidity	mg/L		6/4/2012	606h	SM2310B	15.0	< 15.0	
	Alkalinity (as CaCO3)	mg/L		6/1/2012	103 5 h	SM2320B	20.0	254	
	Ammonia (as N)	mg/L	6/8/2012 1142h	6/8/2012	1808h	E350.1	0.0500	< 0.0500	
Phone: (801) 263-8686	Bicarbonate (as	mg/L		6/1/2012	1035h	SM2320B	20.0	240	
Toll Free: (888) 263-8686	CaCO3) Carbonate (as CaCO3)			6/1/2012	1035h	SM2320B	20.0	< 20.0	
Fax: (801) 263-8687		mg/L		0/1/2012	10350				
e-mail: awal@awal-labs.com	Chloride	mg/L		6/11/2012	2026h	E300.0	0.100	2.05	
c-man. awai@awai-labs.com	Conductivity	□mhos/cm		6/1/2012	1152h	SM2510B	2.00	504	
web: www.awal-labs.com	□ardness (as CaCO3)	mg/L		6/18/2012		SM2340B	10.0	218	
	Ion Balance			6/18/2012		Calc	-15.0	-4.73	
	Nitrate (as N)	mg/L		6/1/2012	1515h	E353.2	0.0100	< 0.0100	
Kyle F. Gross	Nitrite (as N)	mg/L		6/1/2012	1256h	E353.2	0.0100	< 0.0100	
Laboratory Director	p□ @ 25□C	p□ Units		6/1/2012	1600h	SM4500-□□B	1.00	8.28	
Jose Rocha	Phosphate, Total Ortho (as P)	mg/L		6/1/2012	1108h	E365.1	0.0500	< 0.0500	
QA Officer	Sulfate	mg/L		6/8/2012	1200h	E300.0	7.50	35.0	
	Total Dissolved Solids	mg/L		6/4/2012	1500h	SM2540C	20.0	276	
	Total Suspended Solids	mg/L		6/1/2012	1615h	SM2540D	3.00	< 3.00	

H - Sample was received outside of the holding time.

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. This report is provided for the exclusive use of the addressee, Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

INORGANIC ANALYTICAL REPORT

Client:American Sands Energy Corp.Project:Bruin Point ProjectLab Sample ID:1206001-002Client Sample ID:Water Canyon #1Collection Date:5/30/20121750hReceived Date:6/1/2012700h

Contact: William Gibbs

Analytical Results

463 West 3600 South	Compound	Units	Date Prepared	Dat Analy		Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84115	Acidity	mg/L		6/4/2012	606h	SM2310B	15.0	< 15.0	
	Alkalinity (as CaCO3)	mg/L		6/1/2012	1035h	SM2320B	40.0	348	
	Ammonia (as N)	mg/L	6/8/2012 1142h	6/8/2012	1812h	E350.1	0.0500	< 0.0500	
Phone: (801) 263-8686	Bicarbonate (as	mg/L		6/1/2012	1035h	SM2320B	40.0	348	
Toll Free: (888) 263-8686	CaCO3)						40.0	. 10.0	
Fax: (801) 263-8687	Carbonate (as CaCO3)	mg/L		6/1/2012	1035h	SM2320B	40.0	< 40.0	
	Chloride	mg/L		6/8/2012	1222h	E300.0	1.00	3.85	
e-mail: awal@awal-labs.com	Conductivity	⊡mhos/cm		6/1/2012	1152h	SM2510B	2.00	860	
web: www.awal-labs.com	□ardness (as CaCO3)	mg/L		6/18/2012		SM2340B	10.0	395	
	Ion Balance			6/18/2012		Calc	-15.0	-2.56	
	Nitrate (as N)	mg/L		6/1/2012	1519h	E353.2	0.0100	0.0458	
Kyle F. Gross	Nitrite (as N)	mg/L		6/1/2012	1300h	E353.2	0.0100	< 0.0100	
Laboratory Director	p□ @ 25 □C	p□ Units		6/1/2012	1600h	SM4500-□□B	1.00	8.14	8)
Jose Rocha	Phosphate, Total Ortho (as P)	mg/L		6/1/2012	1111h	E365.1	0.0500	< 0.0500	
QA Officer	Sulfate	mg/L		6/8/2012	1222h	E300.0	7.50	160	
	Total Dissolved Solids	mg/L		6/4/2012	1500h	SM2540C	20.0	520	
	Total Suspended Solids	mg/L		6/1/2012	1615h	SM2540D	3.00	< 3.00	

H - Sample was received outside of the holding time.

Report Date: 6/18/2012 Page 11 of 13

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

INORGANIC ANALYTICAL REPORT

Client:American Sands Energy Corp.Project:Bruin Point ProjectLab Sample ID:1206001-003Client Sample ID:North SpringCollection Date:5/31/2012945hReceived Date:6/1/2012700h

Contact: William Gibbs

Analytical Results

463 West 3600 South	Compound	Units	Date Prepared	Dat Analy	-	Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84115	Acidity	mg/L		6/4/2012	606h	SM2310B	15.0	< 15.0	
	Alkalinity (as CaCO3)	mg/L		6/1/2012	1035h	SM2320B	20.0	181	
	Ammonia (as N)	mg/L	6/8/2012 1142h	6/8/2012	1813h	E350.1	0.0500	< 0.0500	
Phone: (801) 263-8686	Bicarbonate (as	mg/L		6/1/2012	1035h	SM2320B	20.0	181	
Toll Free: (888) 263-8686	CaCO3)								
Fax: (801) 263-8687	Carbonate (as CaCO3)	mg/L		6/1/2012	1035h	SM2320B	20.0	< 20.0	
	Chloride	mg/L		6/11/2012	2046h	E300.0	0.100	0.471	
e-mail: awal@awal-labs.com	Conductivity	□mhos/cm		6/1/2012	1152h	SM2510B	2.00	338	
web: www.awal-labs.com	□ardness (as CaCO3)	mg/L		6/18/2012		SM2340B	10.0	166	
	Ion Balance			6/18/2012		Calc,	-15.0	-4.02	
	Nitrate (as N)	mg/L		6/1/2012	1520h	E353_2	0.0100	0.396	
Kyle F. Gross	Nitrite (as N)	mg/L		6/1/2012	1301h	E353.2	0.0100	< 0.0100	
Laboratory Director	p□ @ 25 □C	p□ Units		6/1/2012	1600h	SM4500-□□B	1.00	7.68	D
Jose Rocha	Phosphate, Total Ortho (as P)	mg/L		6/1/2012	1112h	E365.1	0.0500	< 0.0500	
QA Officer	Sulfate	mg/L		6/11/2012	2046h	E300.0	0.750	8.34	
	Total Dissolved Solids	mg/L		6/4/2012	1500h	SM2540C	20.0	176	
	Total Suspended Solids	mg/L		6/1/2012	1615h	SM2540D	3.00	< 3.00	

H - Sample was received outside of the holding time.

INORGANIC ANALYTICAL REPORT

Client:American Sands Energy Corp.Project:Bruin Point ProjectLab Sample ID:1206001-004Client Sample ID:Range Creek FlumeCollection Date:5/31/20121155hReceived Date:6/1/2012700h

Contact: William Gibbs

Analytical Results

463 West 3600 South	Compound	Units	Date Prepared	Dat Analy	-	Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84115	Acidity	mg/L		6/4/2012	606h	SM2310B	15.0	< 15.0	
	Alkalinity (as CaCO3)	mg/L		6/1/2012	1035h	SM2320B	20.0	221	
	Ammonia (as N)	mg/L	6/8/2012 1142h	6/8/2012	1814h	E350.1	0.0500	< 0.0500	
Phone: (801) 263-8686	Bicarbonate (as	mg/L		6/1/2012	1035h	SM2320B	20.0	221	
Toll Free: (888) 263-8686	CaCO3) Carbonate (as CaCO3)	mg/L		6/1/2012	1035h	SM2320B	20.0	< 20.0	
Fax: (801) 263-8687	Chloride	mg/L		6/11/2012		E300.0	0.100	0.676	
e-mail: awal@awal-labs.com	Conductivity	⊡mhos/cm		6/1/2012	I 152h	SM2510B	2.00	389	
web: www.awal-labs.com	□ardness (as CaCO3)	mg/L		6/18/2012		SM2340B	10.0	192	
	Ion Balance			6/18/2012		Calc	-15.0	-6.84	
	Nitrate (as N)	mg/L		6/1/2012	1522h	E353.2	0.0100	0.206	
Kyle F. Gross	Nitrite (as N)	mg/L		6/1/2012	1303h	E353.2	0.0100	< 0.0100	
Laboratory Director	p□ @ 25□C	p□ Units		6/1/2012	1600h	SM4500-□□B	1.00	8.21	
Jose Rocha	Phosphate, Total Ortho (as P)	mg/L		6/1/2012	1112h	E365_1	0.0500	< 0.0500	
QA Officer	Sulfate	mg/L		6/11/2012	2106h	E300.0	0.750	12.1	
	Total Dissolved Solids	mg/L		6/4/2012	1500h	SM2540C	20.0	1 92	
	Total Suspended Solids	mg/L		6/1/2012	1615h	SM2540D	3.00	< 3.00	

H - Sample was received outside of the holding time.

Report Date: 6/18/2012 Page 13 of 13

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

WORK O Client:	WORK ORDER Summary Client: American Sands Energy Corp.					Work Order: Page 1 of 5	: 1206001	001
Client ID:	WALKIN		Contact:	William Gibbs		0		1
Project:	Bruin Point Project		QC Level:	LEVEL I		WO Type:	Standard	70
Comments:	Do not release w/o Financial Arrangements! / send results to both William and Karla Knoop @ JBR. Dissolved metals samples have been field filtered. Footnote report, pH received outside of hold.;	ments! / send results to bo of hold.;	oth William and Ka	ia Knoop @ JBR.	Dissolved metals	samples have been f	ield filtered.	J
Sample ID	Client Sample ID	Collected Date	Received Date	Date Due	Matrix	Test Code	Sel Storage	ł
1206001-001A	Old Mine Canyon #1 SEL Analytes: CL SO4	5/30/2012 1340h	6/1/2012 0700h	6/15/2012	Aqueous	300.0-W	Jef df / wc	
						ACIDITY-W- 2310B	df / wc	
	SEL Analytes: ALK ALKB ALKC					ALK-W-2320B	V df / wc	
						COND-W-2510B	df / wc	
	- 25					NO2-W-353.2	df / wc	
						NO3-W-353.2	df/wc	
						PH-4500H+B	df/wc	
				7		PO4-0-365.1	df / wc	
1206001-001B						NH3-W-350.1	df/nh3	
						NH3-W-PR	df/nh3	
1206001-001C						TSS-W-2540D	WW - tss	
1206001-001D						TDS-W-2540C	ww - tds	
1206001-001E	SEL Analytes: AL B CA FE MG MO K NA	NA				200.7-DIS	 df / dis metals 	
						200.7-DIS-PR	df/dis metals	
	SEL Analytes: AS CD CU PB MN SE ZN	z				200.8-DIS	✓ df / dis metals	
						200.8-DIS-PR	df / dis metals	
						HARD-2340B	df / dis metals	
1206001-001F	SEL Analytes: AL B FE MO					200.7-W	df / total metals	
						200.7-W-PR	df / total	

WUKIN U Client:	WUKK UKUEK Summary Client: American Sands Energy Corp.					Work Order: Page 2 of 5	First 1206001
Sample ID	Client Sample ID	Collected Date	Received Date	Date Due	Matrix	Test Code	Sel Storage
1206001-001F	Old Mine Canyon #1	5/30/2012 1340h	6/1/2012 0700h	6/15/2012	Aqueous	200.8-W	df / total metals
	SEL Analytes: AS CD CU PB MN SE ZN					200.8-W-PR	df/total
		р;				IONBALANCE	df / total metals
1206001-002A	Water Canyon #1 SEL Analytes: CL SO4	5/30/2012 1750h				300.0-W	df/wc
						ACIDITY-W- 2310B	df/wc
	SEL Analytes: ALK ALKB ALKC					ALK-W-2320B	✔ df/wc
						COND-W-2510B	df/wc
						NO2-W-353.2	df/wc
						NO3-W-353.2	df/wc
						PH-4500H+B	df / wc
						PO4-0-365.1	df/wc
1206001-002B						NH3-W-350.1	df / nh3
						NH3-W-PR	df/nh3
1206001-002C						TSS-W-2540D	WW - tss
1206001-002D						TDS-W-2540C	🗌 ww - tds
1206001-002E						200.7-DIS	V df/dis
	SEL Analytes: AL B CA FE MG MO K NA						metals
						200.7-DIS-PR	df/dis metals
	SEL Analytes: AS CD CU PB MN SE ZN					200.8-DIS	df/dis metals
						200.8-DIS-PR	df / dis metals
						HARD-2340B	df/dis metals
1206001-002F						200.7-W	df / total
	SEL Analytes: AL B FE MO						TIICLAIS
						200.7-W-PR	df / total

WORK 0 Client:	WORK ORDER Summary Client: American Sands Energy Corp.					Work Order: Dage 2 of 5		1206001
Sample ID	Client Sample ID	Collected Date	Received Date	Date Due	Matrix	Test Code	Sel Storage	12012
1206001-002F	Water Canyon #1	5/30/2012 1750h	6/1/2012 0700h	6/15/2012	Agineting	III & UUC		
	SEL Analytes: AS CD CU PB MN SE ZN				croop by r	M-0'007	5 E >	ut/ total
						200.8-W-PR	9 E	df / total metals
						IONBALANCE	∃ e	df / total metals
1206001-003A	North Spring SEL Analytes: CL SO4	5/31/2012 0945h				300.0-W	Þ	df/wc
						ACIDITY-W- 2310B	a	df / wc
	SEL Analytes: ALK ALKB ALKC					ALK-W-2320B	P	df / wc
						COND-W-2510B	D A	df / wc
						NO2-W-353.2	□ ₽	df / wc
						NO3-W-353.2	df df	df / wc
						PH-4500H+B	D df	df / wc
						PO4-0-365.1	đ	df / wc
1206001-003B						NH3-W-350.1	19 19	df/nh3
						NH3-W-PR	□ ₽	df/nh3
1206001-003C						TSS-W-2540D	s C	ww - tss
1206001-003D						TDS-W-2540C	*	ww - tds
1206001-003E	SEL Analytes: AL B CA FE MG MO K NA					200.7-DIS	ă đ	df / dis metals
						200.7-DIS-PR	∃ ∉	df / dis metals
	SEL Analytes: AS CD CU PB MN SE ZN					200.8-DIS	ā d	df / dis metals
						200.8-DIS-PR	e e	df/dis metals
						HARD-2340B	₩ U	df/dis metals
1206001-003F						200.7-W	₽ ₽	df / total metals
	SEL Analytes: AL B FE MO							0101
						200.7-W-PR	đ	df / total

VORK O	WORK ORDER Summary					Work Order:		1206001
Client:	American Sands Energy Corp.					Page 4 of 5		6/5/2012
Sample ID	Client Sample ID	Collected Date	Received Date	Date Due	Matrix	Test Code	Sel	Sel Storage
1206001-003F	North Spring	5/31/2012 0945h	6/1/2012 0700h	6/15/2012	Aqueous	200.8-W	D	df / total metals
	SEL Analytes: AS CD CU PB MN SE ZN					200.8-W-PR		df / total metals
Ŷ						IONBALANCE		df / total metals
1206001-004A	Range Creek Flume SEL Analytes: CL SO4	5/31/2012 1155h				300.0-W	Σ	df/ wc
						ACIDITY-W- 2310B		df/wc
	SEL Analytes: ALK ALKB ALKC					ALK-W-2320B	Σ	df/ wc
						COND-W-2510B		df / wc
						NO2-W-353.2		df / wc
						NO3-W-353.2		df/wc
						PH-4500H+B	þ	df / wc
						PO4-0-365.1		df / wc
1206001-004B						NH3-W-350.1		df / nh3
						NH3-W-PR		df/nh3
1206001-004C						TSS-W-2540D		ww - tss
1206001-004D						TDS-W-2540C		ww - tds
1206001-004E	SET Andress AT D CA EF MC WO WA					200.7-DIS	Σ	df/dis metals
						200.7-DIS-PR		df/ dis metals
	SEL Analytes: AS CD CU PB MN SE ZN					200.8-DIS	Σ	df/ dis metals
						200.8-DIS-PR		df / dis metals
						HARD-2340B		df / dis metals
1206001-004F	SEL Analytes: AL B FE MO					200.7-W	>	df / total metals
						200.7-W-PR		df / total

WORK O	WORK ORDER Summary					Work Order	Work Order: 1006001
Client:	American Sands Energy Corp.					Page 5 of 5	6/1/2012
Sample ID	Client Sample ID	Collected Date	Received Date	Date Due	Matrix	Test Code	e
1206001-004F	Range Creek Flume	5/31/2012 1155h	6/1/2012 0700h	6/15/2012	Aqueous	200.8-W	df / total
	SEL Analytes: AS CD CU PB MN SE ZN						metals
						200.8-W-PR	df / total metals
						IONBALANCE	

Client American Sands Energy Corp Address Zueld Hillsdan Dr SaHLake City UT 84117 City State Fax BOI 277 7	Dr. Byllin State Zip Fax 801 210	1338		AMERICAN WEST WEST ANALYTICAL LABORATORIES 463 West 3600 South Salt Lake City, Utah 84115	RICAN CHAIN OF WEST CUSTODY TICAL CUSTODY ORIES 801) 263-8686 9, Utah Fax (801) 263-8687 94115 Email:awal@awal-labs.com		Lab Sample Set # <u>]20 {p</u> <u>C</u> Pageof <i>Turn Around Time (Circle One)</i> 1 day 2 day 3 day 4 day 5 dá	120 (p 00 of	\frown
E-mail waybos Qamerican Snudse nergy com Project Name <u>Bruin Porgect</u> Project Number/P.O.# Sampler Name <u>Kiknoop</u> Sample ID Did Mine Canyon * 1 Noter Canyon * 1 Noter Canyon * 1 North Spring Range Greek flume	Project		Date/Time Date/Time Collected Significant Significant	ass (revense) × × × × × × × × × × × × × × × × × × ×		E lead the main of	AC LEVEL C 2 2+ 3 3+ 4 COMMENTS COMMENTS COMMENTS COMMENTS COMMENTS COMMENTS COMMENTS COMMENTS	LABORATORY USE ONLY SAMPLES WERE: 1 Shipped or hand telivered Notes: 2 Ambient or Chilled Notes: 3 Temperature 3. 2 4 Received Broken/Leaking (Impropent) Sealad (Impropent) Sealad (Imp	
Relinquished By: Signature PRINT NAME Relinquished By: Signature PRINT NAME Relinquished By: Signature PRINT NAME Relinquished By: Signature PRINT NAME	Date 6/1//2 Date Date Date Date	Received By: Signature PRINTINAME PRINT NAME Received By: Signature Received By: Signature PRINT NAME Received By: Signature PRINT NAME	Signature Signature Signature	Date Date Date Date Time Time Date Date Date Date	Special Instructions: Special Instructions: BILL AMERICAN Send results report DBR (EEroope) CNESTION 5 - Kav 801 438 2	1 2 4 3 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	or Jek	COC Tape Was: COC Tape Was: 1 Present on Outer Package N NA 2 Unbroken on Outer Package N NA 3 Present on Sample V N N NA 4 Unbroken on Sample NA V N N NA Sample Labels and COC Record?	

• 3 G • • • • • • • • • • •

Acidity \$25.00	Aroonia (discolved and total) to say
	Arsenic (dissolved and total) 10.00/each
Alkalinity 19.00	Aluminum (dissolved and total) 10.00/each
Bicarbonate (included in alkalinity)	Boron (dissolved and total) 10.00/each
Carbonate (included in alkalinity)	Cadmium (dissolved and total) 10.00/each
Calcium (dissolved) 10.00	Copper (dissolved and total) 10.00/each
Chloride 13.00	Iron (total and dissolved) 10.00/each
-Magnesium (dissolved)10.00	Lead (dissolved and total) 10.00/each
Potassium (dissolved)10.00	Manganese (total and dissolved) 10.00/each
Sodium (dissolved) 10.00	Molybednum (dissolved and total) 10.00/each
Sulfate 13.00	Selenium (dissolved and total) 10.00/each
Total Dissolved Solids 15.00	Zinc (dissolved and total) 10.00/each
Hardness 22.00	Total Suspended Solids 15.00
Ammonia 38.00	pH 13.00
Nitrate 13.00	Conductivity 12.00
Nitrite 13.00	Cation/anion balance 13.00
Orthophosphate 13.00	Metals Prep 20.00
	Metals – dissolved (15+prep)= \$170.00
	Metals – Totals (11+prep)= \$130.00
Totals out to \$537.00 per sample	

(0)

Sample Set: /2 0 (6 00 /

Preservation Check Sheet

ST ST	8/1/2	1					1	T		1			1					T	T	T
Except Except																				
Except																				
Except Except				-										15						
				-																
Except Except	_									1										
Except Exc																				
t											v.									
Exeept																				
Except Except Except																				
Except	2	Ver			Ves	-														
	0	X			1/3															
ŭ	4	Ver	`		Ĩ															
-Except		73	<u>,</u>		Ves	-														
All	CK	-				7					_						_			
Preservative		pH <2 H ₂ SO ₄	pH <2 H ₂ SO₄	PH >12 NaOH	pH <2 HNO ₃	pH <2 H ₂ SO ₄	pH <2 H ₂ SO ₄	pH <2 HCL	pH <2 H ₂ SO₄	pH > 9NaOH,	Zn Acetate	pH <2 H ₂ SO₄	pH <2 H ₃ PO ₄	pH <2 H ₂ SO₄	pH <2 H ₂ SO₄	pH <2 HCL				
Bottle Type		Amnonia	COD	Cyanide	Metals	NO ₂ & NO ₃	Nutrients	O&G	Phenols	Sulfide		TKN	TOC	TOX	T PO4	ТРН				

Procedure:

-202432

Pour a small amount of sample in the sample lid Pour sample from Lid gently over wide range pH paper Do Not dip the pH paper in the sample bottle or lid If sample is not preserved properly list its extension and receiving pH in the appropriate column above Flag COC, notify client if requested Place client conversation on COC Samples may be adjusted

All samples requiring preservation Frequency:

APPENDIX B PHOTOGRAPHS

Photo 1 Headwaters of Range Creek (dry); October 2012.

Photo 2 Potential Seep 01 (see Figure 2); October 2012.

Photo 4 Potential Seep 05 (see Figure 2); October 2012.

Photo 5 Potential Spring 02 (see Figure 2); October 2012.

Photo 6 Potential Spring 04 (see Figure 2); October 2012.

Photo 7Piped outflow from North Spring to stock pond; culvert in
background leads to Range Creek; May 2012.

Photo 8 North Spring sampling location; May 2012.

Photo 9 Tributary Spring drainage; October 2012.

Photo 10 Source area of Tributary Spring; October 2012.

Photo 11 Range Creek mainstem sample point below North Spring; May 2012.

Photo 12 Range Creek mainstem sample point at flume (nonfunctional); May 2012.

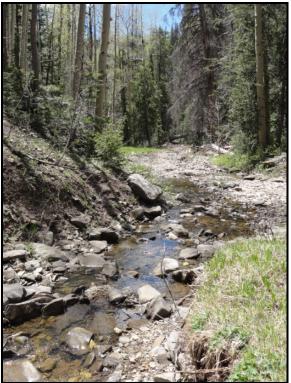


Photo 13 Range Creek downstream from flume; May 2012.

Photo 14

Range Creek mainstem sample point at boundary of Inventory Area; October 2012.

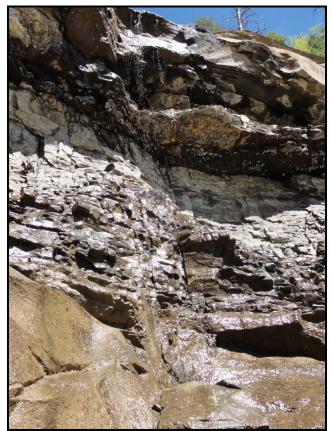


Photo 15 Cliff Seep #1 sample point; May 2012.

Photo 16 Long view of Cliff Seep #1; May 2012.



Photo 17 Cliff Seep #2 and #3 sample points; October 2012.

Photo 18 Unnamed fork of Water Canyon (flowing); May 2012.

APPENDIX G

PRELIMINARY STABILITY AND HYDROLOGY ANALYSES

FINAL REPORT Revision 1 PRELIMINARY STABILITY AND HYDROLOGY ANALYSES BRUIN POINT MINE

For

Green River Resources Inc. 201 South Main 1800 Salt Lake City, UT 84111

February 4, 2015

Preliminary Stability and Hydrology Analyses Bruin Point Utah

Prepared for:

201 South Main 1800 Salt Lake City, UT 84111

Prepared by:

URS Corporation 756 East Winchester, Suite 400 Salt Lake City, UT 84107

Robert Snow, P.E. URS Civil-Geotechnical Engineer

Curtis Tanner, P.E. URS Civil-Geotechnical Engineer

TABLE OF CONTENTS

1.0	INTR	ODUCTION	1
	1.1	PROJECT DESCRIPTION	1
	1.2	PURPOSE, AUTHORIZATION, AND WORK SCOPE	1
2.0	FIELI	D INVESTIGATION AND LABORATORY TESTING	2
	2.1	GENERAL	2
	2.2	FIELD INVESTIGATION	2
		2.2.1 Geological and Hydrological Reconnaissance	
		2.2.2 Test Pit Excavations	
	2.3	LABORATORY TESTING	
		2.3.1 Index Properties	
		2.3.2 Direct Shear Testing	
3.0	SITE	2.3.3 Permeability Testing	
5.0	3.1	REGIONAL GEOLOGIC SETTING	
	3.1	SPECIFIC SITE CONDITIONS	
	5.2	3.2.1 General	
		3.2.2 Soil Conditions	
4.0	DESI	GN CRITERIA	
	4.1	GENERAL	9
	4.2	MINE PORTAL	9
	4.3	PLANT SITE	9
	4.4	TOPSOIL STOCKPILES	10
	4.5	TAILINGS STOCKPILE	10
5.0	HYDI	ROLOGY	12
	5.1	HYDROLOGY	12
	5.2	EROSION CONTROL	13
6.0	SLOP	E STABILITY ANALYSIS RESULTS	14
	6.1	SLOPE STABILITY ANALYSIS RESULTS	14
		6.1.1 General	14
		6.1.2 Material Strength Characterization	
		6.1.3 Slope Stability Results	
	6.2	KINEMATIC ANALYSIS RESULTS	
		6.2.1 General	
		6.2.2 Mine Portal Opening Orientation6.2.3 Mine Portal Opening Protection	
7.0	Concl	usion	
,	7.1	LIMITATIONS	
8.0		RENCES	
			-

PRELIMINARY STABILITY AND HYDROLOGY ANALYSES BRUIN POINT MINE

FIGURES

- Figure 1Site Plan and Vicinity Map
- Figure 2Investigation Location Map
- Figure 3Mine Plan Map
- Figure 4Slope Stability Cross Section Map

APPENDICES

- Appendix A Test Pit Logs
- Appendix B Laboratory Test Results
- Appendix C Hydrology Results
- Appendix D Slope Stability Results

PRELIMINARY STABILITY AND HYDROLOGY ANALYSES BRUIN POINT MINE

ACRONYMS

ASE	American Sands Energy Corporation				
ASTM	American Society for Testing and Materials				
BGS	Below Ground Surface				
CFS	Cubic Feet per Second				
CN	Curve Numbers				
DEG	Degrees				
DOGM	Utah Division of Oil, Gas and Mining				
FT	Feet				
GPS	Global Positioning System				
HEC-HMS	Hydrologic Modeling System				
KSF	Kips per Square Foot				
LL	Liquid Limit				
NOAA	National Oceanic and Atmospheric Administration				
NOI	Notice of Intent				
NP	Non-Plastic				
PCF	Pounds per Cubic Foot				
P.G.	Professional Geologist				
PGA	Peak Horizontal Ground Acceleration				
PI	Plasticity Index				
PL	Plastic Limit				
PSF	Pounds per Square Foot				
SCS	Soil Conservation Service				
URS	URS Corporation				
USCS	Unified Soil Classification System				
USGS	United States Geological Survey				

1.0 INTRODUCTION

1.1 Project Description

Green River Resources (GRR) is proposing to develop the Bruin Point Mine Site in the mountains east of Sunnyside, Utah. URS Corporation (URS) understands that if approved, development of the site will include the following surface features: construction of office space and associated parking, a warehouse and maintenance shop, a tank farm, an electrical building, a graded material processing area for associated covered ore stockpiles, topsoil stockpiles, permanent tailings stockpile, and underground mine portal.

URS understands that the Utah Division of Oil, Gas and Mining (DOGM) has requested additional design information regarding the Bruin Point Mine (Utah DOGM M&RP M/007/0040) to demonstrate that the proposed surface structures can be constructed to prevent harm to nearby natural resources.

Design criteria were prepared to address potential impacts to Range Creek and are supported by slope stability analyses and preliminary analyses of erosion control measures. These analyses are based on material properties measured during the field investigation and engineering judgment. The purpose of the design criteria and analyses are to demonstrate the technical feasibility of slope stability and erosion controls to be incorporated into facility design and allow DOGM approval of the Notice of Intent (NOI) (URS, 2014). Our scope of services is based on our understanding of the assumptions noted in this report and does not include any foundation investigation for buildings or structures.

1.2 Purpose, Authorization, and Work Scope

This report presents the results of work performed by URS. The purpose of this work was to gather subsurface information and develop geotechnical criteria for stockpiling of topsoil and mine tailings derived from the Bruin Point Mine, and to provide criteria for surface contact-water retention regarding the specific size, type, functionality, and purpose of the water retention facilities.

The scope of work performed was presented in our proposal dated July 8, 2014, and authorized on July 23, 2014. The scope of work, as completed, consisted of four tasks:

- Review documents provided to URS including mine layout, drainage plans, and proposed stockpile slopes.
- Investigate subsurface conditions by means of test pit excavations and perform laboratory testing of select soil specimens.
- Develop geotechnical and erosion control design criteria.
- Project Management including administrative tasks, client meetings, and reporting.

As part of its work, URS also developed and implemented a safe work plan prior to the beginning of field work which included a task-specific hazard analysis.

2.0 FIELD INVESTIGATION AND LABORATORY TESTING

2.1 General

Field investigations were performed at the site in two phases. The first phase consisted of a site visit for geological and hydrological reconnaissance and to assess the suitability of the site for drilling or excavation of test pits. The second phase consisted of excavating test pits to investigate subsurface materials.

The project area is in the Roan Cliffs and comprises 1,760 acres of private parcels located in Township 14 South, Range 14 East, Sections 2, 3, and 10, Salt Lake Meridian (Figure 1). The area is in mountainous terrain; elevations range from approximately 8,000 feet to over 10,150 feet at Bruin Point, near the northwest corner of the project area. Access to the site is gained through improved gravel roads to two large antenna arrays present at the site.

2.2 Field Investigation

2.2.1 Geological and Hydrological Reconnaissance

A site visit was performed at the site on July 31, 2014, by a URS Professional Geologist (P.G.) and hydrologist to observe general geologic and hydrologic conditions of the mine portal, processing plant, and topsoil/tailings stockpile areas. Major fractures were measured in the rock outcropping at the proposed mine portal area. The topography of the site is variable with some areas of steep rugged terrain and areas of gradual slopes on the plateau consisting of native clayey topsoil, moderate vegetation, and sandstone or limestone outcroppings.

Thin surface soils (0-4 ft [feet] thick) were observed at the surface of the plateau (Bruin Point). The Parachute Creek Member of the Green River Formation was observed exposed on the improved gravel roads and is covered with stress relief factures as shown in Photo 1. Relief fractures occur when compressional stress on underlying rocks is removed by the erosion of overlying rock layers (Wyrick and Borchers, 1981). The relief of stress on exposed material on valley/canyon walls and floors results in a predictable pattern of shallow, interconnected vertical and horizontal fractures.

Photo 1. Improved gravel road covered with stress relief fractures.

PRELIMINARY STABILITY AND HYDROLOGY ANALYSES BRUIN POINT MINE

The mine portal area is located within the head waters of Bear Canyon on the Roan Cliffs. The proposed portal is located on steep rugged terrain (slopes between 30-50 degrees) approximately 800-900 feet below the top of the Plateau. There are no roads to the proposed mine portal area and access is by foot. Portal area is covered with thin layer (2-6 inches) of soil and vegetation debris mixture with steeper slopes (> 30°) barren of soil/vegetation debris. The area between the proposed mine portal to the top of the plateau contains loss rock and with high rock fall hazard.

The proposed mine portal area was not highly fractured with the majority of the fractures observed located in bitumen barren sandstone units. The fracture observed within the mine portal area has an orientation of 70° to 105° southeast with near vertical dip of 85-90° to the northeast as shown in Photo 2.

Photo 2. Fracture observed within mine portal area.

The high bitumen sandstone units within the mine portal area appear to contain stress relief exfoliation-like fractures as shown in Photo 3. These stress relief exfoliation-like fractures are likely related to the stress of the overburden units pressing downward and laterally releasing the stress outward away from the cliff face.

Photo 3. Stress relief exfoliation in high bitumen sandstone units.

The surface of the ore body (high bitumen containing sandstones) is covered with desiccation-like texture as shown in Photo 4. This texture is likely related to the dry/oxidation of the bitumen on the surface sub sequential differential erosion of the surface.

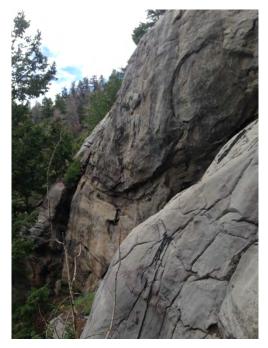


Photo 4. Surface of high-bitumen sandstone covered with desiccation-like texture.

2.2.2 Test Pit Excavations

Eight sites were selected (TH14-01 through TH14-08) at which test pit explorations were to be completed. One planned exploration test pit, identified as TH14-02 in Figure 2, was not performed because locked gates prevented access to the test pit location. However, based on the consistency of the surrounding test pits, the exclusion of TH14-02 was not significant. All test pits for this study were excavated using a Bobcat E45 compact excavator. A Garmin Rino650, hand-held Global Positioning System (GPS) equipment was used to locate test pit sites in the field. Where possible, the sites were collocated with historic drilling sites to reduce ground disturbance at the site. Associated equipment and excavation services were provided on August 11, 2014, by Direct Push Services, LLC, of Salt Lake City, Utah, under subcontract to URS. Each test pit was excavated to refusal, which was encountered at various depths as indicated on the Surface and Shallow Soil Sampling Logs (test pit logs) presented in Appendix A.

Test pit excavations were observed, logged, and sampled, by a URS field engineer. In general, samples were collected from the wall of the excavation by hand-digging/shovel use. Some samples were selectively collected from the excavator bucket where depth of excavation precluded entry for hand-sampling. The investigation locations are shown in Figure 2 and summarized in Table 1.

Test Pit ID	Exploration Depth ¹	Northing	Easting	Surface Elevation
	(<i>ft</i>)	(ft)	(ft)	(<i>ft</i>)
TP14-1	2.4	7,039,763	1,967,721	9,982
TP14-2	N/A ²	7,039,641	1,968,988	9,762
TP14-3	3.8	7,039,242	1,966,905	10,035
TP14-4	6	7,038,686	1,968,936	9,977
TP14-5	8	7,038,699	1,967,445	9,925
TP14-6	1.7	7,037,679	1,967,755	10,056
TP14-7	5.8	7,037,320	1,968,517	10,027
TP14-8	5.3	7,037,026	1,968,918	10,015

 Table 1. Test Pit Location Summary

Notes: State Plane Coordinates (Utah Central NAD 83); ft = feet

1. The depth was measured from the ground surface.

2. The site was inaccessible and exploration was not performed; identified coordinates were proposed.

Groundwater was not encountered during test pit exploration.

2.3 Laboratory Testing

Laboratory testing was performed on select soil specimens obtained during the field investigation to assist in their classification as well as to evaluate engineering properties. Testing was performed by IGES of Salt Lake City, Utah, in general accordance with ASTM International (ASTM) standards. Laboratory tests included: fines content (ASTM D1140); Atterberg limits (ASTM D4318), and natural moisture content (ASTM D2216). Strength and permeability testing was performed in remolded samples. Laboratory tests results sheets are presented in Appendix B.

2.3.1 Index Properties

The results of index tests performed in each test pit are summarized in Table 2, and also shown on the logs in Appendix A, and included in the Laboratory Test Results in Appendix B.

Location	Approximate Depth BGS	USCS Classification ¹	Fines Content	LL	PI	Moisture Content
	(<i>ft</i>)	(-)	(%)	(%)	(%)	(%)
TH14-03	1	СН	82.0	57	31	16.4
TH14-04	1.5	SC	45.2	35	11	7.9
TH14-04	3	SC	26.1	37	14	13.1
TH14-05	3.75	CL	60.5	40	19	16.7
Tailings ²	N/A	SP-SM	9.1	NP	NP	
Partings ²	N/A	SC	38.2	29	8	

Table 2. Summary of Index Testing

Notes: BGS = Below Ground Surface; USCS = Unified Soil Classification System; ft = feet; LL = Liquid Limit; PI = Plasticity Index; NP = Non-plastic

1. The classification was based on ASTM D2487.

2. The sample was provided to URS by ASE.

2.3.2 Direct Shear Testing

Strength testing was performed on remolded samples from test pit TH14-04 and on tailings and partings samples provided to URS by ASE. Strength testing consisted of a series of direct shear tests under drained conditions in general accordance to ASTM D3080. The results of the strength testing are also provided in Appendix B.

Direct shear testing was performed on a sample from testing pit TH14-04 at a moisture content (after conditioning) of approximately 16 percent and a target dry density of 105 pounds per cubic foot (pcf). A vertical confining stress of approximately 8 kips per square foot (ksf) was selected to simulate the weight of the stockpile embankment above the shear surface resulting in a one-point drained strength of 31 degrees.

PRELIMINARY STABILITY AND HYDROLOGY ANALYSES BRUIN POINT MINE

Direct shear testing was performed on processed and moisture conditioned tailings sand obtained from ASE at a target dry density of 105 pcf. The vertical confining stresses of 4, 8, and 16 ksf, were selected to simulate the anticipated stress conditions in the field resulting in a measured drained strength of 33 degrees with a cohesion intercept of 129 pounds per square foot (psf).

Additionally, direct shear testing was performed on the partings sample obtained from ASE. The partings material is anticipated to be used as a liner material below the tailings stockpile and was provided in the form of a rock-core. The rock-core sample was modified by IGES to create field-form samples in two steps. Beginning with rock cores obtained from the target layer, the partings were crushed using a proctor hammer until all crushed rock particles were finer than the No. 4 sieve. The particles were then pulverized further using a cast iron mortar and pestle. After moisture conditioning the partings to 16 percent, samples were compacted to a dry density of 110 pcf. Shear testing was performed at confining pressures of 4, 8, and 16 ksf, to simulate anticipated stress conditions within the liner.

2.3.3 Permeability Testing

Permeability testing was performed on a single partings sample provided to URS by ASE in general accordance with ASTM D5084. The procedure for crushing, pulverizing, moisture conditioning, and compacting, the partings sample was performed in the same manner as described in Section 2.3.2. The results of the test provided an average hydraulic conductivity of 2.3 x 10⁻⁷ cm/s using a flexible wall permeameter. The results of this test are also provided in Appendix B.

3.0 SITE CONDITIONS

3.1 Regional Geologic Setting

The Bruin Point Mine is located in eastern Utah in the Book Cliff-Roan Plateau section of the Colorado Plateau physiographic province (Stokes, 1986) in rugged, mountainous terrain with steep slopes. The mine is located approximately 25 miles east of Price near the headwaters of Dry Creek and Range Creek at elevations between 9,200 and 10,200 feet above mean sea level.

The bitumen sand deposits at the mine site are within what is collectively known as the Sunnyside tar sands. The deposits occur in late Paleocene/early Eocene (circa 60-40 million years ago) rocks in the upper part of the Colton Formation and the lower part of the Green River Formation, both of Eocene age. Both are derived from deposition into Lake Uinta, a prehistoric lake that persisted for 15 million years in a large intermontane basin occupying the regions of the present-day Uinta and Piceance Basins. These units consist of interbedded, fine-grained shales and sandstones. Bitumen has migrated from the shale into the sand units.

The Green River Formation overlies the Colton Formation. This formation consists of freshwater marlstone, oil shale, limestone, siltstone, sandstone, tar sands, and shale. The contact between the Colton and Green River Formations is identified as the horizon where dominantly fluvial strata below give way to dominantly lacustrine strata above (Morrison Knudsen, 1984). The tar sands beds occurring in the lower part of the Green River are similar in origin and appearance to the tar sands beds of the Colton Formation.

Bitumen occurs chiefly in the sandstone beds of the Colton and lower part of the Green River Formations. The tar sands beds outcrop conspicuously along the west face of the Book Cliffs, locally known as Bruin Point near the headwaters of Range Creek. Tar sands outcrops are persistent for over nine miles along the west face of the Book Cliffs (Morrison Knudsen, 1984).

3.2 Specific Site Conditions

3.2.1 General

A site plan for the Bruin Pont Mine site showing the locations of test pit explorations is provided in Figure 2. Details of the field investigations performed at this site and laboratory test results are presented in Section 2.

3.2.2 Soil Conditions

In large part, the ground surface was observed in the test pit excavations to consist of approximately 1 foot of dark-colored topsoil containing roots, fibrous matter, and/or other organic components. The topsoil is generally unsuitable for engineering purposes. The surface is vegetated with grasses and sage, with patches of pine and aspen trees. The surficial soil (topsoil) is generally underlain by brown clayey sand (SC) or clay (CL, CH) with varying amounts of sand and increasing gravel and cobble content with depth. Cobbles encountered were generally observed to be less than 10 inches in diameter. The clayey soils are underlain by bedrock materials. See the test pit logs in Appendix A.

4.0 DESIGN CRITERIA

4.1 General

The project site is located at the headwaters of Range Creek. Range Creek is a natural water way, which flows into the Green and Colorado Rivers. The following design criteria are required and provided to outline the standard of care for protection of groundwater and surface water in Range Creek. The criteria are based on the slope stability analyses and preliminary hydrological assessments performed for the site and proposed surface structures. Design criteria are provided below for each of the primary surface structures.

All hydrological criteria provide below are based on consideration of the site as a zero discharge facility based on the 100-year preliminary storm event calculations provided herein, 150-foot disturbance zone around Range Creek, lining of all pond and drainage swales with properly compacted mine partings, a 3-foot minimum freeboard limit for all ponds, and regular maintenance.

4.2 Mine Portal

Geotechnical

- Orient portal openings parallel to strike and dip of predominant joints and fractures.
- Provide benching of upslope rock/soil face.
- Provide mesh and / or rock catchment above portals.
- Provide patterned rock bolting with cable mesh at portal face.

Hydrological

- Provide drainage berms and channels around the plant site to direct any surface water away from the site and contain on-site storm water and erosion. The berms will be constructed as described in Section 5.
- Direct process and on-site storm water to a retention pond.

4.3 Plant Site

The plant site will contain the process equipment for the bitumen extraction process along with an ore stockpile that will be covered.

Geotechnical

- Provide a clay liner of mine partings material that is adequately broken down and compacted according to the project specifications.
- Provide compacted gravel working surface above the clay liner.
- The slope angles of stockpiles formed with conveyor discharge will likely vary depending on the moisture content of the stockpiled material.
- Angle of repose data for ore produced at the mine are not available.

Hydrological

- Provide clay liner below the plant site to minimize infiltration of process and storm water into the bedrock and on-site soils.
- Provide drainage berms and channels around the plant site to direct any surface water away from the site and contain on-site storm water and erosion. Construct the berms as described in Section 5.
- Direct process and on-site storm water to a retention pond.

4.4 Topsoil Stockpiles

The surface soils at the site consist of topsoil underlain by a 1 to 7-foot layer of clayey soils. Topsoil and clayey soils are proposed to be stripped from the large tailings stockpile area and stockpiled separately. The clayey soils may later be mixed with clayey mine partings, and used as cover for the proposed tailings stockpile.

Geotechnical

- Screen topsoil and clayey surficial soils to remove cobble or large size rocks to facilitate compaction. Stockpile for later use of this material as cap or cover for the tailings stockpile. Mine partings materials may be mixed with topsoil and surficial clayey soils.
- Provide compaction of the clayey surficial soils using the compaction criteria provided in the project specifications. Topsoil will be placed under reduced compaction criteria as specified in the field because the compaction criteria outlined in the specifications will be difficult to implement in topsoil with high organic content.
- Construct compacted topsoil stockpiles at slopes no steeper than 2.25H:1V to meet appropriate factors of safety based on stability modeling discussed in the stability section of this report.
- Do not stockpile snow on, or near slopes.

Hydrological

- Provide drainage berms and channels around the stockpiles to direct any surface water away from the site and contain storm water and eroded soils within the site. The berms will be constructed as described in Section 5.
- Direct process and on-site storm water to a retention pond.

4.5 Tailings Stockpile

A permanent stockpile is proposed for long-term storage of tar sand tailings material. The tailings will be mechanically transported to the permanent tailings stockpile, moisture conditioned to achieve specified compaction criteria, and mechanically compacted using conventional compaction equipment. No hydraulic transportation or deposition of tailings will be performed. Strip surface soils below the stockpile as outlined below and a clay liner will be constructed before mechanical placement of tailings begins.

Geotechnical

• Strip topsoil and surficial clayey soils in sufficient quantity to provide a suitable cover or cap material during reclamation. This includes all surficial soils with significant organic matter

(greater than approximately 5% organics by volume), debris, deleterious or loose material, or high-plasticity soils (LL>50).

- Provide compaction of the tailings stockpiles using the compaction criteria provided in the project specifications.
- Construct compacted tailings stockpiles at slopes no steeper than 2.25H:1V to meet appropriate factors of safety based on stability modeling discussed in the stability section of this report.
- Do not stockpile snow on, or near slopes.

Hydrological

- Provide clay liner below the tailings stockpile to prevent infiltration of process and storm water into bedrock. The liner will be constructed according to the requirements in the project specifications.
- Provide cap or cover for the tailings facility as soon as possible to reduce infiltration into the stockpile.
- Provide single or multiple retention basins to contain storm water that falls within the tailing stockpile. This water can be used as process water.
- Provide drainage berms and channels around the tailings stockpile to direct any surface water away from the site and contain on-site storm water and erosion. The berms will be constructed as described in Section 5.
- Provide check dams to reduce erosion potential. The check dams will be constructed as described in Section 5.
- Direct process and on-site storm water to a retention pond.

5.0 HYDROLOGY

5.1 Hydrology

The existing terrain at the site is mountainous with steep slopes and the area is subject to high intensity, high frequency storm events. The majority of the project is situated within the Range Creek Watershed and a lesser portion of the project lies within the Grassy Trail Creek Watershed (see Appendix C for the Watershed Map). During the previously noted July 31, 2014, site visit, the existing land cover terrain, soil type, and topographic features were verified. Precipitation for this area was acquired from National Oceanic and Atmospheric Administration (NOAA) Atlas 14 for the area east of Sunnyside, Utah, at the Bruin Point on Patmos Ridge (The exact location is 39.6343 latitude and -110.3391 longitude with an elevation of 10,073 feet). Precipitation for the 10- and 100-year storm events (over 24 hours) are 2.22 and 3.25 inches, respectively. The Soil Conservation Service (SCS) type II storm event was analyzed using Hydrologic Modeling-System (HEC-HMS) v4.0 for the 10- and 100-year events.

The amount of rainfall that contributes to runoff can be calculated based on empirical relationships referred to as runoff curve numbers (CN). The CN values are related to soil type, soil infiltration capacity, land use, and depth to the phreatic surface and were chosen for the site based on field observations, laboratory test data, and engineering judgment. The site can be characterized using three CN groups including areas as follows:

- 1. Minor disturbance including the topsoil stockpiles, road shoulders, staging areas, and other areas of infrequent access.
- 2. Significant disturbance such as roads, structures and the immediate mine portal access vicinity.
- 3. Tailings site exhibiting a high level of compaction with little interstitial space.

The site soils and tailings materials were available for visual inspection. The results of the hydrologic analysis are provided in Appendix C.

Retention basins are required at various locations around the site and will be sized with appropriate safety factors to contain all surface water and prevent any discharge off the site based on the 100-year storm event discussed above. Disturbance from this project will be considered as a minimum of one hundred fifty feet away from Range Creek.

To minimize any infiltration, the retention basins must be lined with mine partings or other form of equivalent protection. The basins will maintain minimum of 3 ft of freeboard and will be regularly maintained to ensure design capacity.

To capture and contain all runoff during the 100-year storm event, eight retention basins were designed based on preliminary calculations for the site and assuming a 72-hr (hour) holding time. Table 3 presents the preliminary Q100 volume and peak inflow for each basin. These eight basins are shown on Figure 3. The ultimate configuration and detailed design will require a cursory review from State of Utah Department of Dam Safety. A more detailed analysis will need to be completed to verify assumptions made in this analysis at the design level. Operational control will allow the placement of retention facilities to be strategically placed based on site layout and these basins may be split into multiple locations.

Basin	Location	Peak Inflow 100-YR	Total Volume 100-YR
		(cfs)	(acre-ft)
1	Mine Portal	5.0	0.4
2-5	Haul Road	5.1	0.4
6	Plant Site West	22.6	1.9
7	Plant Site East	22.6	1.9
8	Tailings	89.0	18.7

 Table 3. Summary of Hydrologic Results

Notes: cfs = cubic feet per second; ft = feet

5.2 Erosion Control

Water that falls within the project areas will be separated from rainfall outside the project area using earthen berms with clay lining or suitable geomembrane. The earthen berms were conceptually designed for both containment of drainage runoff within the project area and to divert offsite flow. The preliminary conceptual design of the berms did not consider the effects of significant erosion or slope failure of any kind. Final engineering design of berms and ditches should be performed during final design.

Construct 4-ft high, earthen berms of clean native or import soil around the perimeter of any disturbance to ensure all runoff within the project area is diverted to a retention pond. Construct the berms with a 2-ft wide flat top with 2H:1V side slopes and be lined with a clean 2-ft thick clay liner. As an alternative, the berms may also be lined with a geo-membrane of suitable thickness to minimize ripping or puncture. The berms will not be constructed of topsoil and will be free of organic material. Channels to divert surface water will be integrated into the perimeter berms to minimize infiltration.

The tailings material and other disturbed soils have a very high potential to be suspended in runoff and erode quickly. Construct check dams to block sediment transport down the face of the tailings stockpile. Construct check dams measuring 3-ft in height of suitable rock. Inspect routinely and maintain as needed to insure proper performance. After the life of project is complete, construct a cap over the tailings material.

6.0 SLOPE STABILITY ANALYSIS RESULTS

6.1 Slope Stability Analysis Results

6.1.1 General

Slope stability analyses were performed for the maximum cross sections of the topsoil and permanent tailings stockpiles at the Bruin Point Mine Site. Two orthogonal sections of the permanent tailings stockpile and four sections of the topsoil stockpiles were examined using limit-equilibrium analyses.

The limit-equilibrium computer program Slide, version 6.005 by Rocscience, Inc. of Toronto, Canada, and Spencer's method of slices were used for the analyses. Spencer's method satisfies all conditions of static equilibrium, including horizontal and vertical force imbalance and moment imbalance. Search routines available within the software package were used to define circular trial shear surfaces. Additional noncircular trial shear surfaces were also examined to locate critical shear surfaces.

Preliminary conceptual drawings of the tailings and topsoil stockpiles were provided to URS by ASE. These drawings included cross sections of each stockpile (identified as A-A and/or B-B for each stockpile). Additional cross sections were developed by URS to include more critical stability cases (identified as A-A' and/or B-B'). The slope stability cross section locations used in the analyses are shown in Figure 4. Some of the preliminary conceptual A-A and B-B stockpile cross sections showed discontinuities and localized slope variations that are not typical of stockpile construction. Thus, some interpretation and line smoothing was performed in stability model development.

At final completion, the proposed tailings stockpile will be on the order of 430-ft high, 3,600-ft long, and 2,000-ft wide. The north and south topsoil stockpiles will be approximately 30- and 50-ft high, respectively.

Temporary plant site stockpile configurations were not provided to URS. However, plant stockpiles are anticipated to consist of loose or uncompacted mine tailings or tar sand ore awaiting processing or transportation to permanent stockpiles. As such, stability can be considered based on the angle of repose. The angle of repose is defined as the largest possible angle of incline for a slope of loose material or soil, which can be maintained without sliding under the force of gravity. This slope depends only on material properties (moisture, particle size, etc.) and is not affected by vertical confining pressure. Furthermore, slope failures tend to consist of sliding surficial particles or material rather than a larger slump failure. The mine tailings angle of repose was measured under various moisture conditions as provided to URS and included in Appendix B; however, a sample or measurement of the tar sand ore angle of repose was not provided to URS.

The local phreatic surface was presumed to be located in bedrock below each stockpile as no groundwater was observed in the subsurface explorations. Therefore, it is not expected to impact the stability of each stockpile. Furthermore, anticipated rain/snowfall in the area and the free-draining nature of the stockpile materials is believed to preclude the possibility of significant moisture accumulation in, or beneath, the stockpile or liner material.

6.1.2 Material Strength Characterization

A material strength characterization was performed to estimate the unit weight and drained-strength parameters of each material considered in the modeling process. The unit weight, drained cohesion, and drained friction angle of the materials were obtained from values measured in laboratory tests. Because soils at the site are expected to be unsaturated and stockpile construction above the clay liner is expected to take years to be completed, drained-strength parameters were used in the analyses to consider long-term loading conditions with the stockpiles in-place. A summary of material strength properties used to develop the stability model is provided in Table 4. In the case of seismic stability, the strength parameters of the clay liner were reduced by approximately 20 percent to conservatively account for cyclical softening of the clay due to ground shaking. The strength parameters of the bedrock, native topsoil, and tailings sand, were not reduced.

The strength parameters for bedrock were assumed based on published geologic descriptions of rock types in the area (limestone, siltstone, mudstone, sandstone, and shale). This is a conservative assumption as bedrock strength is unlikely to be the determining factor in stockpile stability. A minimum setback distance from the edge of the plateau of 25 feet was calculated based on rock mass dipping planes measured at the site. However, it is likely that operation constraints will dictate a larger setback distance.

During field investigations, native topsoil samples were collected on which laboratory tests were later performed. Because only one sample was tested, the cohesion was back-calculated from the laboratory test data assuming a drained friction angle, ϕ' , of 28 degrees.

Preliminary direct shear testing was performed on tailings sand and proposed clay-liner samples provided to URS by ASE. The laboratory test results were used to estimate drained-strength parameters for the tailings sand and clay liner; however, the proposed clay-liner strength parameters are contingent on achieving acceptable permeability using proposed production methods and also based on very limited testing. As such, additional testing and analyses should be performed to provide higher reliability of the final design. If another suitable material must be selected to achieve adequate liner permeability, these analyses may no longer be appropriate.

Material Description	Unit Weight	Cohesion, c'	Drained Friction Angle, φ'
	(pcf)	(psf)	(deg)
Bedrock	140	5,000	30
Native Topsoil	120	600	28
Tailings Sand	120	130	33
Clay Liner (Crushed Mine Partings)	125	735 / 590 ¹	30 / 24 ¹

 Table 4. Material Properties for Slope Stability Analyses

Notes: pcf = pounds per cubic foot; psf = pounds per square foot; deg = degrees

1. Strength parameters (c' and ϕ') were reduced by 20% in seismic-case stability analyses.

6.1.3 Slope Stability Results

Slope stability was considered for general stability of stockpile materials for large continuous uniform slopes, and for the preliminary conceptual cross sections as provided by ASE and discussed in Section 6.1.1. Each case also considered seismic stability for a 2,475-year seismic event (2% probability of exceedance in 50 years). The associated peak horizontal ground acceleration, PGA, was determined to be 0.174g (USGS, 2014). Seismic cases were modeled using a pseudo-static analysis, where dynamic earthquake loading simulated using a static force equal to the soil weight multiplied by a seismic coefficient, k. For the seismic analyses, the pseudo-static seismic coefficient was calculated as half the PGA.

6.1.3.1 Stability Results for Required Slope Angles

For each stockpile material, cross sections were developed with various slope angles to identify a required acceptable slope for each stockpile. The required slopes determined from each of the general stability models and associated factors of safety, by stockpile type, are presented in Table 5. Source information for Table 5 is included in Appendix D, Figures D1 through D4. The slope constraints shown in Table 5 should be applied to existing and future drawings and cross sections. The general slope analysis and results in Table 5 supersede all other analyses. See Sections 4.4 and 4.5 for more information about required slope angles.

Stockpile Description	Slope	Static Factor of Safety	Seismic Factor of Safety
Native Topsoil	2.25H:1V or flatter	1.55	1.26
Tailings Sand	2.25H:1V or flatter	1.51	1.22

Table 5. General Slope Stability Results

Notes: Target Static Factor of Safety = 1.5; Target Seismic Factor of Safety = 1.2

6.1.3.2 Stability Results of Preliminary Conceptual Cross Sections

For each of the three stockpiles (2 native topsoil stockpiles; 1 tailings stockpile), slope stability analyses were performed based on preliminary conceptual cross sections provided by the client and additional cross sections developed by URS as discussed in Section 6.1.1. On average, the preliminary conceptual tailings and topsoil stockpile slopes are flatter than the acceptable slope 2.25H:1V. However, the preliminary conceptual drawings should be revised to reflect the required 2.25H:1V slopes during final design.

Because a clay liner is expected to be constructed beneath the tailings stockpile, a well-defined planar layer will exist between the tailings stockpile and the natural bedrock. The clay liner should be expected to provide adequate resistance against sliding of the entire stockpile and noncircular failure surfaces shearing along the liner interface. To examine this case, a thin 4-foot-thick clay layer was modeled beneath the tailings stockpile extending well beyond the head and toe of the stockpile. An automated search for failure surfaces, which intersect all or part of the clay liner beneath the stockpile, was performed.

PRELIMINARY STABILITY AND HYDROLOGY ANALYSES BRUIN POINT MINE

The results for both static and seismic loading of the preliminary conceptual cross sections provided by the client are presented in Table 6. Source information for Table 6 is included in Appendix D, Figures D5 through D20.

Stockpile Description	Section	Static Factor of Safety	Seismic Factor of Safety
Topsoil Stockpile No. 1	B-B	>3.0	2.70
Topsoil Stockpile No. 1	B-B'	2.57	2.05
Topsoil Stockpile No. 2	A-A	>3.0	>3.0
Topsoil Stockpile No. 2	A-A'	>3.0	2.74
Tailings Stockpile	A-A	1.51	1.23
Tailing Stockpile (Liner) ¹	A-A	1.72	1.24
Tailings Stockpile	B-B	1.82	1.44
Tailing Stockpile (Liner) ¹	B-B	2.91	1.96

 Table 6. Slope Stability Results of Proposed Conceptual Cross Sections

Notes: Target Static Factor of Safety = 1.5; Target Seismic Factor of Safety = 1.2

1. For these cases the shear surfaces were forced to pass through the liner at the base of the tailings stockpile. This resulted in higher factors of safety compared to shear surfaces evaluated higher up in the model. See Appendix D for more information.

6.2 Kinematic Analysis Results

6.2.1 General

A preliminary kinematic analysis of the predominate joints and fractures was performed based on observations collected in the field. The mine portal will be constructed in accordance with MSHA regulations and constructed in a way to prevent any rockfall.

6.2.2 Mine Portal Opening Orientation

The mine portal opening will be aligned parallel to the strike of the predominant joint set and the dip of the portal face will also be designed to parallel the predominant dip of the near-vertical fractures. Detailed drawings of the portal orientation were not available for review at the time of this report. The mine portal opening will be constructed in a way that meets MSHA standards.

Due to the exfoliation visible at the surface, pattern-rock bolting and cable mesh will be incorporated into the design of the portal face. Stabilization using shotcrete is not recommended because of the potential to building pore pressure behind the shotcrete over time.

6.2.3 Mine Portal Opening Protection

Mine portal protection is paramount for safe operations in the vicinity of the mine entrance. The mine portal will be prepared and developed by removal and stabilization of loose and fractured surface rock, with which may include the following:

- Benching of the upslope rock/soil face.
- Installation of high-resistance and high-capacity rockfall catchment fences and containment wire mesh positioned upslope of the mine portal.

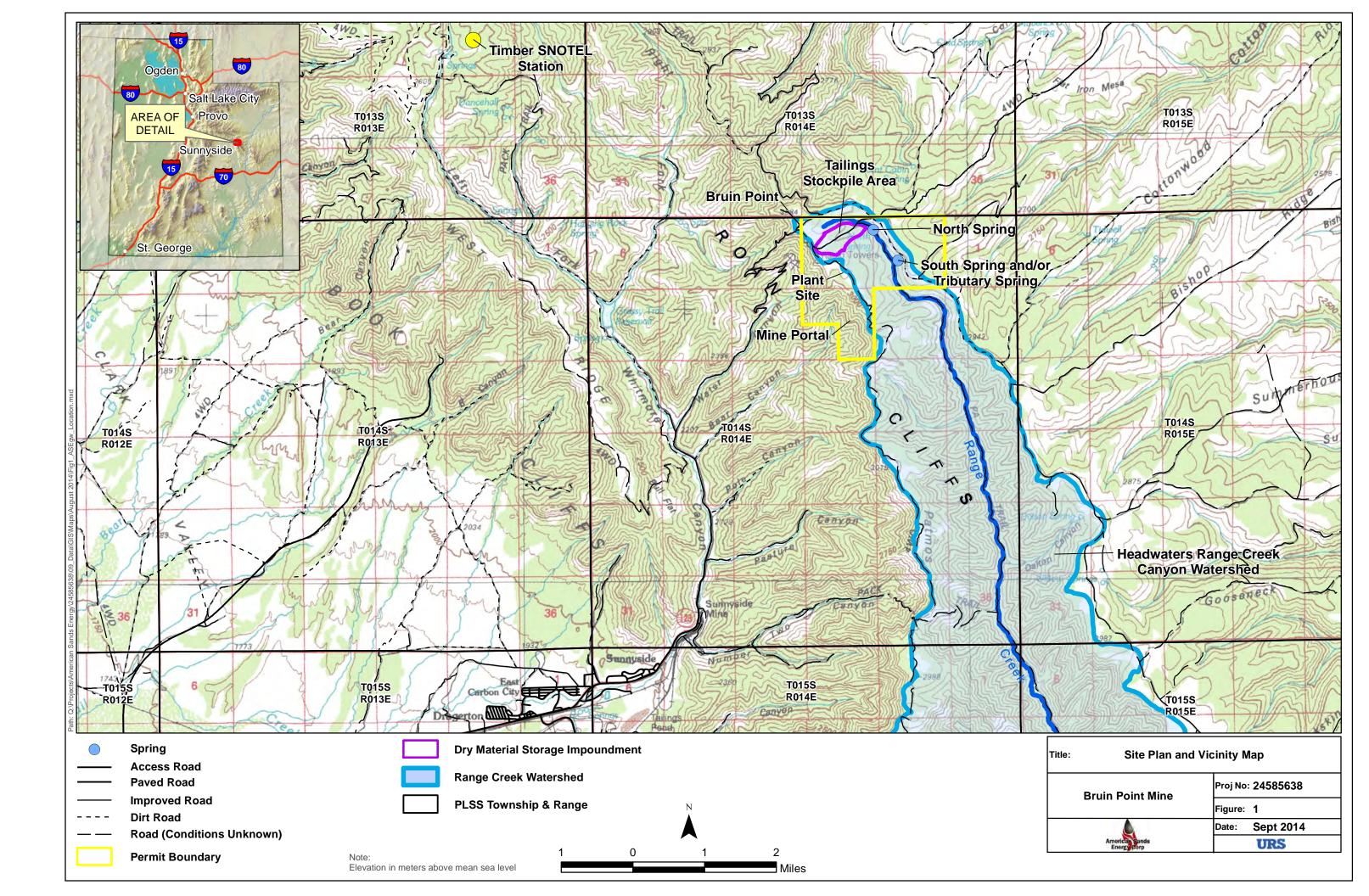
7.0 CONCLUSION

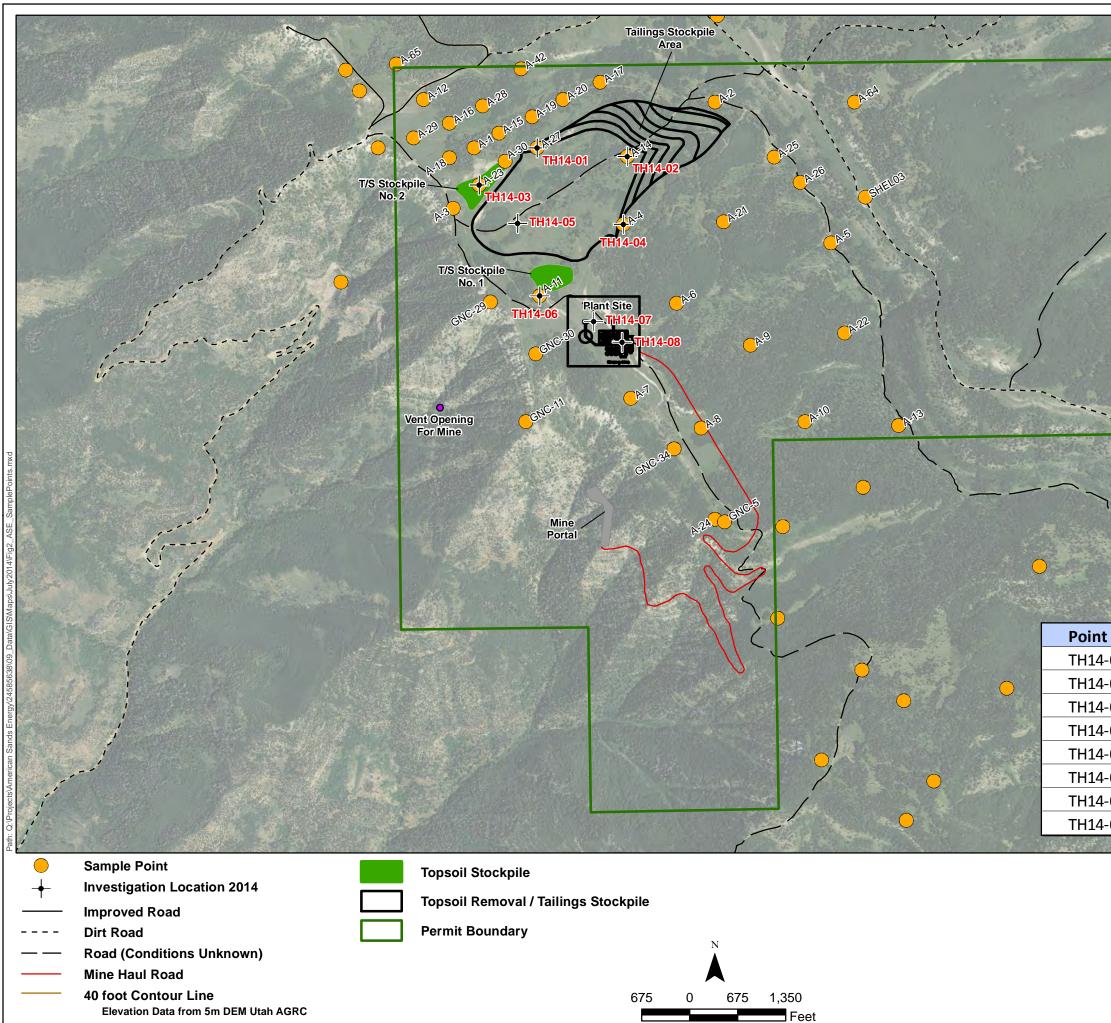
The design criteria contained in this report are based on URS field investigations, preliminary stability and hydrologic analyses, and engineering judgment. The design criteria may be utilized to provide response to DOGM in support of approval of the NOI (URS, 2014). However, the engineering analyses provided herein are not adequate for final design and construction as they are based on initial data and preliminary design information.

7.1 LIMITATIONS

The recommendations contained in this report are based on the limited field investigation and laboratory testing agreed to in the project scope, and on our understanding of the proposed preliminary construction plans provided to us. There is an inherent potential for variability in the subsurface materials and conditions that exist between points investigated as well as in the properties of the materials themselves. It is not practical or possible to obtain a large enough sampling to eliminate the risk of variation. Logs of subsurface conditions, collected samples, and test results should be considered a limited sampling of existing materials that may not fully represent the actual range of conditions.

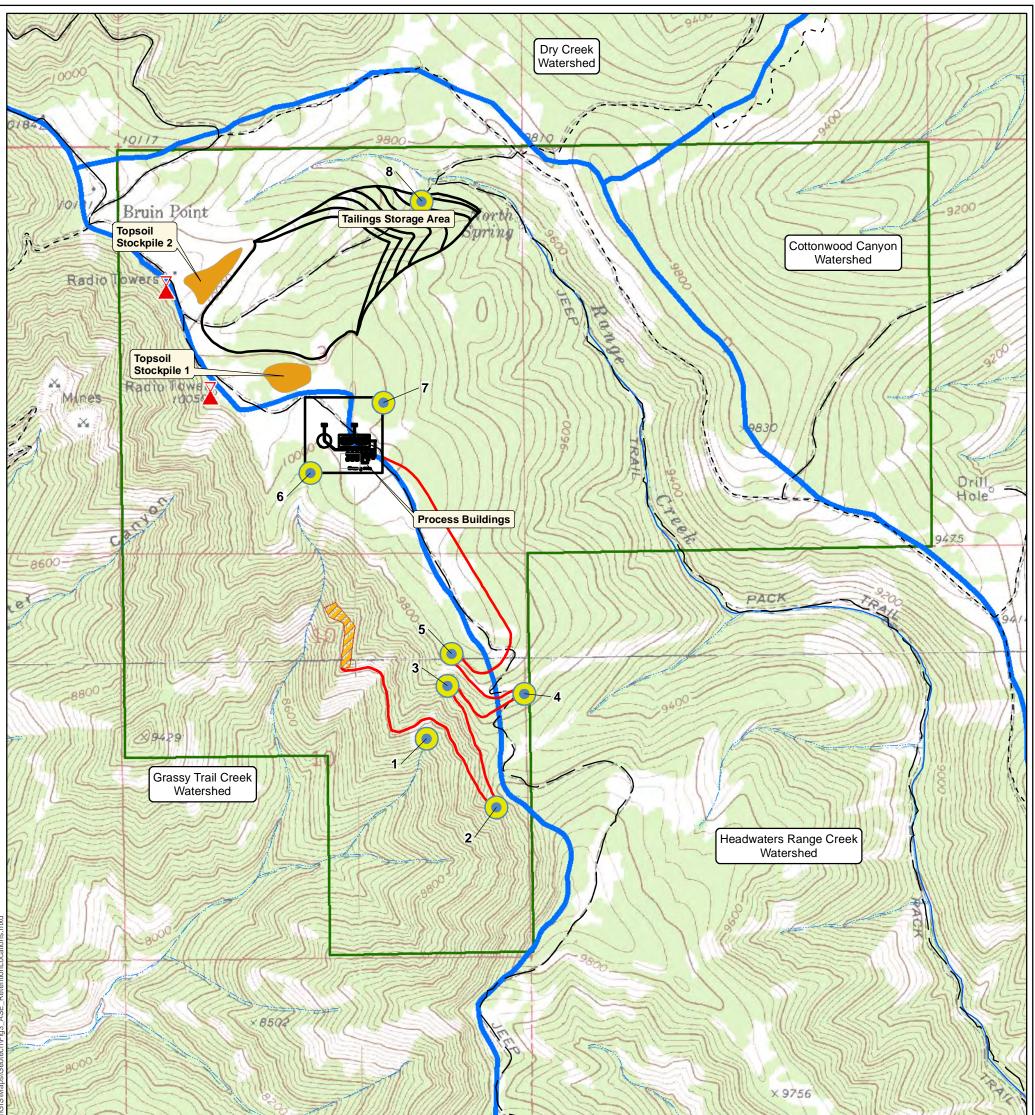
Additional engineering services are recommended to assist in design optimization for the project. These services should include additional investigation, sampling and testing to better characterize subsurface material and conditions and reduce the risk of significant variation. URS represents that its services are performed within the limitations prescribed by ASE, in a manner consistent with the level of care and skill ordinarily exercised by other professional consultants under similar circumstances. No other representation to the American Sands Energy Corp., expressed or implied, and no warranty or guarantee is included or intended. URS does not assume responsibility for the accuracy of project information provided by others.


This report may not contain sufficient information for purposes of other parties or for other uses. This information is not to be used for bidding purposes. The scope of work did not include an investigation of potential geoenvironmental hazards such as soil and/or groundwater contamination, or the potential for hazardous materials at the site.


8.0 **REFERENCES**

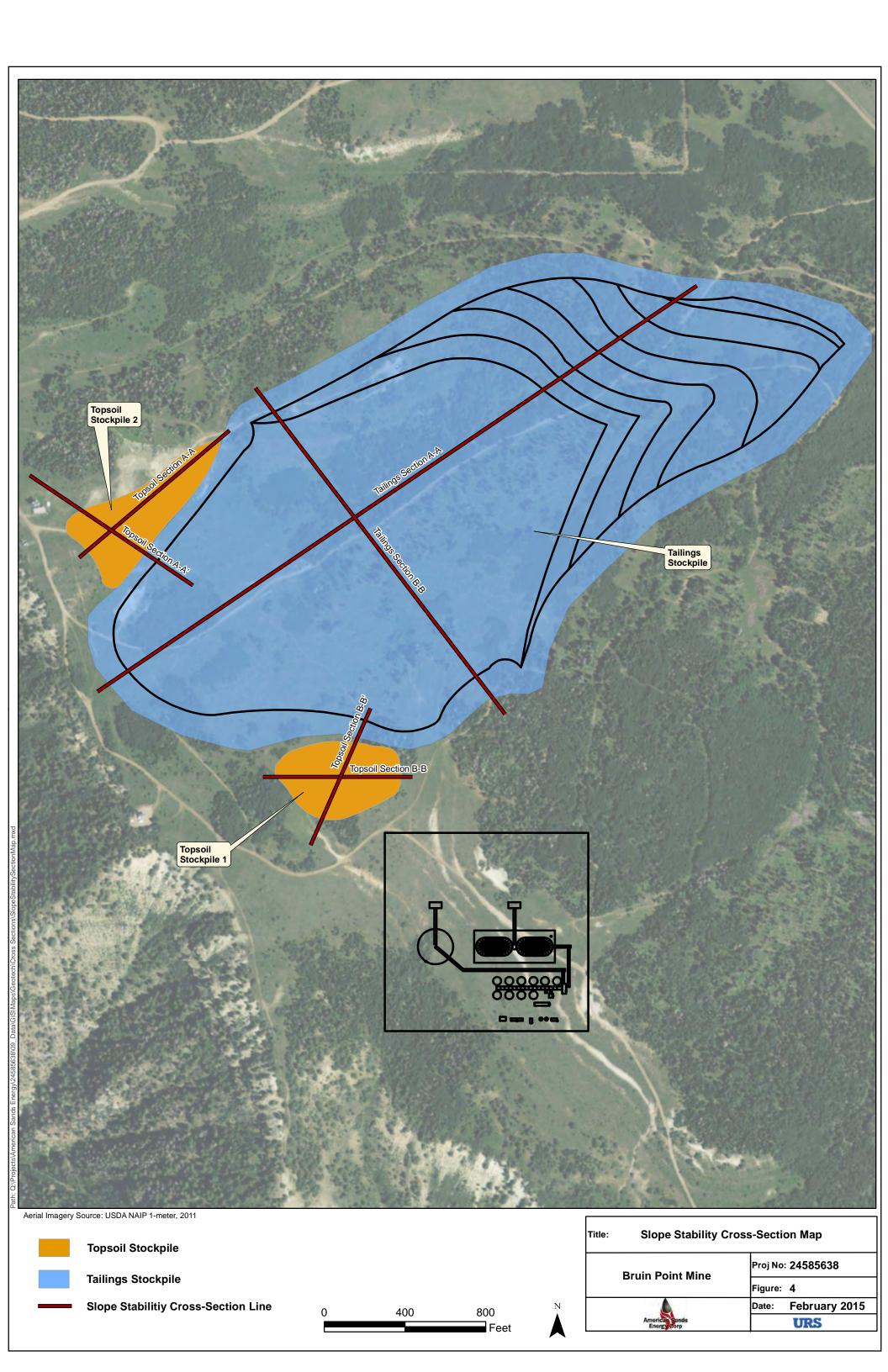
Morrison Knudsen. 1984. Sunnyside Tar Sands Project: 1983 Geologic Evaluation. Boise, Idaho.

- Stokes, William Lee. 1986. Geology of Utah. 1st ed. Salt Lake City, Utah: Utah Museum of Natural History and Utah Geological and Mineral Survey.
- United States Geological Survey (USGS). 2014. "2008 Interactive Deaggregations." http://geohazards.usgs.gov/deaggint/2008/.
- URS Corporation, and Mine Engineers, Inc. 2014. "Notice of Intention To Commence Large Mining Operations: Bruin Point Mine". Salt Lake City, Utah: American Sands Energy Corporation.
- Wyrick, G.G., and J.W. Borchers. 1981. Hydrologic effects of stress-relief fracturing in an Appalachian Valley. US Geological Survey Water-Supply Paper 2177, US Government Printing Office.


FIGURES

AT		
	and the second s	
}		
i i		
24		
and the second		
t ID	Latitude	Longitude
-01	39.64010525	-110.3376721 (
-02	39.63972631	-110.3331777
-03	39.63870448	-110.3405934
-04	39.63710679	-110.3334068
-05	39.63719365	-110.3387013
-06	39.63438462	-110.337645
-07	39.63337053	-110.3349577
-08	39.63254919	-110.3335455
Ser La		
	Title: Investigation Locatio	on Map
		Proj No: 24585638

Bruin Point Mine	Proj No: 24585638				
	Figure: 2				
	Date: February 2015				
American Sands Energy Corp	URS				



octs\American Sands Enerov\24585638\09 Data\	60000	-8500	A A A A A A A A A A A A A A A A A A A		
Path: O:\Pro	Affected Area Mine Haul Road	Top Soil Removal Portal Pad	Radio Tower Retention Basin	Title: Mine Plan	
	Perennial Stream	Topsoil Stockpile		Bruin Point Mine	Proj No: 24585638

Mine Haul Road	Portal Pad	Rete	ention B	asin					
Perennial Stream	Topsoil Stockpile						Bruin Point Mine	Proj No	o: 2 4
Intermittent Stream	 Improved Road						Retention Basin Locations	Figure:	: 3
Watershed Boundary	 Dirt Road Road (Conditions Unknow	n)						Date:	F
		, N	625	0	625	1,250	American Sands Energy Corp		Ţ
						Fee	et		

February 2015

URS

APPENDIX A TEST PIT LOGS

Surface and Shallow Soil Sampling Log

Log ID: TH14-01

US State Plane, Utah Central, NAD 83 Northing: 7,039,763 ft Easting: 1,967,721 ft Elevation: 9,982 ft

		1 0 0		Ea	asting: 1,9	967,721 ft	Elevation: 9,982 ft
u	Project N	Sumber: 24585638	Project Name: Brui	n Point Mine]	Page: 1 of 1	
ral atio	Location	: 39.64010525, -110.3376	721; Vicinity of A-27		1	Date: 08/11	/14
General Information	Field Inv	estigator: Ethan Lamimar	n				
G	Sampling	g Excavation Method: Bo	bcat E45 Excavator	Sampling Meth	hod: Grat	b	
	_	Excavation: 29"	Depth to Water: N	ot Encountered	Backfill	Material:	Spoils
u	Depth (in)		logic Description			Comments	/Analysis Results
matio	0-7	Surficial Soil, Dark trace organics and ro					
Sample Information	7-12	Dark Brown to Brow little fine sand , mois), trace to	Bag Sa	ample Col	lected @1'
ample	12-29	Interbedded Clay (Cl horizontally bedded,					
S	29	Rock			Refusa	l/ Termina	ated @ 29"
Photograph/Sketch	Descrip View of t TH14-01	est pit			のかいたいれていたい		
Recorde	d By: E. Lami	man	Date 08/11/14	Checked By: D. Por	nd		Date: 8/24/14
L			J	l			I

Su		and Shal mpling I		Soil	U	RS	US State Northing	D: TH14- Plane, Utah : 7,039,242 f 1,966,905 ft	Central, NAD 83	
_	Project N	Number: 245856	38	Project 1	Name: Brui	n Point Mine	Zusting	Page: 1 of 1	· · · ·	
General Information	Location	: 39.63870448, -	110.34059	934; Vicini	ity of A-23			Date: 08/11	/14	
General formatic	Field Inv	restigator: Ethan	Lamimar	1						
G	Sampling	g Excavation Me	e thod: Bo	bcat E45 H	Excavator	Sampling M	lethod: G	rab		
	-	Excavation: 46'	,	Depth t	o Water: N	ot Encountere	d Back	ill Material:	Spoils	
uc	Depth (in)		Litho	logic Desc	cription			Comments	/Analysis Results	
rmatio	0-9	Surficial Soi trace organic			•					
Sample Information	9-46	Brown, Fat C trace cobble					W=1		llected @ 1' 2.0%, LL=57,	
Sam	46	Rock						Refusal/ Terminated @ 46" Sample Collected – Fragmented Rock		
Photograph/Sketch	View of t TH14-03									
Recorded	d By: E. Lam	iman	<u> </u>	Date 08/11	1/14	Checked By: D	. Pond		Date: 8/24/14	

Su		and Sha mpling I		Soil	U	RS	US State Northing	D: TH14-04 Plane, Utah Central, NAD 83 g: 7,038,686 ft 1,968,936 ft Elevation: 9,977 ft
_	Project N	Number: 245856	38	Project	Name: Brui	n Point Mine	Ŭ	Page: 1 of 1
General Information	Location	: 39.63710679, -	110.33340)68; Vicin	ity of A-4			Date: 08/11/14
General formatio	Field Investigator: Ethan Lamiman							
Ge	Sampling	g Excavation Me	ethod: Bo	bcat E45 l	Excavator	Sampling N	Method: G	rab
Ι	Depth of	Excavation: 72'	,	Depth t	o Water: N	ot Encountered	ed Back	fill Material: Spoils
	Depth (in)		Litho	logic Des	cription			Comments /Analysis Results
ation	0-7	Surficial Soit trace organic			•			
Sample Information	7-24	Brown, Clay gravel, moist	-	D (SC),	little fine	to coarse	-	Sample Collected @ 1' 7.9%, F=45.2%, LL=35, PL=24, 1
Sample	24-72	Brown, Clay gravel, conta	-				-	Sample Collected @ 3' 3.1%, F=26.1%, LL=37, PL=23, 4
	72	Rock						sal/Boring Terminated @ 6' ple Collected – Fragmented Rock
Photograph/Sketch	View of t TH14-04							
Recorde	d By: E. Lam	iman		Date 08/1	1/14	Checked By: I	D. Pond	Date: 8/24/14

Su		and Shal mpling L		Soil	U	RS	US State Northing	D: TH14-05 Plane, Utah Centr g: 7,038,699 ft 1,967,445 ft Elev	ral, NAD 83 vation: 9,925 ft	
	Project N	Sumber: 2458563	8	Project I	Name: Brui	n Point Mine	Lasting.	Page: 1 of 1	varion: <i>7</i> , <i>725</i> It	
General Information	Location	: 39.63719365, -1	10.33870)13				Date: 08/11/14		
General formati	Field Inv	estigator: Ethan	Lamiman			-				
Go Info	Sampling	g Excavation Me	thod: Bol	bcat E45 E	Excavator	Sampling M	lethod: G	rab		
	-	Excavation: 96"		Depth to	o Water: N	ot Encountere	d Back	fill Material: Spoils	S	
	Depth (in)		Litho	logic Desc	cription			Comments /Anal	lysis Results	
tion	0-8	Surficial Soil trace organics			•					
ormat	8-42	Brown, Claye gravel, moist	y SANI	D (SC), l	little fine	to coarse				
Sample Information	42-96 @66 Below	Light Tan to (sand, trace fir -2-3" thick ro -same: Lean (ne to coa ck shelf	arse grav ² , modera	vel, moist ately soft	siltstone	W=1 PI=1	, , ,	d @ 3.75' LL=40, PL=21,	
	66" 96	siltstone and o	cobble t	below 66	o", moist		Bori	Boring Terminated @ 8'		
		scription			100000	E STERROR	2011			
Photograph/Sketch	View of t TH14-05	_					いたのでであると			
Recorde	d By: E. Lami	iman		Date 08/11	1/14	Checked By: D	. Pond		Date: 8/24/14	

Su		and Shallov mpling Log	v Soil	U	RS	US State Northing	D: TH14-06 Plane, Utah Central, NAD 83 g: 7,037,679 ft 1,967,755 ft Elevation: 10,056 ft
I	Project N	Number: 24585638	Project	Name: Bruin	n Point Mine	0	Page: 1 of 1
General Information	Location	: 39.63438462, -110.3	376450; Vicin	nity of A-11			Date: 08/11/14
General formatio	Field Inv	estigator: Ethan Lami					
G	Sampling	g Excavation Method	Bobcat E45	Excavator	Sampling M	/lethod: G	rab
Γ	-	Excavation: 20"	Depth	to Water: No	ot Encountere	ed Back	fill Material: Spoils
	Depth (in)	L	thologic Des	scription			Comments /Analysis Results
ation	0-10	Surficial Soil, Data trace organics and		•			
Sample Information	10-12	Brown, Clayey S. gravel, moist	AND (SC),	trace fine t	to coarse		
ample	12-20	Tan to Brown to I	Dark Brown	n Mudstone	e, moist	Bag	Sample Collected @ 1.5'
S	20	Rock				Refu	sal/ Terminated @ 20"
	De	scription		N ALL	and it is		
Photograph/Sketch	View of t TH14-06		A A A A A A A A A A A A A A A A A A A				
Recorde	d By: E. Lam	iman	Date 08/	11/14	Checked By: D	D. Pond	Date: 8/24/14

Su	irface	and	Shallow	Soil				D: TH14-(Plane Utah)7 Central, NAD 83		
	Sa	mnl	ing Log			RS	Northing	g: 7,037,320 ft			
	Du		ing 105	Г			Easting:	1,968,517 ft	Elevation: 10,027 ft		
а	Project N	lumber	: 24585638	Project	Name: Brui	n Point Mine		Page: 1 of 1			
ral atio	Location	: 39.633	337053, -110.3349	577; Vicin	ity of Propo	sed Plant Site		Date: 08/11	/14		
ene	Field Inv	estigato	or: Ethan Lamima	n		1					
G	Sampling	g Excav	ation Method: Bo	obcat E45 I	Excavator	Sampling N	Aethod: G	rab			
Sa Project N Location Field Inv Sampling Depth of O-10 10-36 10 36-69 69 0 View of t TH14-07. Left Photo Shelf at 10 Shelf at 10 Shelf at 10	Excava	ation: 69"	Depth t	o Water: N	ot Encountere	ed Back	fill Material:	Spoils			
			Litho	ologic Dese	cription			Comments	/Analysis Results		
tion			icial Soil, Dark organics and ro		•						
Informa	10-36		o White, Calcar hered, ripable w t								
mple	36-69						Sam	Sample collected @ 3.5'			
Sa	69 Rock						Refu	sal/ Termin	ated @ 5'9"		
	View of tr TH14-07. Left Photo of sandsto shelf at 10 Right Pho To bottom excavatio	o: Top one one oro: n of									
Recorded	d By: E. Lami	iman		Date 08/1	1/14	Checked By: D	D. Pond		Date: 8/24/14		

Su	irface	and Shal	low S	Soil				D: TH14-08	
	Sampling Log				ТЛ	RS	US State Northing	Plane, Utah Centr g: 7,037,026 ft	al, NAD 83
	58	imping L	ug						vation: 10,015 ft
	Project N	Number: 2458563	38	Project I	Name: Brui	n Point Mine		Page: 1 of 1	
General Information	Location	: 39.63254919, -1	10.33354	55; Vicini	ity of Propo	sed Plant Site	;	Date: 08/11/14	
General formatio	Field Inv	estigator: Ethan	Lamiman						
GG	Sampling	g Excavation Me	thod: Bol	ocat E45 E	Excavator	Sampling N	/lethod: G	rab	
	-	Excavation: 64"		Depth to	o Water: N	ot Encountere	ed Back	fill Material: Spoils	5
	Depth (in)		Lithol	logic Desc	cription			Comments /Anal	ysis Results
	0-7	Surficial Soil trace organics			lay with l	ittle sand,			
u	7-12	Fine to coarse			ally bedde	ed: possible	e Subs	urface observed	to be disturbed,
atio		disturbed mat			2	Ĩ		et 15' ESE into v	egetated area.
Sample Information	0-10	Surficial Soil trace organics			lay with l	ittle sand,			
e In	10-36	Brown, Claye			little fine t	to coarse			
ldm		gravel, moist							
Saı	36-64	Tan to White, weathered, rij moist			Bag	Sample Collecte	d @ 3'		
	64 Rock				Refu			sal/ Terminated	@ 5'4"
Photograph/Sketch	Dev View of t TH14-08								
Recorde	d By: E. Lam	iman		Date 08/11	1/14	Checked By: D	D. Pond		Date: 8/24/14

<u>APENDIX B</u> LABORATORY TEST RESULTS

Water Content and Unit Weight of Soil

(In General Accordance with ASTM D7263 Method B and D2216)

Project: URS

No: M00100-180 (24585638.1)

Location: American Sands Energy Date: 8/20/2014 By: JDF

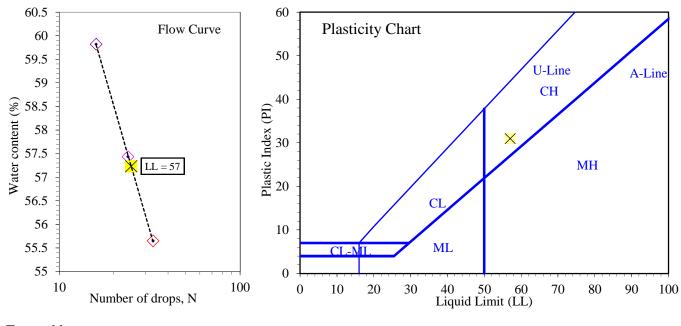
ò.	Boring No.	TH14-03	TH14-04	TH14-04	TH14-05		
Sample Info.	Sample	3	4	5	6		
ple	Depth	1'	1.5'	3'	3.75'		
am	Split	No	Yes	Yes	Yes		
01	Split sieve		No.4	3/4"	3/8"		
	Total sample (g)		568.29	1274.42	880.96		
	Moist coarse fraction (g)		87.50	357.03	66.36		
	Moist split fraction (g)		480.79	917.39	814.60		
	Sample height, H (in)						
	Sample diameter, D (in)						
	Mass rings + wet soil (g)						
	Mass rings/tare (g)						
	Moist unit wt., γ_m (pcf)						
	Wet soil + tare (g)		212.47	478.43	194.45		
Coarse Fraction	Dry soil + tare (g)		208.63	444.90	190.81		
Co: Frac	Tare (g)		124.96	121.41	128.08		
	Water content (%)		4.6	10.4	5.8		
с	Wet soil + tare (g)	363.41	259.65	618.44	550.74		
Split Fraction	Dry soil + tare (g)	330.33	249.25	559.18	486.98		
Sr Frac	Tare (g)	128.53	127.05	140.31	126.79		
	Water content (%)	16.4	8.5	14.1	17.7		
	Water Content, w (%)	16.4	7.9	13.1	16.7		
	Dry Unit Wt., γ_d (pcf)						

Entered by:_	
Reviewed:	

(ASTM D4318)

IGES 2004, 2014

No: M00100-180 (24585638.1) Location: American Sands Energy Date: 8/20/2014 By: BRR


Boring No.: TH14-03 Sample: 3 Depth: 1' Description: Brown fat clay

Preparation method: Wet Liquid limit test method: Multipoint

Plastic Limit

1	2				
31.30	29.24				
29.41	27.77				
1.89	1.47				
22.11	22.18				
7.30	5.59				
25.89	26.30				
1	2	3			
33	24	16			
29.14	30.42	28.93			
26.58	27.37	26.25			
2.56	3.05	2.68			
21.98	22.06	21.77			
4.60	5.31	4.48			
55.65	57.44	59.82			
	57				
	29.41 1.89 22.11 7.30 25.89 1 33 29.14 26.58 2.56 21.98 4.60	$\begin{array}{c ccccc} 31.30 & 29.24 \\ 29.41 & 27.77 \\ 1.89 & 1.47 \\ 22.11 & 22.18 \\ \hline 7.30 & 5.59 \\ 25.89 & 26.30 \\ \hline \\ \hline 1 & 2 \\ 33 & 24 \\ 29.14 & 30.42 \\ 26.58 & 27.37 \\ 2.56 & 3.05 \\ 21.98 & 22.06 \\ 4.60 & 5.31 \\ \hline 55.65 & 57.44 \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Liquid Limit, LL (%)	
Plastic Limit, PL (%)	26
Plasticity Index, PI (%)	

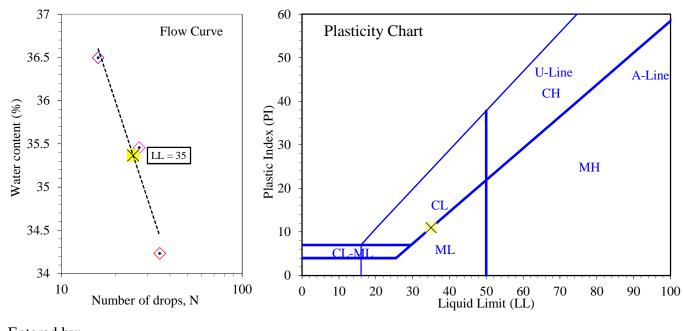
Entered by:_____ Reviewed:_____

(ASTM D4318)

Project: URS

No: M00100-180 (24585638.1) Location: American Sands Energy Date: 8/20/2014

By: BRR


Boring No.: TH14-04 Sample: 4 Depth: 1.5' Description: Brown lean clay

Preparation method: Wet Liquid limit test method: Multipoint

Plastic Limit

Determination No	1	2			
Wet Soil + Tare (g)	30.39	31.14			
Dry Soil + Tare (g)	28.74	29.34			
Water Loss (g)	1.65	1.80			
Tare (g)	21.80	21.65			
Dry Soil (g)	6.94	7.69			
Water Content, w (%)	23.78	23.41			
Liquid Limit					
Determination No	1	2	3		
Number of Drops, N	35	27	16		
Wet Soil + Tare (g)	30.83	28.32	30.34		
Dry Soil + Tare (g)	28.55	26.65	28.11		
Water Loss (g)	2.28	1.67	2.23		
Tare (g)	21.89	21.94	22.00		
Dry Soil (g)	6.66	4.71	6.11		
Water Content, w (%)	34.23	35.46	36.50		
One-Point LL (%)		36			

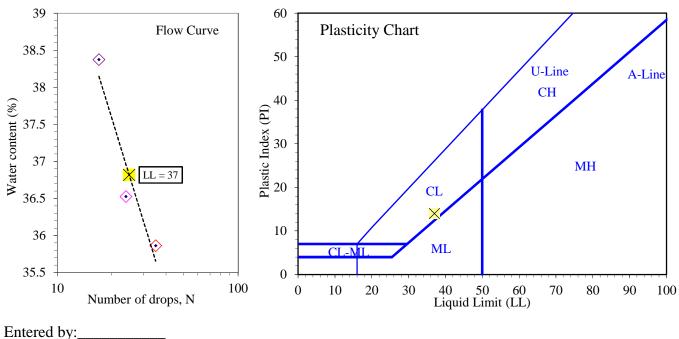
Liquid Limit, LL (%)	35
Plastic Limit, PL (%)	24
Plasticity Index, PI (%)	

Entered by:_____ Reviewed:_____

(ASTM D4318)

© IGES 2004, 2014

No: M00100-180 (24585638.1) Location: American Sands Energy Date: 8/20/2014 By: **BRR**


Boring No.: TH14-04 Sample: 5 Depth: 3' Description: Brown lean clay

Preparation method: Wet Liquid limit test method: Multipoint

Plastic Limit

Determination No	1	2			
Wet Soil + Tare (g)	30.58	31.42			
Dry Soil + Tare (g)	28.99	29.55			
Water Loss (g)	1.59	1.87			
Tare (g)	22.16	21.47			
Dry Soil (g)	6.83	8.08			
Water Content, w (%)	23.28	23.14			
Liquid Limit					
Determination No	1	2	3		
Number of Drops, N	35	24	17		
Wet Soil + Tare (g)	30.47	30.50	30.49		
Dry Soil + Tare (g)	28.25	28.25	28.13		
Water Loss (g)	2.22	2.25	2.36		
Tare (g)	22.06	22.09	21.98		
Dry Soil (g)	6.19	6.16	6.15		
Water Content, w (%)	35.86	36.53	38.37		
One-Point LL (%)		36			

Liquid Limit, LL (%)	37
Plastic Limit, PL (%)	23
Plasticity Index, PI (%)	14

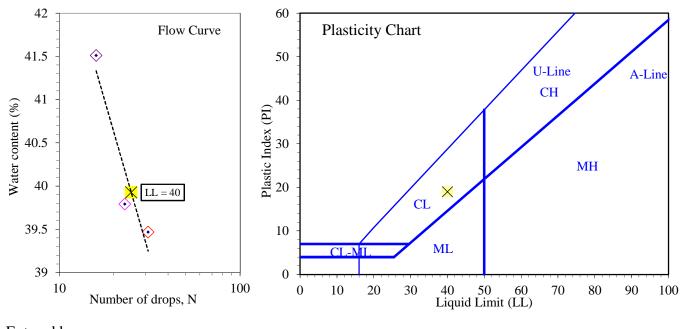
Reviewed:_

(ASTM D4318)

Project: URS

IGES 2004, 2014

No: M00100-180 (24585638.1) Location: American Sands Energy Date: 8/20/2014 By: BRR


Boring No.: TH14-05 Sample: 6 Depth: 3.75' Description: Brown lean clay

Preparation method: Wet Liquid limit test method: Multipoint

Plastic Limit

Determination No	1	2			
Wet Soil + Tare (g)	29.19	29.93			
Ű					
Dry Soil + Tare (g)	27.94	28.59			
Water Loss (g)	1.25	1.34			
Tare (g)	22.01	22.20			
Dry Soil (g)	5.93	6.39			
Water Content, w (%)	21.08	20.97			
Liquid Limit					
Determination No	1	2	3		
Number of Drops, N	31	23	16		
Wet Soil + Tare (g)	30.59	29.96	30.93		
Dry Soil + Tare (g)	28.21	27.66	28.24		
Water Loss (g)	2.38	2.30	2.69		
Tare (g)	22.18	21.88	21.76		
Dry Soil (g)	6.03	5.78	6.48		
Water Content, w (%)	39.47	39.79	41.51		
One-Point LL (%)		39			

Liquid Limit, LL (%)	40
Plastic Limit, PL (%)	21
Plasticity Index, PI (%)	19

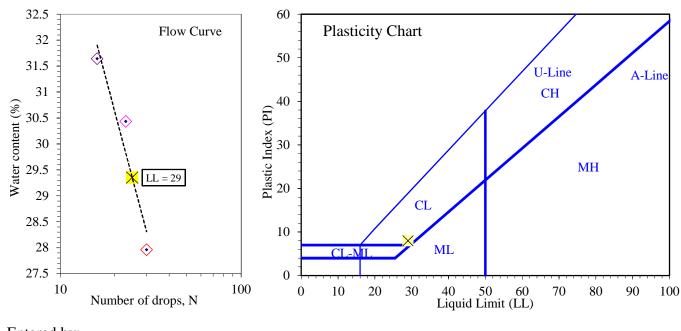
Entered by:_____ Reviewed:_____

(ASTM D4318)

Project: URS

No: M00100-180 (24585638.1) Location: American Sands Energy Date: 8/25/2014 By: BRR

Boring No.: Parting Sample: 1 Depth: Description: Grey lean clay

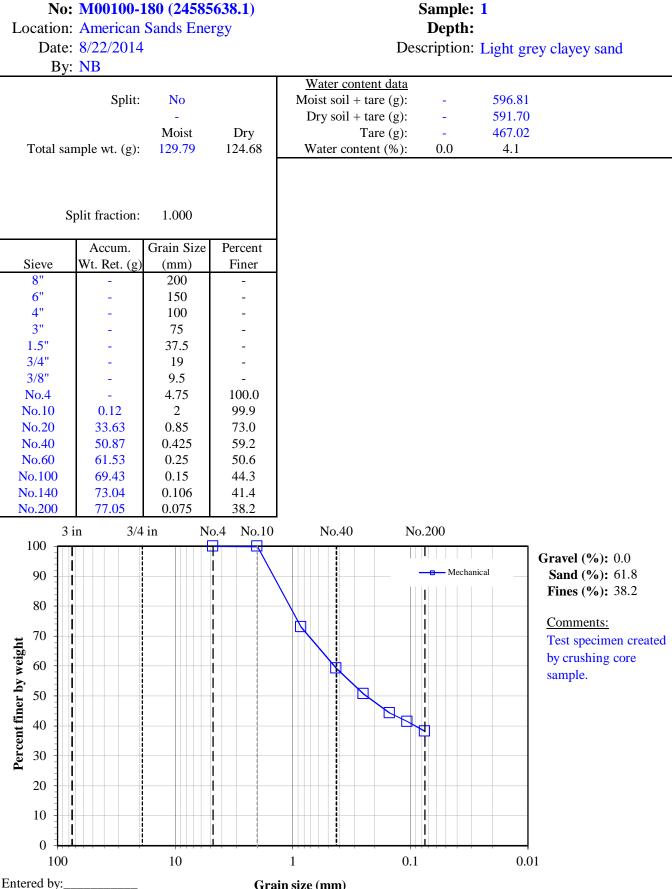

Preparation method: Wet Liquid limit test method: Multipoint

Plastic Limit

Determination No	1	2			
Wet Soil + Tare (g)	31.71	29.70			
Dry Soil + Tare (g)	30.09	28.43			
Water Loss (g)	1.62	1.27			
Tare (g)		22.26			
Dry Soil (g)	7.84	6.17			
Water Content, w (%)	20.66	20.58			
Liquid Limit					
Determination No	1	2	3		
Number of Drops, N	30	23	16		
Wet Soil + Tare (g)	30.45	30.63	31.37		
Dry Soil + Tare (g)	28.49	28.60	29.06		
Water Loss (g)	1.96	2.03	2.31		
Tare (g)	21.48	21.93	21.76		
Dry Soil (g)	7.01	6.67	7.30		
Water Content, w (%)	27.96	30.43	31.64		
One-Point LL (%)	29	30			
<u>(</u>				<u>s:</u>	
	<u> </u>		Т		

Liquid Limit, LL (%) 29 Plastic Limit, PL (%) 21 Plasticity Index, PI (%) 8

Test specimen created by crushing core sample.


Entered by:_____ Reviewed:_____

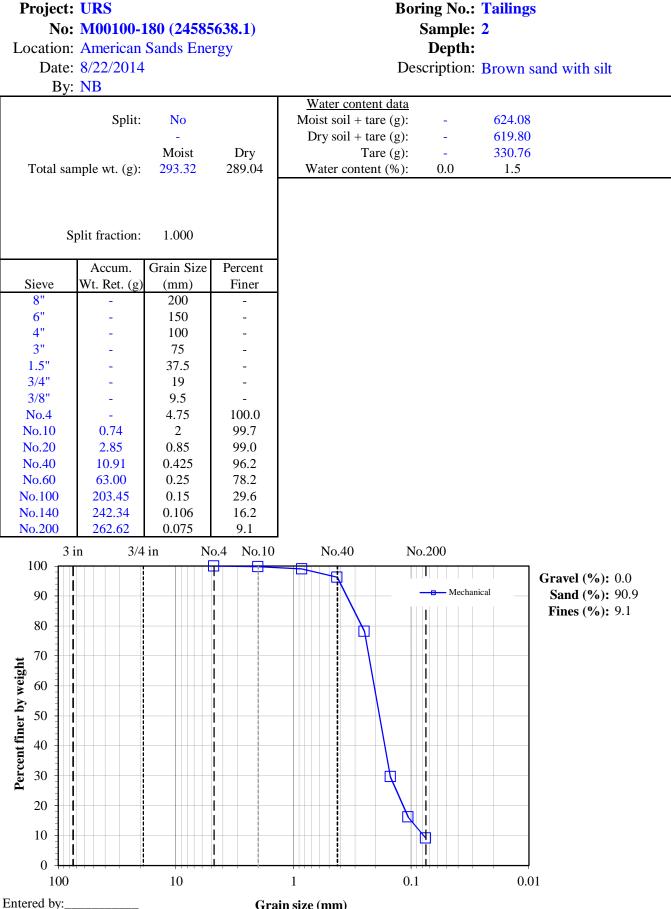
Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis

(ASTM D6913)

Project: URS

Reviewed:

Grain size (mm)



Boring No.: Parting

Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis

(ASTM D6913)

Project: URS

Reviewed:

Grain size (mm)

(ASTM D1140)

Project: URS No: M00100-180 (24585638.1) Location: American Sands Energy Date: 8/20/2014 By: JDF

	Boring No.	TH14-03	TH14-04	TH14-04	TH14-05		
ıfo.	Sample	3	4	5	6		
Sample Info.	Depth	1'	1.5'	3'	3.75'		
Iqm	Split	No	Yes	Yes	Yes		
Sa	Split Sieve*		No. 4	3/4"	3/8"		
	Method	Α	А	Α	А		
	Moist total sample wt. (g)	234.88	568.30	1274.42	880.96		
	Moist coarse fraction (g)		85.06	350.52	65.48		
	Moist split fraction + tare (g)		259.65	618.44	550.74		
	Split fraction tare (g)		127.05	140.31	126.79		
	Dry split fraction (g)		122.20	418.87	360.19		
	Dry retained No. 200 + tare (g)	164.82	183.92	406.70	249.78		
	Wash tare (g)	128.53	127.05	140.31	126.79		
	No. 200 Dry wt. retained (g)	36.29	56.87	266.39	122.99		
	Split sieve* Dry wt. retained (g)		81.33	317.60	61.89		
	Dry total sample wt. (g)	201.80	526.67	1126.99	754.72		
. -	Moist soil + tare (g)		212.47	478.43	194.45		
Coarse Fraction	Dry soil + tare (g)		208.63	444.90	190.81		
Co. Frae	Tare (g)		124.96	121.41	128.08		
	Water content (%)		4.59	10.37	5.80		
с	Moist soil + tare (g)	363.41	259.65	618.44	550.74		
Split Fraction	Dry soil + tare (g)	330.33	249.25	559.18	486.98		
Sp Frac	Tare (g)	128.53	127.05	140.31	126.79		
	Water content (%)	16.39	8.51	14.15	17.70		
Pe	rcent passing split sieve* (%)		84.6	71.8	91.8		
Perc	ent passing No. 200 sieve (%)	82.0	45.2	26.1	60.5		

Specific Gravity of Soil Solids by Water Pycnometer

(ASTM D854)

Project: URS No: M00100-180 (24585638.1) Location: American Sands Energy Date: 8/27/2014 By: DKS

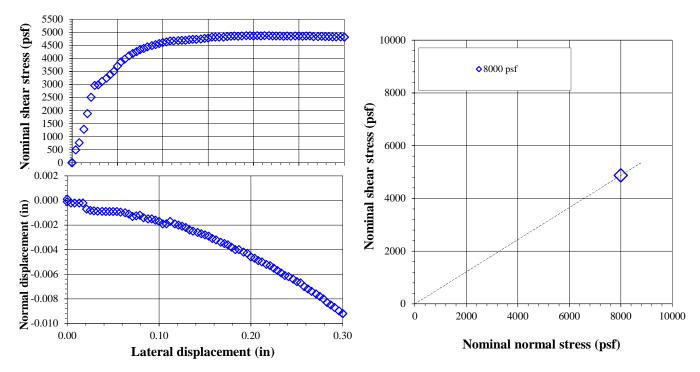
Drill hole / Sample:	Dorting	Tailings		
*				
Sample No:		2		
Depth (ft)				
Engineering Classification	Not req.	Not req.		
Method	Α	Α		
Material passing No. 4 seive, P (%)	100	100		
Pycnometer No.	8	1		
Mass of pycnometer (g)	188.92	167.64		
Mass of pycnometer, soil, and water, $M_{\rho ws,t}$ (g)	721.54	711.16		
Temperature, T_t (°C)	21.2	21.2		
Mass of pycnometer and water at test temperature, $M_{pw,t}\left(g\right)$	687.61	666.08		
Mass of tare + dry soil (g)	382.76	401.44		
Mass of tare (g)	328.33	328.97		
Mass of soil, M_s (g)	54.43	72.47		
Specific gravity of soil solids at test temperature, G_t	2.655	2.646		
Temperature coefficient, K	0.99974	0.99974		
Specific gravity of soil solids at 20°C, $G_{20^{\circ}C}$	2.654	2.645		
Apparent specific gravity of solids retained on No. 4, G 1@20°C				
Average specific gravity at 20°C, G avg @20°C				

Tested by:	
Reviewed by:	

Direct Shear Test for Soils Under Drained Conditions

(ASTM D3080)

Project:	URS		
No:	M00100-180 (24585638.1)		
Location:	American Sands Energy		
	8/20/2014		
Bv:	JDF		
J	Test type: Inundated		
Late	eral displacement (in.): 0.3		
	Shear rate (in./min): 0.0035		
	Specific gravity, Gs: 2.65	Assumed	
		Sam	ple 1
	Nominal normal stress (psf)	80	00
	Peak shear stress (psf)	48	72
	Lateral displacement at peak (in)	0.1	.92
	Load Duration (min)	- 19	95
		Initial	Pre-shear
	Sample height (in)	1.0000	0.9803
	Sample diameter (in)	2.416	2.416
	Sample diameter (m)	2.410	
	Wt. rings + wet soil (g)	189.37	195.07
	Wt. rings + wet soil (g) Wt. rings (g)		
	Wt. rings + wet soil (g)	189.37	195.07
	Wt. rings + wet soil (g) Wt. rings (g)	189.37 42.67	195.07
	Wt. rings + wet soil (g) Wt. rings (g) Wet soil + tare (g)	189.37 42.67 222.94	195.07
	Wt. rings + wet soil (g) Wt. rings (g) Wet soil + tare (g) Dry soil + tare (g)	189.37 42.67 222.94 209.61	195.07
	Wt. rings + wet soil (g) Wt. rings (g) Wet soil + tare (g) Dry soil + tare (g) Tare (g)	189.37 42.67 222.94 209.61 126.19	195.07 42.67
	Wt. rings + wet soil (g) Wt. rings (g) Wet soil + tare (g) Dry soil + tare (g) Tare (g) Water content (%)	189.37 42.67 222.94 209.61 126.19 16.0	195.07 42.67 20.5
	Wt. rings + wet soil (g) Wt. rings (g) Wet soil + tare (g) Dry soil + tare (g) Tare (g) Water content (%) Dry unit weight (pcf) Void ratio, e, for assumed Gs Saturation (%)*	189.37 42.67 222.94 209.61 126.19 16.0 105.1	195.07 42.67 20.5 107.2
	Wt. rings + wet soil (g) Wt. rings (g) Wet soil + tare (g) Dry soil + tare (g) Tare (g) Water content (%) Dry unit weight (pcf) Void ratio, e, for assumed Gs	189.37 42.67 222.94 209.61 126.19 16.0 105.1 0.57	195.07 42.67 20.5 107.2 0.54


Boring No.: TH14-04 Sample: 4

Depth: 1.5'

Sample Description: Brown silty sand

Sample type: Laboratory compacted Dry unit weight 105 pcf 16 (%) w at Compaction specifications: Provided by client

*Pre-shear saturation set to 100% for phase calculations

Entered by: Reviewed:

(ASTM D3080)

Project: URS

No: M00100-180 (24585638.1)

Location: American Sands Energy

Nominal normal stress = 8000 psf								
Lateral	Nominal	Normal						
Displacement	Shear Stress	Displacement						
(in.)	(psf)	(in.)						
0.000	0	0.000						
0.000	12	0.000						
0.004	492	0.000						
0.008	768	0.000						
0.013	1284	0.000						
0.017	1884	0.000						
0.021	2508	-0.001						
0.025	2964	-0.001						
0.029	2988	-0.001						
0.033	3117	-0.001						
0.038 0.042	3246 3375	-0.001 -0.001						
0.042	3504	-0.001						
0.040	3708	-0.001						
0.054	3864	-0.001						
0.058	3972	-0.001						
0.063	4104	-0.001						
0.067	4188	-0.001						
0.071	4260	-0.001						
0.075	4332	-0.001						
0.079	4380	-0.001						
0.083	4440	-0.001						
0.088	4488	-0.002						
0.092	4524	-0.002						
0.096	4572	-0.002						
0.100 0.104	4608	-0.002						
0.104 0.108	4632 4668	-0.002 -0.002						
0.108	4668	-0.002						
0.112	4680	-0.002						
0.121	4692	-0.002						
0.125	4692	-0.002						
0.129	4716	-0.002						
0.133	4728	-0.002						
0.137	4728	-0.003						
0.142	4740	-0.003						
0.146	4764	-0.003						
0.150	4776	-0.003						
0.154	4812	-0.003						
0.158	4812	-0.003						
0.162	4812	-0.003						
0.167	4812	-0.003						
0.171	4836	-0.004 -0.004						
0.175 0.179	$\begin{array}{c} 4848 \\ 4860 \end{array}$	-0.004 -0.004						
0.179	4800	-0.004						
0.185	4860	-0.004						
0.192	4872	-0.004						
0.192	4872	-0.004						
0.200	4860	-0.005						
0.204	4872	-0.005						
0.208	4860	-0.005						
0.212	4872	-0.005						
0.217	4872	-0.005						
0.221	4860	-0.005						
0.225	4860	-0.006						
0.229	4860	-0.006						
0.233	4848	-0.006						
0.237	4860	-0.006						
0.241	4848	-0.006						
0.246	4860 4860	-0.006						
0.250 0.254	4860 4848	-0.007 -0.007						
0.234 0.258	4848	-0.007						
0.258	4860	-0.007						
0.202		0.007						

Boring No.: TH14-04 Sample: 4 Depth: 1.5'

(ASTM D3080)

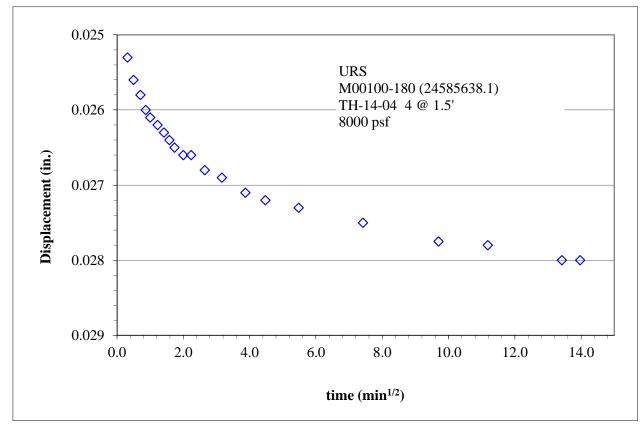
Project: URS

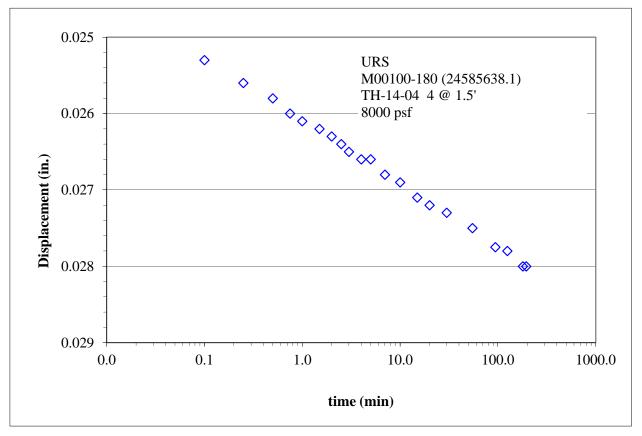
No: M00100-180 (24585638.1)

Location: American Sands Energy

Lateral	Nominal	Normal
Displacement	Shear Stress	Displacement
(in.)	(psf)	(in.)
0.266	4836	-0.007
0.271	4836	-0.008
0.275	4848	-0.008
0.279	4836	-0.008
0.283	4836	-0.008
0.287	4824	-0.009
0.291	4824	-0.009
0.296	4824	-0.009
0.300	4812	-0.009
0.300	4812	-0.009

Boring No.: TH14-04 Sample: 4 Depth: 1.5'

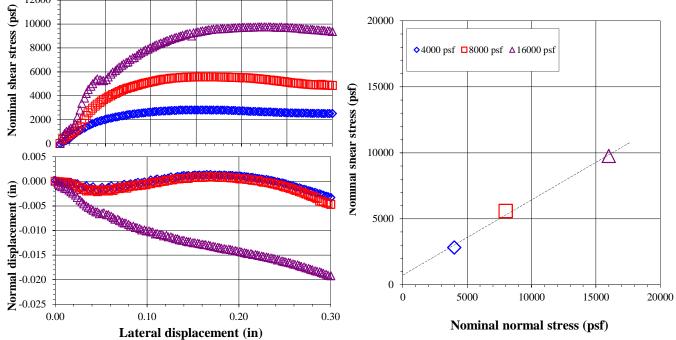

(ASTM D3080)


Project: URS

No: M00100-180 (24585638.1)

Location: American Sands Energy

Boring No.: TH14-04 Sample: 4 Depth: 1.5'



(ASTM D3080)

Project: URS No: M00100-180 (24585638.1)			ring No.: Sample:	0		
Location: American Sands Energy				Depth:		
Date: 8/25/2014			Sample D	escription:	Light grey	clayey sand
By: NB			Sa	mple type:	Laboratory	compacted
Test type: Inundated				unit weight		pcf
Lateral displacement (in.): 0.3			5	at	16	(%) w
Shear rate (in./min): 0.0035			Com	paction spe	cifications:	Provided by
Specific gravity, Gs: 2.654	Determine	d	-	· ·		
	Sam	ple 1	Samp	ole 2	Sam	ple 3
Nominal normal stress (psf)	-	000	800	00	16	000
Peak shear stress (psf)		320	558	30	9755	
Lateral displacement at peak (in)			0.148		0.218	
Load Duration (min)			1499		460	
	Initial	Pre-shear	Initial	Pre-shear	Initial	Pre-shear
Sample height (in)		0.9817	1.0000	0.9623	1.0000	0.9464
Sample diameter (in)		2.416	2.416	2.416	2.416	2.416
Wt. rings + wet soil (g)		201.42	196.62	197.41	198.35	197.95
Wt. rings (g)		45.48	42.93	42.93	44.66	44.66
Wet soil + tare (g)			509.87		509.87	
Dry soil + tare (g)			461.38 168.11		461.38 168.11	
Tare (g) Water content (%)	16.5	18.2	16.5	17.1	16.5	16.2
Dry unit weight (pcf)		111.6	10.5	113.8	10.5	115.7
Void ratio, e	0.51	0.48	0.51	0.45	0.51	0.43
Saturation (%)*	85.7	100.0	85.7	100.0	85.7	100.0
φ' (deg) 30	0.5.1		of 3 samples	Initial	Pre-shear	100.0
$\frac{\psi(\text{deg})}{\text{c'}(\text{psf})} = \frac{30}{733}$			content (%)	16.5	17.2	
*Pre-shear saturation set to 100% for phase calculations			weight (pcf)	109.6	113.7	
			•• •• ••			

Entered by:_____ Reviewed:_____

(ASTM D3080)

Project: URS

Boring No.: Parting Sample: 1

No: M00100-180 (24585638.1)

Location: American Sands Energy

Depth:

	I Sanus E					Deptil.		
Nominal norm	hal stress $= 40$	00 psf	Nominal norn	nal stress = 80	00 psf	Nominal norn	hal stress $= 16$	000 psf
Lateral	Nominal	Normal	Lateral	Nominal	Normal	Lateral	Nominal	Normal
Displacement	Shear Stress	Displacement	Displacement	Shear Stress	Displacement	Displacement	Shear Stress	Displacem
(in.)	(psf)	(in.)	(in.)	(psf)	(in.)	(in.)	(psf)	(in.)
	0	. ,	· · ·	0	· · · ·	. ,	· ·	
0.000		0.000	0.000 0.003	-	0.000	0.000	0	0.000
0.003	132	0.000		360	0.000	0.003	600 952	-0.001
0.005	204	0.000	0.005	480	0.000	0.005	852	-0.001
0.007	276	0.000	0.007	600	0.000	0.007	1020	-0.001
0.010	396	0.000	0.010	720	0.000	0.010	1176	-0.001
0.012	576	0.000	0.012	840	0.000	0.012	1308	-0.002
0.015	732	0.000	0.015	960	-0.001	0.015	1440	-0.002
0.017	852	0.000	0.017	1068	-0.001	0.017	1644	-0.002
0.019	984	-0.001	0.019	1296	-0.001	0.019	2196	-0.002
0.022	1104	-0.001	0.022	1404	-0.001	0.022	2796	-0.003
0.024	1212	-0.001	0.024	1704	-0.001	0.024	3360	-0.003
0.027	1308	-0.002	0.027	2040	-0.001	0.027	3804	-0.004
0.029	1416	-0.001	0.029	2340	-0.002	0.029	4188	-0.004
0.032	1524	-0.001	0.031	2580	-0.002	0.031	4524	-0.005
0.034	1608	-0.001	0.034	2784	-0.002	0.034	4788	-0.005
0.036	1680	-0.002	0.036	2964	-0.002	0.036	5004	-0.005
0.030	1752	-0.002	0.030	3132	-0.002	0.030	5244	-0.005
		-0.001			-0.002			-0.006
0.041	1836		0.041	3300		0.041	5412 5240	
0.044	1896	-0.002	0.044	3444	-0.002	0.044	5340	-0.006
0.046	1944	-0.002	0.046	3564	-0.002	0.046	5268	-0.006
0.049	2004	-0.002	0.048	3684	-0.002	0.048	5268	-0.007
0.051	2052	-0.001	0.051	3792	-0.002	0.051	5340	-0.007
0.053	2088	-0.002	0.053	3900	-0.002	0.053	5568	-0.006
0.056	2136	-0.002	0.056	3996	-0.002	0.056	5808	-0.007
0.058	2172	-0.001	0.058	4092	-0.002	0.058	5988	-0.007
0.061	2220	-0.001	0.061	4188	-0.002	0.061	6108	-0.007
0.063	2244	-0.002	0.063	4260	-0.002	0.063	6252	-0.007
0.065	2280	-0.001	0.065	4356	-0.002	0.065	6396	-0.008
0.068	2316	-0.001	0.068	4440	-0.001	0.068	6540	-0.008
0.070	2352	-0.001	0.070	4524	-0.002	0.070	6660	-0.008
0.073	2388	-0.001	0.073	4596	-0.001	0.073	6792	-0.008
0.075	2424	-0.001	0.075	4644	-0.001	0.075	6828	-0.009
0.075	2436	-0.001	0.078	4704	-0.001	0.077	7044	-0.009
0.080	2450 2460	-0.001	0.080	4752	-0.001	0.080	7164	-0.009
0.080	2400	-0.001	0.080	4812	-0.001	0.080	7188	-0.009
0.085	2508	-0.001	0.085	4860	-0.001	0.085	7392	-0.009
0.087	2532	0.000	0.087	4920	-0.001	0.087	7512	-0.009
0.090	2556	0.000	0.090	4968	-0.001	0.089	7596	-0.009
0.092	2568	-0.001	0.092	5016	-0.001	0.092	7716	-0.010
0.094	2592	0.000	0.094	5064	-0.001	0.094	7824	-0.010
0.097	2628	0.000	0.097	5100	-0.001	0.097	7896	-0.010
0.099	2628	0.000	0.099	5136	-0.001	0.099	8004	-0.010
0.102	2652	0.000	0.102	5184	-0.001	0.102	8088	-0.010
0.104	2676	0.000	0.104	5220	-0.001	0.104	8172	-0.010
0.106	2688	0.000	0.106	5268	0.000	0.106	8255	-0.010
0.109	2700	0.000	0.109	5304	0.000	0.109	8339	-0.011
0.111	2724	0.001	0.111	5340	0.000	0.111	8399	-0.011
0.114	2724	0.000	0.114	5376	0.000	0.114	8483	-0.011
0.116	2736	0.000	0.116	5388	0.000	0.116	8543	-0.011
0.119	2748	0.001	0.119	5412	0.000	0.118	8615	-0.011
0.121	2748	0.000	0.121	5448	0.000	0.121	8699	-0.011
0.121	2772	0.001	0.121	5460	0.000	0.121	8759	-0.011
0.125	2772	0.001	0.125	5484	0.000	0.125	8831	-0.011
0.120	2772	0.001	0.120	5484	0.000	0.120	8891	-0.011
0.128	2796	0.001	0.128	5508	0.000	0.128	8939	-0.012
0.131	2798	0.001	0.131	5532	0.001	0.131	8939 8999	-0.012
0.135	2796	0.001	0.135	5532	0.001	0.135	9059	-0.012
0.138	2820	0.001	0.138	5544	0.001	0.138	9119	-0.012
0.140	2820	0.001	0.140	5556	0.001	0.140	9179	-0.012
0.143	2820	0.001	0.143	5556	0.001	0.143	9215	-0.012
0.145	2820	0.001	0.145	5556	0.001	0.145	8987	-0.012
0.148	2820	0.001	0.148	5580	0.001	0.147	9263	-0.012
	2820	0.001	0.150	5568	0.001	0.150	9311	-0.013
0.150								
0.150 0.152	2820	0.001	0.152	5580	0.001	0.152	9347	-0.013

(ASTM D3080)

Project: URS

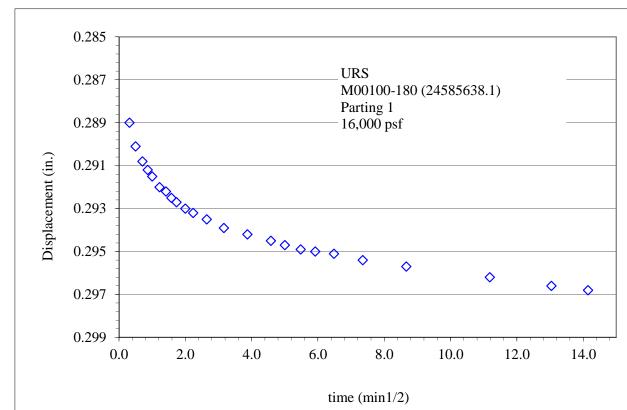
Boring No.: Parting Sample: 1

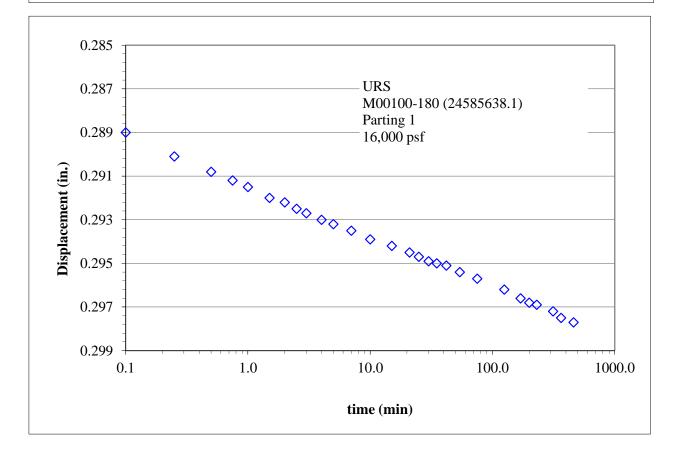
No: M00100-180 (24585638.1)

Location: American Sands Energy

Depth:

Nominal norn	hal stress = 40	00 psf	Nominal normal stress = 8000 psf Nominal normal s		al stress = 16000 psf			
Lateral	Nominal	Normal	Lateral	Nominal	Normal	Lateral	Nominal	Normal
Displacement	Shear Stress	Displacement	Displacement	Shear Stress	Displacement	Displacement	Shear Stress	Displacemen
(in.)	(psf)	(in.)	(in.)	(psf)	(in.)	(in.)	(psf)	(in.)
0.157	2820	0.001	0.157	5568	0.001	0.157	9419	-0.013
0.160	2808	0.001	0.160	5580	0.001	0.160	9443	-0.013
0.162	2820	0.001	0.162	5568	0.001	0.162	9479	-0.013
0.165	2820	0.001	0.164	5568	0.001	0.164	9527	-0.013
0.167	2796	0.001	0.167	5580	0.001	0.167	9539	-0.013
0.169	2808	0.001	0.169	5568	0.001	0.169	9563	-0.013
0.172	2796	0.001	0.172	5568	0.001	0.172	9587 0587	-0.013
0.174	2808	0.001	0.174	5568	0.001	0.174	9587	-0.013
0.177 0.179	2796 2796	0.001 0.001	0.177 0.179	5556 5556	0.001 0.001	0.177 0.179	9611 9611	-0.013 -0.014
0.179	2796	0.001	0.179	5556	0.001	0.179	9611 9611	-0.014
0.181	2796	0.001	0.181	5556	0.001	0.181	9635	-0.014
0.186	2772	0.001	0.184	5544	0.001	0.184	9635 9635	-0.014
0.189	2772	0.001	0.189	5532	0.001	0.189	9659	-0.014
0.191	2772	0.001	0.191	5532	0.001	0.191	9671	-0.014
0.191	2772	0.001	0.191	5532	0.001	0.191	9683	-0.014
0.196	2748	0.001	0.196	5532	0.001	0.196	9683	-0.014
0.198	2748	0.001	0.198	5508	0.001	0.198	9695	-0.014
0.201	2748	0.001	0.201	5508	0.001	0.201	9707	-0.014
0.203	2736	0.001	0.203	5508	0.001	0.203	9731	-0.014
0.206	2724	0.001	0.206	5508	0.001	0.206	9731	-0.015
0.208	2712	0.001	0.208	5484	0.000	0.208	9731	-0.015
0.210	2700	0.001	0.210	5460	0.000	0.210	9731	-0.015
0.213	2700	0.001	0.213	5460	0.000	0.213	9731	-0.015
0.215	2700	0.001	0.215	5436	0.000	0.215	9743	-0.015
0.218	2676	0.001	0.218	5424	0.000	0.218	9755	-0.015
0.220	2676	0.001	0.220	5412	0.000	0.220	9743	-0.015
0.222	2664	0.001	0.222	5388	0.000	0.222	9755	-0.015
0.225 0.227	2652 2652	0.001 0.000	0.225 0.227	5364 5352	0.000 0.000	0.225 0.227	9755 9743	-0.015 -0.015
0.227	2652	0.000	0.227	5316	0.000	0.227	9743 9755	-0.015
0.230	2652	0.000	0.230	5316	0.000	0.230	9755	-0.015
0.232	2628	0.000	0.232	5292	0.000	0.232	9743	-0.016
0.235	2628	0.000	0.235	5268	-0.001	0.235	9731	-0.016
0.239	2616	0.000	0.239	5244	-0.001	0.239	9719	-0.016
0.242	2604	0.000	0.242	5220	-0.001	0.242	9731	-0.016
0.244	2604	0.000	0.244	5196	-0.001	0.244	9743	-0.016
0.247	2604	0.000	0.247	5184	-0.001	0.247	9707	-0.016
0.249	2592	0.000	0.249	5148	-0.001	0.249	9707	-0.016
0.251	2580	-0.001	0.251	5124	-0.001	0.251	9695	-0.016
0.254	2580	-0.001	0.254	5100	-0.001	0.254	9683	-0.017
0.256	2580	-0.001	0.256	5076	-0.002	0.256	9683	-0.017
0.259	2568	-0.001	0.259	5064	-0.002	0.259	9659	-0.017
0.261	2556	-0.001	0.261	5052	-0.002	0.261	9647	-0.017
0.263	2556	-0.001	0.263	5028	-0.002	0.264	9647	-0.017
0.266	2556	-0.001	0.266	5004	-0.002	0.266	9611	-0.017
0.268	2556	-0.002	0.268	4980	-0.002	0.268	9587 0575	-0.017
0.271	2556	-0.002	0.271	4968	-0.002	0.271 0.273	9575 0551	-0.017 -0.018
0.273 0.276	2544 2532	-0.002 -0.002	0.273 0.276	4956 4944	-0.003 -0.003	0.273 0.276	9551 9551	-0.018
0.278	2532 2532	-0.002	0.278	4944 4932	-0.003	0.278	9551 9539	-0.018
0.278	2532	-0.002	0.278	4932 4920	-0.003	0.278	9539 9515	-0.018
0.280	2532	-0.002	0.280	4920	-0.003	0.280	9515 9515	-0.018
0.285	2532	-0.002	0.285	4884	-0.003	0.285	9503	-0.018
0.285	2520	-0.002	0.288	4956	-0.004	0.288	9479	-0.018
0.200	2520	-0.003	0.290	4908	-0.004	0.290	9467	-0.019
0.290	2520	-0.003	0.292	4872	-0.004	0.292	9431	-0.019
0.295	2520	-0.003	0.295	4884	-0.004	0.295	9431	-0.019
	2520	-0.003	0.297	4872	-0.005	0.297	9419	-0.019
0.297								
0.297 0.300 0.300	2520	-0.003	0.300	4860	-0.005	0.300	9371	-0.019

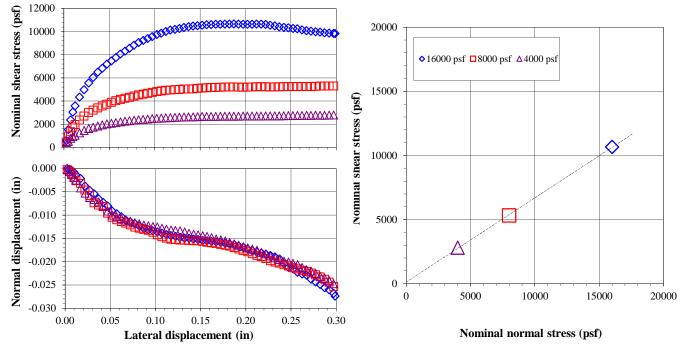

(ASTM D3080)


Project: URS

No: M00100-180 (24585638.1)

Location: American Sands Energy

Boring No.: Parting Sample: 1 Depth:



(ASTM D3080)

Project: URS No: M00100-180 (24585638.1)				ring No.: Sample:	Tailings 2	
Location: American Sands Energy				Depth:		
Date: 8/25/2014			Sample D	escription:	Brown san	d with silt
By: NB			Sa	mple type:	Laboratory	compacted
Test type: Inundated				unit weight	•	pcf
Lateral displacement (in.): 0.3			2	at		(%) w
Shear rate (in./min): 0.0172			Com	paction spe	cifications:	Provided by o
Specific gravity, Gs: 2.645	Determine	d				
	Sam	ple 1	Samp	ole 2	Sam	ple 3
Nominal normal stress (psf)		000	800		40	000
Peak shear stress (psf)		670	53			307
Lateral displacement at peak (in)			0.301		0.300	
Load Duration (min)			3731		3731	
	Initial	Pre-shear	Initial	Pre-shear	Initial	Pre-shear
Sample height (in)	1.0000	0.9319	1.0000	0.9497	1.0000	0.9618
Sample diameter (in)	2.416	2.416	2.416	2.416	2.416	2.416
Wt. rings + wet soil (g)	153.03	178.97	153.93	181.21	154.05	182.24
Wt. rings (g)	41.38	41.38	42.28	42.28	42.40	42.40
Wet soil + tare (g)	440.39		440.39		440.39	
Dry soil + tare (g)	431.91		431.91		431.91	
Tare (g) Water content (%)	122.78 2.7	26.6	122.78 2.7	27.8	122.78 2.7	28.7
Dry unit weight (pcf)	2.7 90.3	26.0 96.9	2.7 90.3	27.8 95.0	2.7 90.3	28.7 93.8
Void ratio, e	0.83	0.70	0.83	93.0 0.74	0.83	0.76
Saturation (%)*	8.8	100.0	8.8	100.0	8.8	100.0
φ' (deg) 33	0.0		of 3 samples	Initial	Pre-shear	100.0
$\frac{\psi(acg)}{c'(psf)}$ 129			content (%)	2.7	27.7	
*Pre-shear saturation set to 100% for phase calculations		Dry unit	, , , , , , , , , , , , , , , , , , ,	90.3	95.3	

Entered by:_____ Reviewed:_____

(ASTM D3080)

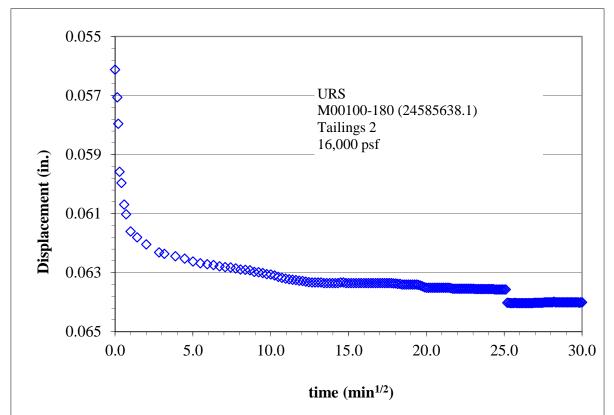
Project: URS

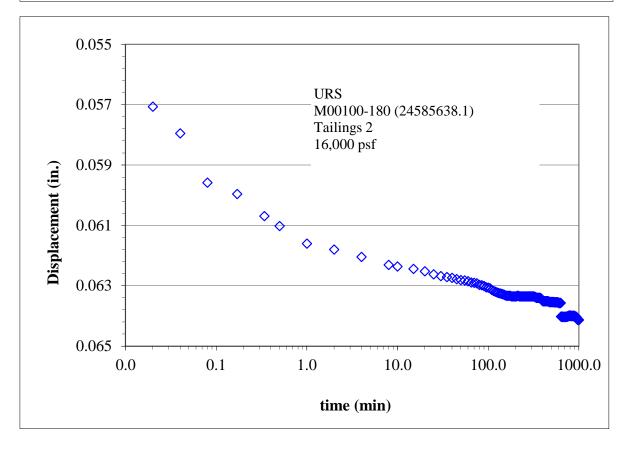
Boring No.: Tailings

No: M00100-180 (24585638.1)

Location: American Sands Energy

Sample: 2 Depth:


Nominal norm	nal stress = 16	000 psf	Nominal normal stress = 8000 psf Nominal normal stress = 4			s = 4000 psf		
Lateral	Nominal	Normal	Lateral	Nominal	Normal	Lateral	Nominal	Normal
Displacement	Shear Stress	Displacement	Displacement	Shear Stress	Displacement	Displacement	Shear Stress	Displacement
(in.)	(psf)	(in.)	(in.)	(psf)	(in.)	(in.)	(psf)	(in.)
0.002	579	0.000	0.002	458	0.000	0.002	415	0.000
0.005	1541	0.000	0.005	979	-0.001	0.005	521	-0.001
0.007	2369	0.000	0.007	1339	-0.001	0.007	774	-0.001
0.010	3049	-0.001	0.010	1742	-0.002	0.010	922	-0.002
0.012	3589	-0.001 -0.002	0.012	1966	-0.003	0.012	1040	-0.002
0.017 0.022	4345 4978	-0.002	0.017 0.022	2351 2700	-0.003 -0.005	0.017 0.022	1255 1454	-0.004 -0.005
0.022	5559	-0.004	0.022	3007	-0.005	0.022	1621	-0.005
0.027	6048	-0.005	0.027	3212	-0.007	0.027	1736	-0.007
0.032	6501	-0.006	0.032	3401	-0.008	0.032	1841	-0.007
0.042	6841	-0.007	0.042	3567	-0.008	0.042	1935	-0.008
0.047	7203	-0.008	0.047	3726	-0.010	0.047	2019	-0.009
0.052	7476	-0.009	0.052	3889	-0.010	0.052	2081	-0.010
0.057	7759	-0.010	0.057	4030	-0.011	0.057	2140	-0.010
0.062	8070	-0.010	0.062	4136	-0.011	0.062	2199	-0.011
0.067	8315	-0.011	0.067	4231	-0.012	0.067	2254	-0.011
0.072	8572	-0.011	0.072	4325	-0.012	0.072	2299	-0.011
0.077 0.082	8837	-0.012	0.077	4432	-0.013	0.077	2345	-0.012
	9063 0246	-0.012	0.082	4531	-0.013	0.082	2384	-0.012
0.087 0.092	9246 9408	-0.013 -0.013	0.087 0.092	4595 4665	-0.013 -0.013	0.087 0.092	2418 2440	-0.012 -0.012
0.092	9408 9578	-0.013	0.092	4003	-0.013	0.092	2440 2477	-0.012
0.102	9753	-0.013	0.102	4815	-0.014	0.102	2502	-0.012
0.102	9874	-0.014	0.107	4880	-0.015	0.107	2522	-0.013
0.112	10020	-0.014	0.112	4926	-0.015	0.112	2547	-0.013
0.117	10140	-0.014	0.117	4961	-0.015	0.117	2565	-0.013
0.122	10200	-0.015	0.122	4984	-0.015	0.122	2587	-0.013
0.127	10290	-0.015	0.127	4992	-0.015	0.127	2605	-0.013
0.132	10370	-0.015	0.132	5036	-0.015	0.132	2619	-0.014
0.137	10430	-0.015	0.137	5047	-0.015	0.137	2634	-0.014
0.142	10490	-0.015	0.142	5060	-0.015	0.142	2636	-0.014
0.147 0.152	10520 10560	-0.015 -0.015	0.147 0.152	5091 5120	-0.016 -0.016	0.147 0.152	2650 2668	-0.014 -0.014
0.152	10500	-0.015	0.152	5120	-0.016	0.152	2668	-0.014
0.157	10620	-0.016	0.162	5162	-0.016	0.162	2679	-0.015
0.162	10640	-0.016	0.167	5176	-0.016	0.167	2681	-0.015
0.172	10650	-0.016	0.172	5194	-0.016	0.172	2684	-0.015
0.177	10660	-0.016	0.177	5211	-0.016	0.177	2687	-0.016
0.182	10660	-0.016	0.182	5219	-0.017	0.182	2688	-0.016
0.187	10670	-0.016	0.187	5215	-0.017	0.187	2688	-0.016
0.192	10660	-0.017	0.192	5208	-0.017	0.192	2693	-0.016
0.197	10640	-0.017	0.197	5196	-0.018	0.197	2699	-0.017
0.202	10640	-0.017	0.202	5204	-0.018	0.202	2704	-0.017
0.207	10650	-0.018	0.207	5221 5230	-0.018	0.207	2704	-0.017
0.212 0.217	$10660 \\ 10660$	-0.018 -0.018	0.212 0.217	5230 5241	-0.019 -0.019	0.212 0.217	2703 2706	-0.018 -0.018
0.217	10660	-0.018	0.217	5238	-0.019	0.217	2708	-0.018
0.222	10560	-0.018	0.222	5238	-0.019	0.222	2715	-0.018
0.232	10500	-0.019	0.232	5219	-0.020	0.232	2713	-0.019
0.237	10420	-0.019	0.237	5231	-0.020	0.237	2719	-0.020
0.242	10380	-0.020	0.242	5241	-0.021	0.242	2736	-0.020
0.247	10340	-0.021	0.247	5247	-0.021	0.247	2740	-0.020
0.252	10290	-0.022	0.252	5245	-0.021	0.252	2748	-0.020
0.257	10250	-0.022	0.257	5260	-0.022	0.257	2751	-0.021
0.262	10160	-0.023	0.262	5245	-0.022	0.262	2756	-0.021
0.267	10090	-0.023	0.267	5256	-0.022	0.267	2766	-0.022
0.272	10050	-0.024	0.272	5250	-0.022	0.272	2764	-0.022
0.277	9992 0050	-0.024	0.277	5270 5286	-0.023	0.277	2780	-0.023
0.282 0.287	9959 9907	-0.025 -0.026	0.282 0.287	5286 5297	-0.023 -0.024	0.282 0.287	2771 2766	-0.023 -0.024
0.287 0.292	9907 9881	-0.026	0.287	5300	-0.024	0.287	2780	-0.024
0.292	9853	-0.020	0.292	5306	-0.024	0.292	2801	-0.024
0.299	9843	-0.027	0.301	5315	-0.026	0.300	2807	-0.025



(ASTM D3080)

Project: URS

No: M00100-180 (24585638.1) Location: American Sands Energy Boring No.: Tailings Sample: 2 Depth:

Hydraulic Conductivity of Saturated Porous Materials Using a Flexible

Wall Permeameter, Method C (ASTM D5084)

Project: URS

No: M00100-180 (24585638.1) Location: American Sands Energy Date: 8/26/2014 By: JDF

Boring No.: Parting	
Sample: 1	
Depth:	

Sample Description: Light grey clayey sand

Sample Type:	Remolded	
Compaction Specifications:	110	pcf
at	16	(%) w

	Initial (o)	Final (f)
Sample Height, H (in)	3.128	3.101
Sample Diameter, D (in)	2.863	2.80
Sample Length, L (cm)	7.945	7.877
Sample Area, A (cm^2)	41.534	39.649
Sample Volume, V (cm^3)	329.99	312.32
Wt. Rings + Wet Soil (g)	674.13	673.69
Wt. Rings (g)	0	0
Wet Unit Wt., γ_m (pcf)	127.5	134.7
Wet Soil + Tare (g)	509.87	991.29
Dry Soil + Tare (g)	461.38	895.94
Tare (g)	168.11	316.57
Weight of solids, Ws (g)	578.48	578.48
Water Content, w (%)	16.53	16.46
Dry Unit Wt, γ_d (pcf)	109.4	115.6
Void ratio, e	0.51	0.44
Saturation (%)	85.4	100 ^a
Average K ^b (cm/sec)	2.3F	E- 07
^a Saturation set to 100% for phas	e calculatio	ons

^a Saturation set to 100% for phase calculations ^b K corrected to 20°C

Gs	2.654	Determined
Cell No.	4	
Station No.	2	
Permeant liquid used	De-aired t	ap water
Total backpressure (psi)	20	
Effective horiz. consolidation stress (psi)	55.6	
Effective vert. consolidation stress (psi)	55.6	
	Initial (o)	Final (f)
B value	0.54	0.96
External Burette (cm ³)	12.80	42.20
Cell Pressure (psi)	0.0	75.6
Backpressure bottom (psi)	21.0	
Backpressure top (psi)	20.0	
System volume coefficient (cm ³ /psi)	0.155	
System volume change (cm ³)	11.73	
Net sample volume change (cm ³)	-17.67	
Bottom burette ground length, l _b (cm)	81.99	
Top burette ground length, l_t (cm)	81.97	
Burette area, a (cm^2)	0.197	
Conversion, reading to cm head (cm/rd)	5.076	

Start Date and Elapsed	I Time:8/25/14Bottom Burette	9:01 Top Burette	h ₁	h ₂	K	Temp	Visc. Ratic	K ^b
time (sec)	(cm^3)	(cm ³)	(cm)	(cm)	(cm/sec)	(°C)	R _f	(cm/sec)
1440.0	0.10 0.30	9.94 9.74	120.28	118.25	2.3E-07	22.8	0.93	2.2E-07
2580.0	0.30	9.74	118.25	114.39	2.5E-07	22.9	0.93	2.3E-07
2220.0	0.68	<u>9.36</u> 9.36	114.39	111.09	2.6E-07			2.4E-07
2220.0	0.99 0.99	9.02 9.02	114.39	111.09	2.0E-07	22.8	0.93	2.4E-07
3240.0	1.42	9.02 8.58	111.09	106.67	2.5E-07	24.0	0.91	2.2E-07
6060.0	1.42 2.20	8.58 7.76	106.67	98.55	2.6E-07	25.0	0.89	2.3E-07
4800.0	2.20 2.80	7.76 7.15	98.55	92.41	2.6E-07	24.3	0.90	2.4E-07

Entered by:_____ Reviewed:_____ Bruin Point Mine- Updated Plan & Costs

Aggregate-Soil Testing Summary

Client: Mine Engineers, Inc. Address: 3901 South Industrial Rd. Cheyenne, WY 82007

Attention: Eldon Strid

IME Project No: 16484-HM Project Name: General Testing Project Location:

Sample Location/ID: American Sands Energy - Utah

Partic	le Size Analys	is				
ASTM C117 & C136						
Sieve	% Passing	Specification				
2 1/2" (63.5mm)						
2" (50.8mm)						
1 1/2" (37.5mm)						
1" (25mm)						
3/4" (19mm)						
1/2" (12.5mm)						
3/8" (9.5mm)						
No. 4 (4.75mm)	100%					
No. 8 (2.36mm)	100%					
No. 16 (1.18mm)	99%					
No. 30 (600μm)	98%					
No. 40 (425μm)						
No. 50 (300μm)	87%					
No. 100 (150μm)	21%					
No. 200 (75μm)	9.6%					
0.020 mm (20μm)						
Atte	erberg Limits					
A	STM D4318					
Test	Result	Specification				
Liquid Limit (%)						
Plastic Limit (%)						

Mine Engineers, Inc.

Inberg-Miller Engineers 350 Parsley Blvd Cheyenne WY 82001 Ph: 307-635-6827 Fax: 307-635-2713 cheyenne@inberg-miller.com

IME Sample No: 16484-2 Sampled By: Client Sample Date: Date Received in Lab: 12/19/2013 Type of Material: Source: American Sands Energy - Utah Sample Description: Light brown fine SAND

> Report Date: <u>||15|14</u> Reviewed By: <u>M73</u>

Other Testing								
Test	Result	Specifications /Notes	ASTM					
Fineness Modulus:	0.95		C136					
Moisture Content (%):	0.1%	(from sieve sample)	D2216					
Relative Density (pcf)			D4254					
Minimum Density	89.3							
Maximum Density	94.7							
Angle of Repose								
Moisture Conte n t (%)								
0%	26.5°							
4%	33.8°							
6%	37.7°							
	•							
Specific Gravity	Fine /	Coarse						
Absorption %			C128/C127					
Bulk (Dry)			C128/C127					
Bulk (SSD)			C128/C127					
Apparent			C128/C127					
Att-4			April 2014					

<u>APPENDIX C</u> <u>HYDROLOGY RESULTS</u>

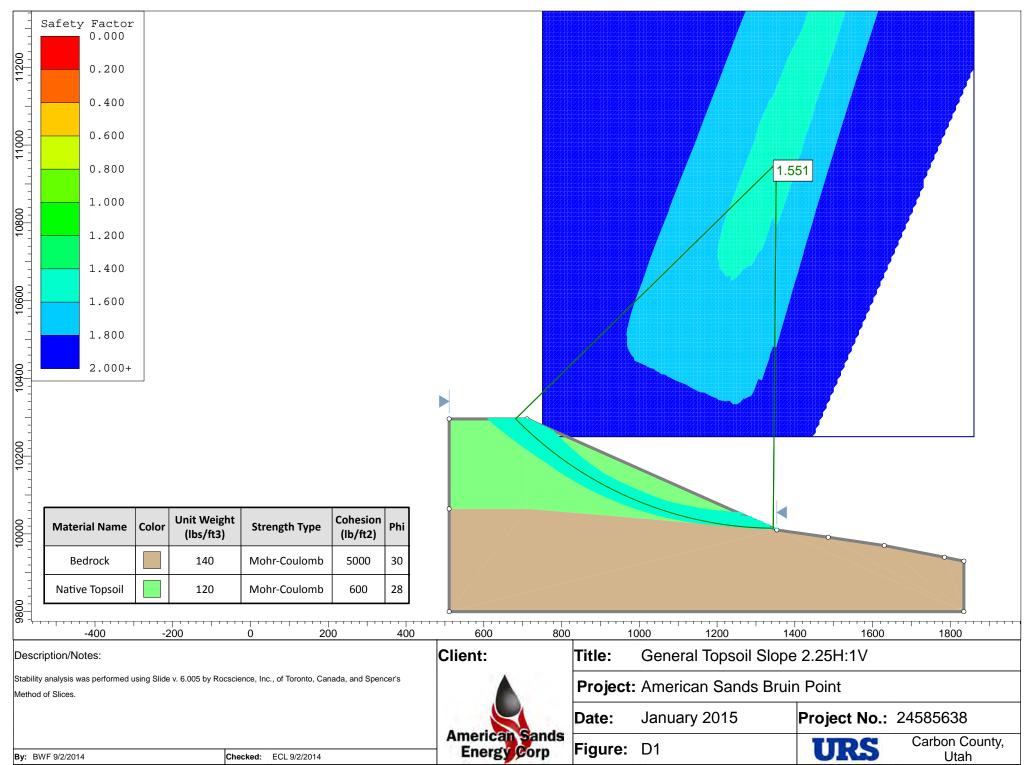
 10YR

 Hydrologic Element
 Drainage Area (MI2)
 Peak Discharge (CFS)
 Time

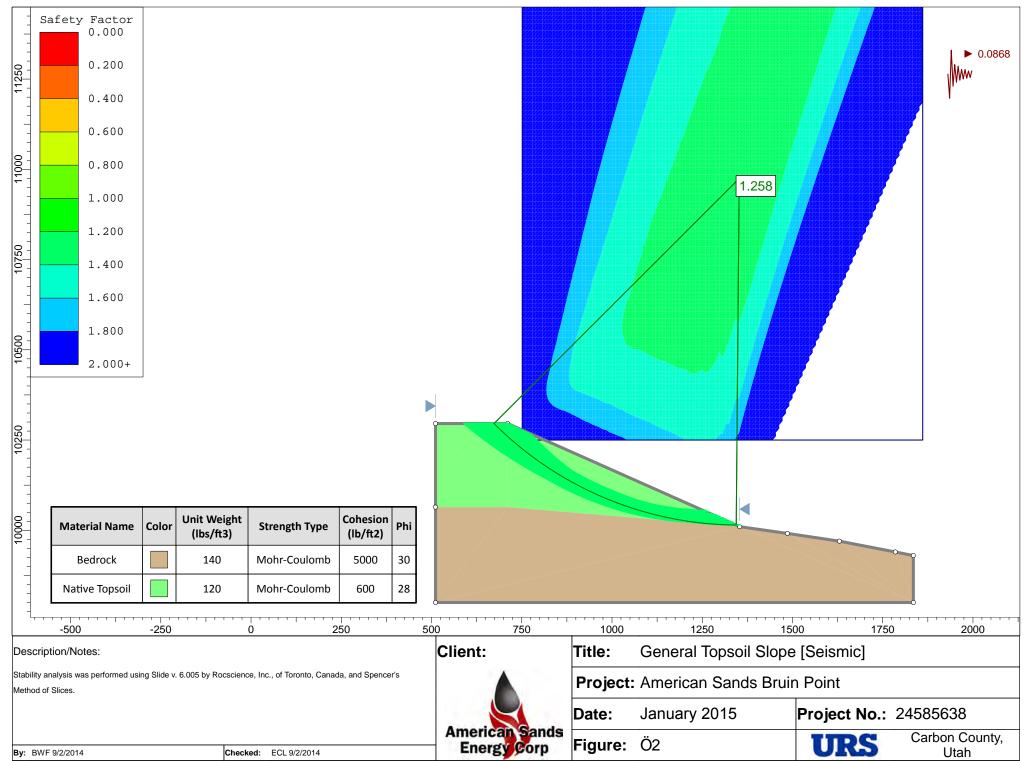
 of Peak
 Volume (AC-FT)

 Basin 1
 0.0045312
 2.4
 01Jan2014, 13:00
 0.2

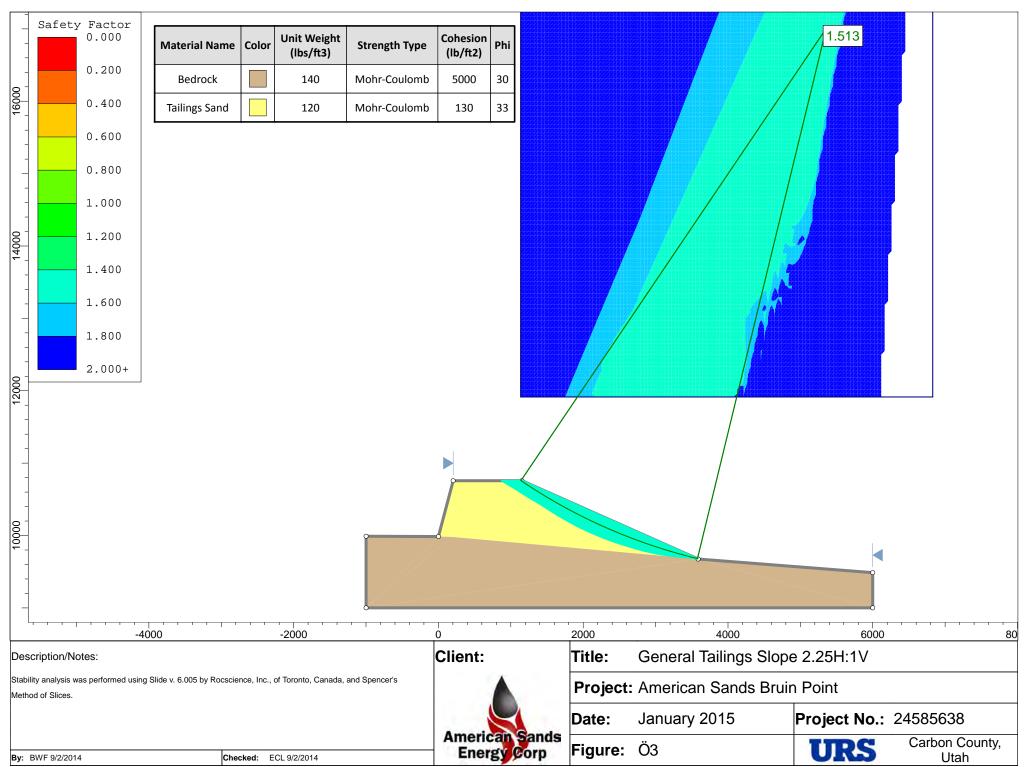
 Basin 2-5
 0.0040680
 2.7
 01Jan2014, 13:00
 0.2

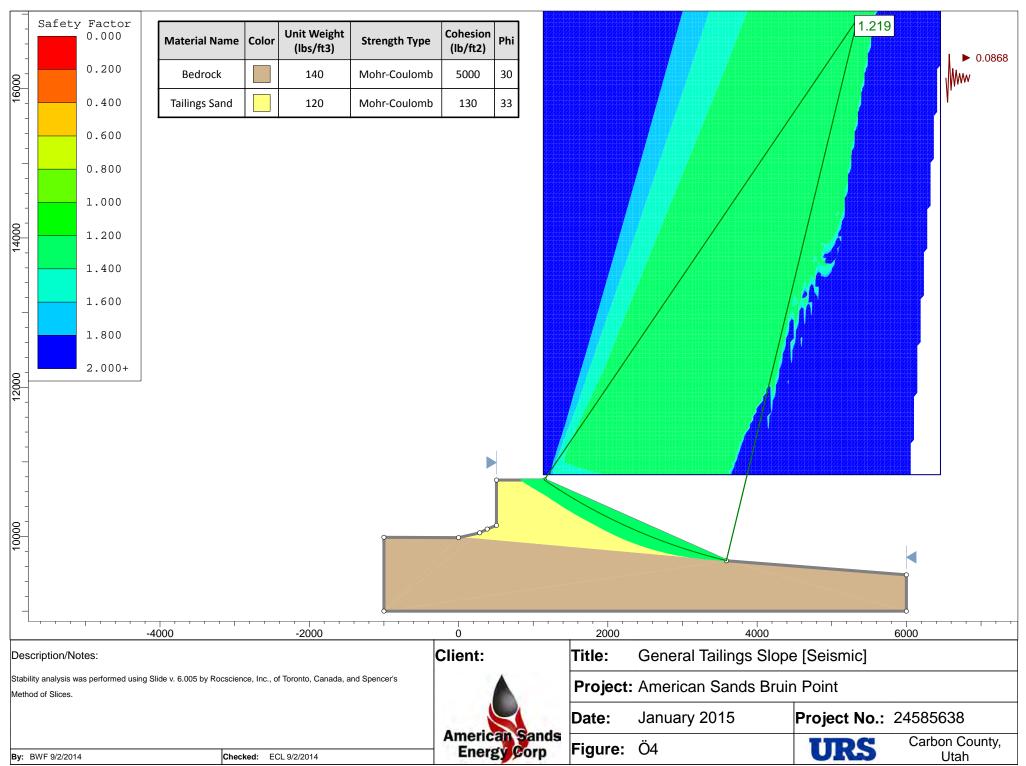

 Basin 6
 0.0190000
 12.1
 01Jan2014, 13:00
 1.0

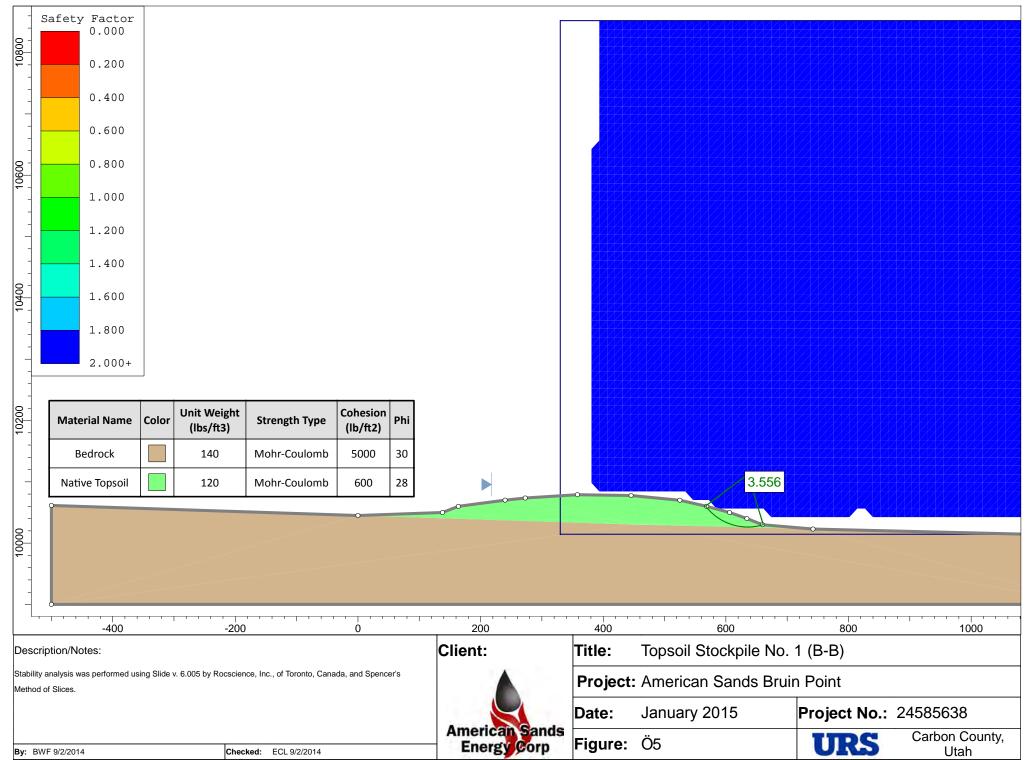
 Basin 7
 0.0190000
 12.1
 01Jan2014, 13:00
 1.0

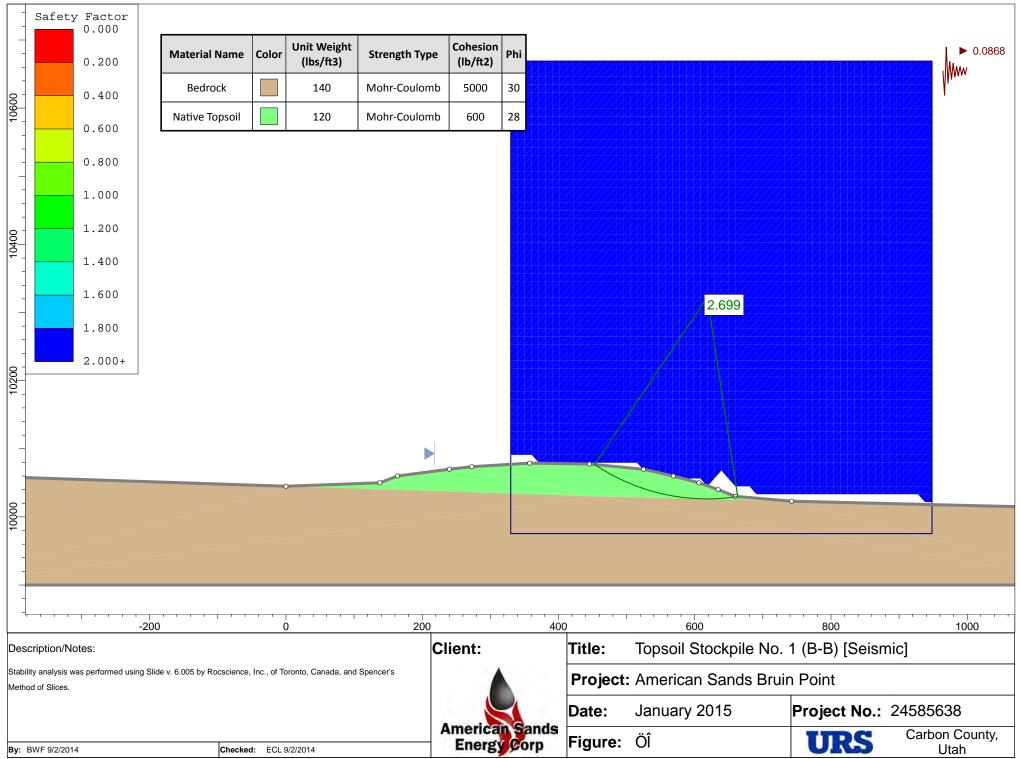

 Basin 8
 0.1870000
 47.1
 01Jan2014, 13:45
 10.2

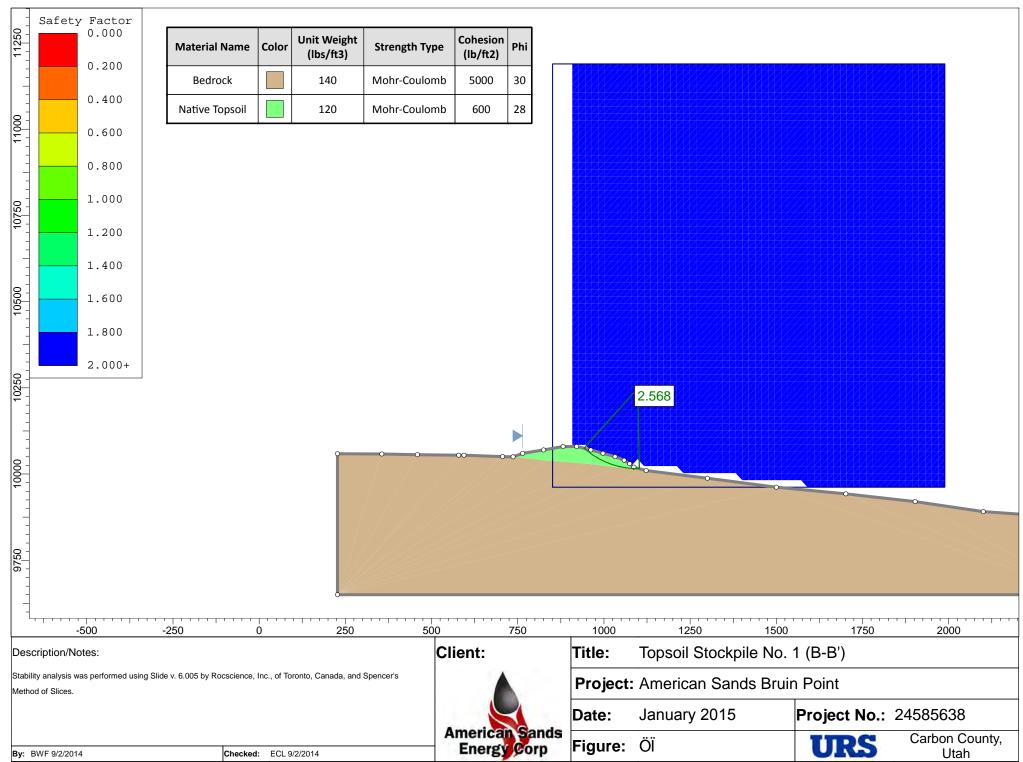
Hydrologic	Element	Drain	age Area (M	I2)	Peak	Discharge	(CFS)	Time
of Peak	Volume (AC-	-FT)						
Basin 1	0.0045312	5.0	01Jan2014,	13:00	0.4			
Basin 2-5	0.0040680	5.1	01Jan2014,	13:00	0.4			
Basin 6	0.0190000	22.6	01Jan2014,	13:00	1.9			
Basin 7	0.0190000	22.6	01Jan2014,	13:00	1.9			
Basin 8	0.1870000	89.0	01Jan2014,	13:45	18.7			

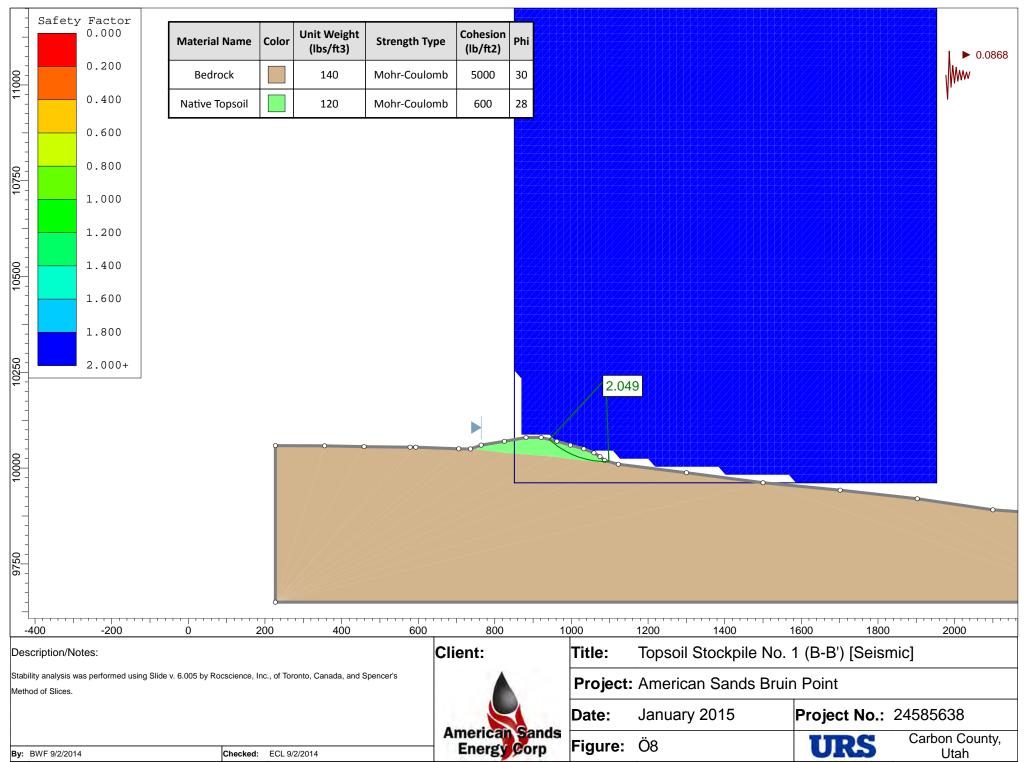

<u>APPENDIX D</u> <u>SLOPE STABILITY RESULTS</u>

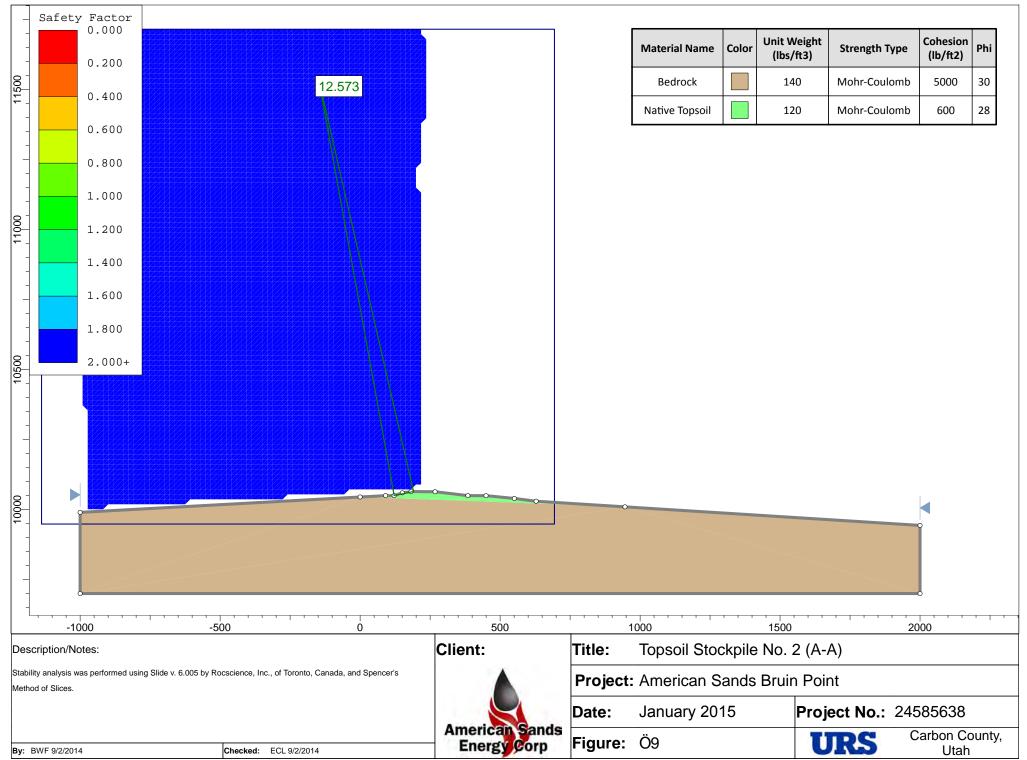

Q:\Projects\American Sands Energy\24585638\05_Analysis and Engineering\Geotech\Stability Analysis\Top Soil\Top SoilA-A-Prime (2.25 to 1.0) [Larger Slope].slim

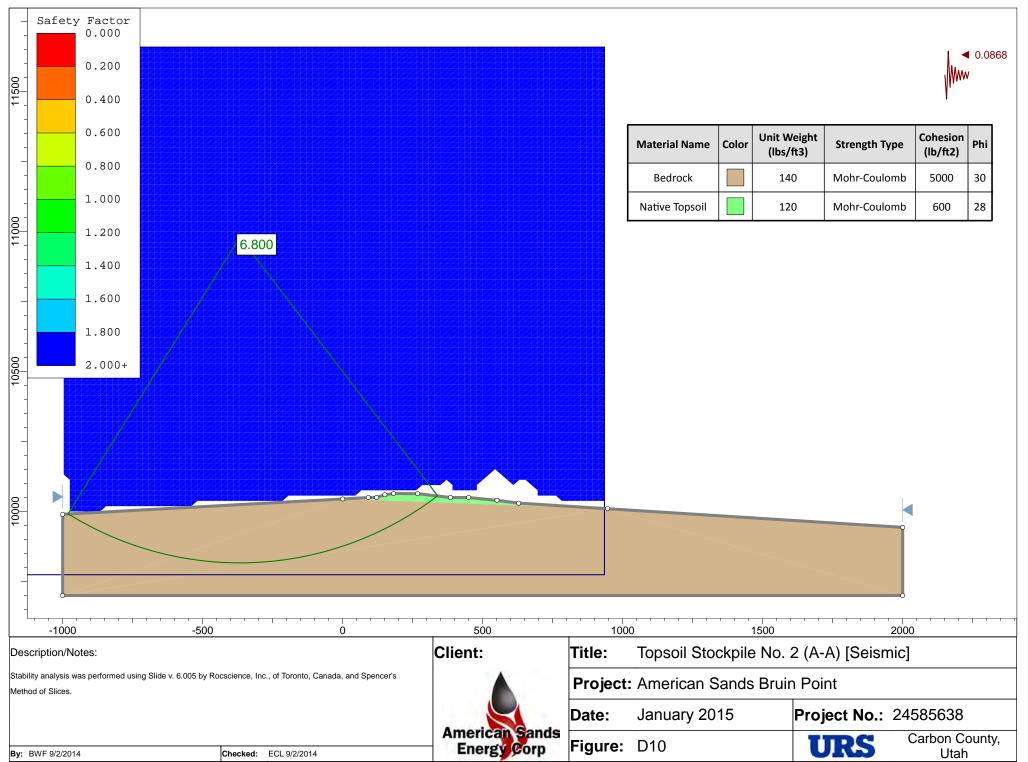

Q:\Projects\American Sands Energy\24585638\05_Analysis and Engineering\Geotech\Stability Analysis\Top SoilTop Soil A-A-Prime (2.25 to 1.0) [Larger Slope]_Seismic.slim

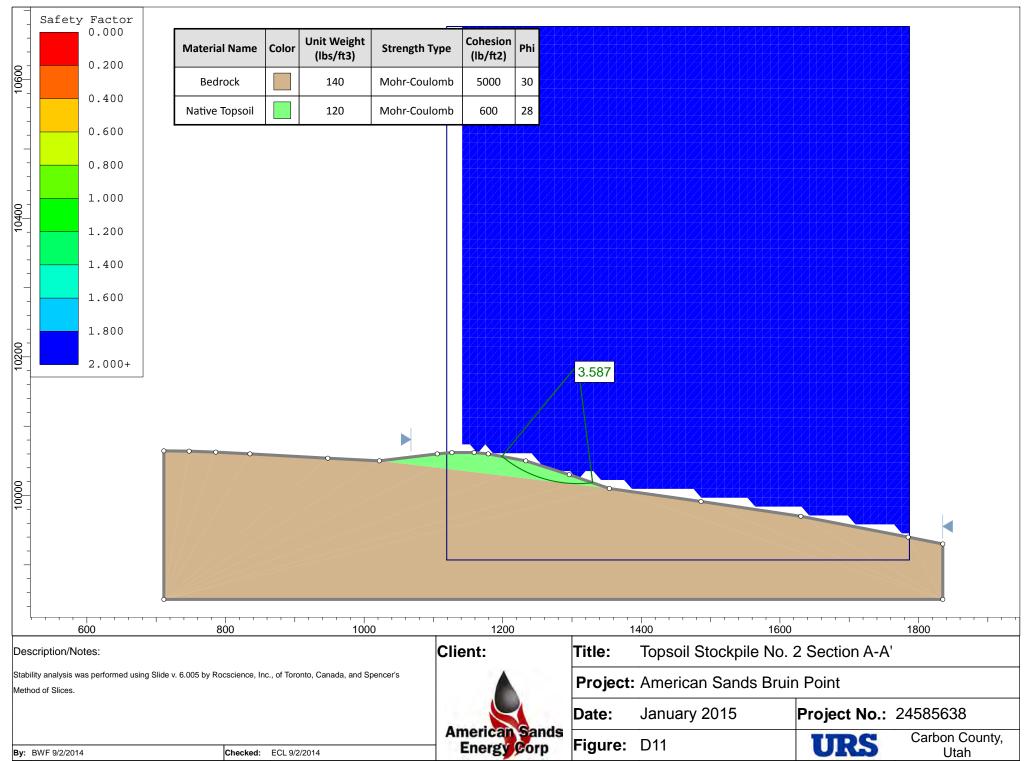

Q:Projects/American Sands Energy/24585638/05_Analysis and Engineering/Geotech/Stability Analysis/Tailings (c = 100) psf/Tailings Slope PHI=33deg, c=130 psf (2.25 to 1.0).slim

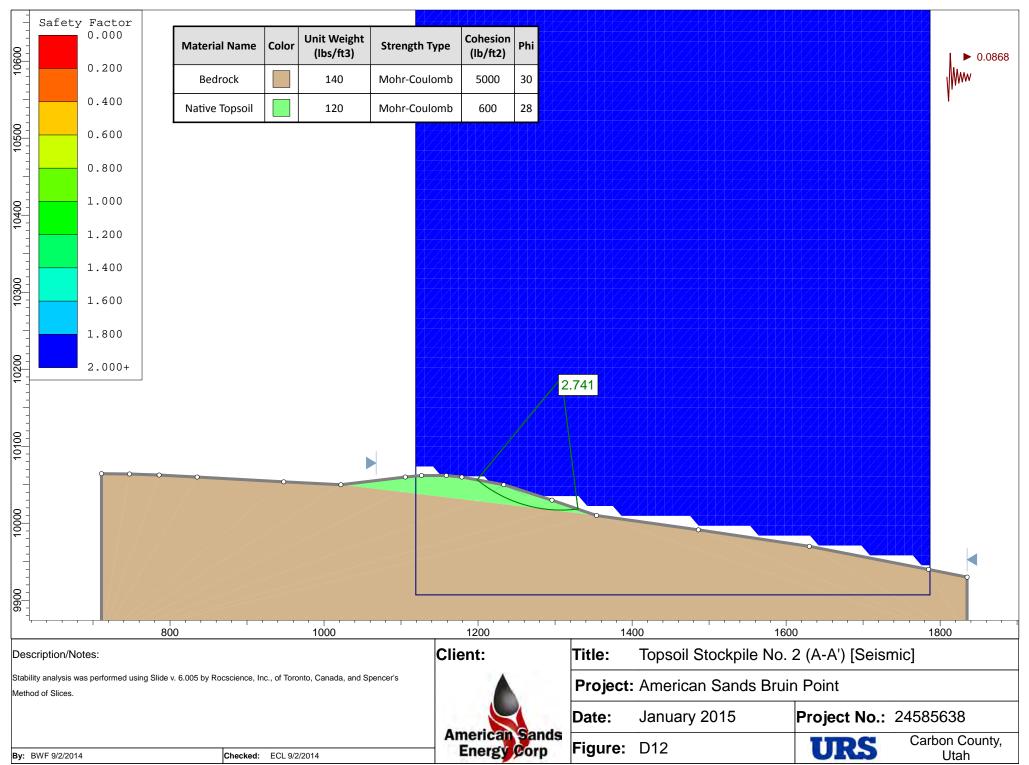

Q:\Projects\American Sands Energy\24585638\05_Analysis and Engineering\Geotech\Stability Analysis\Tailings (c = 100) psf\Tailings Slope PHI=33deg, c=130 psf (2.25 to 1.0)_Seismic.slim

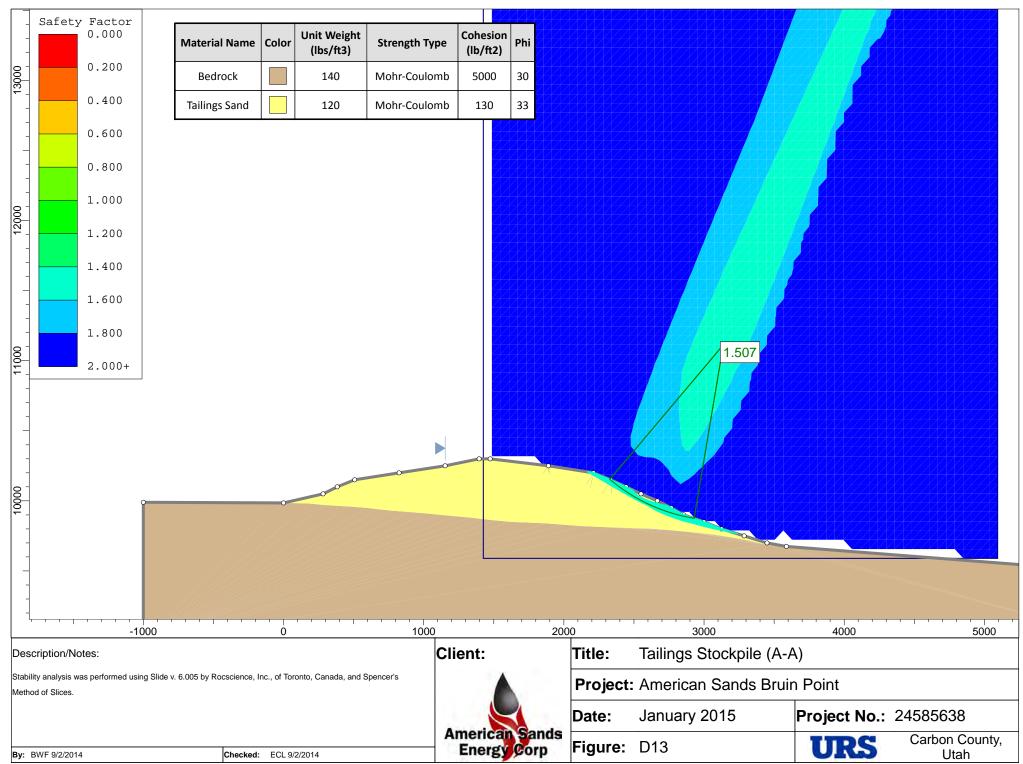

Q:\Projects\American Sands Energy\24585638\05_Analysis and Engineering\Geotech\Stability Analysis\Proposed Geometry\Top Soil B-B (Right).slim

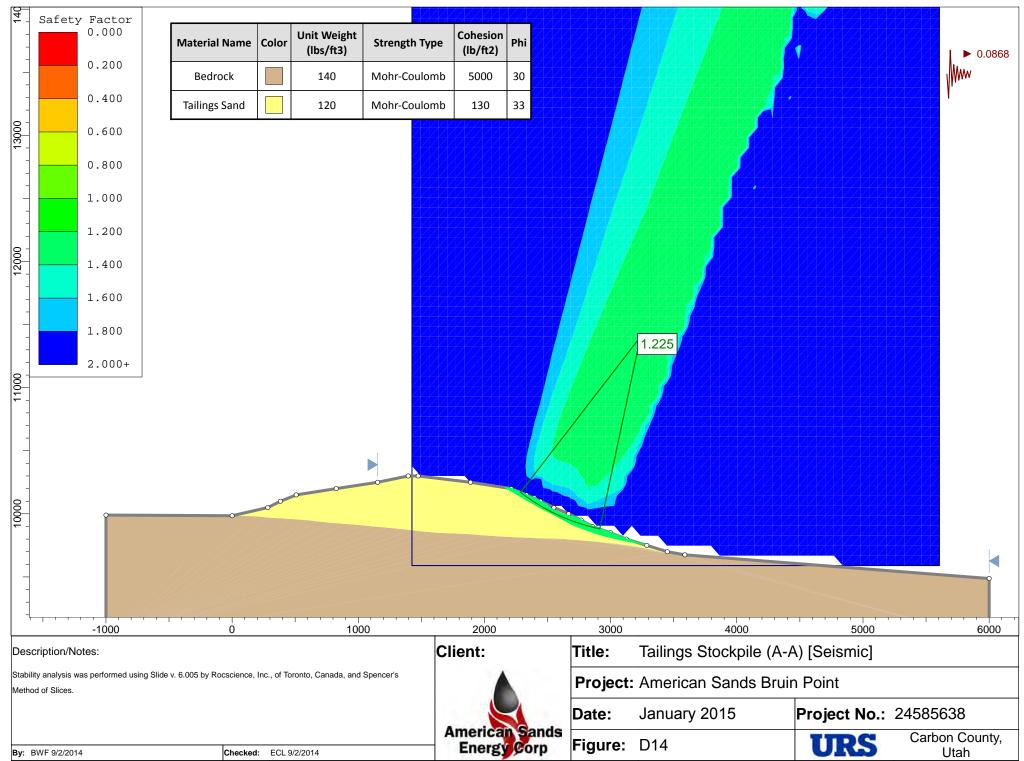

Q:\Projects\American Sands Energy\24585638\05_Analysis and Engineering\Geotech\Stability Analysis\Seismic\Top Soil B-B (Right).slim


Q:\Projects\American Sands Energy\24585638\05_Analysis and Engineering\Geotech\Stability Analysis\Proposed Geometry\Top Soil B-B-Prime.slim

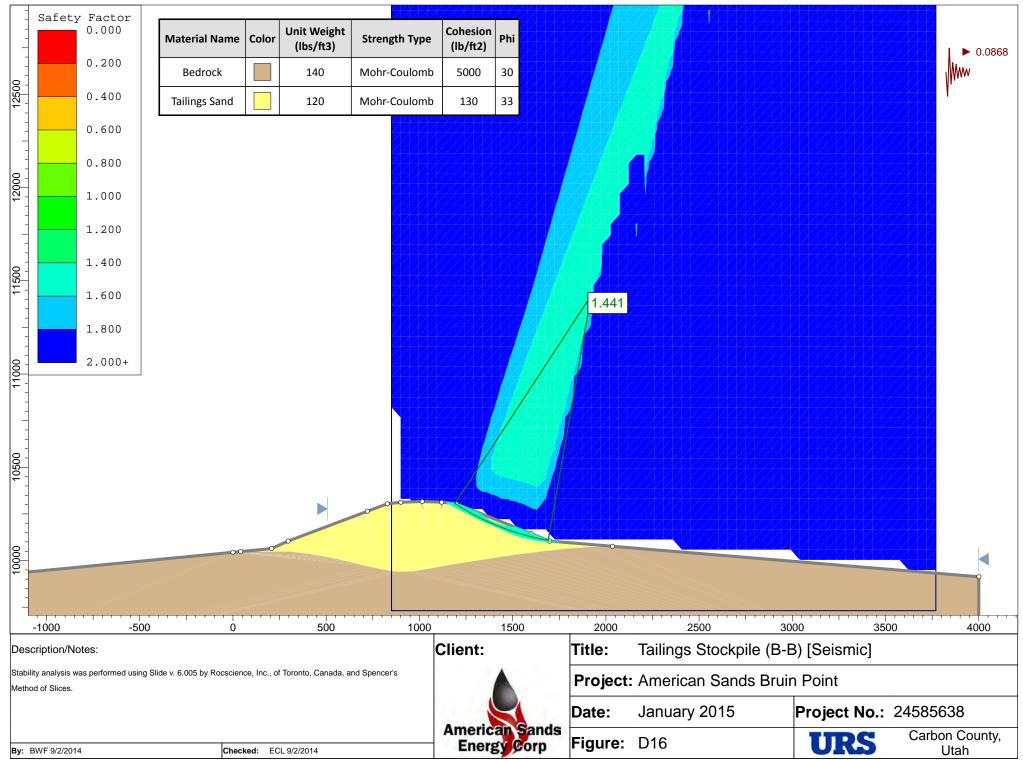

Q:\Projects\American Sands Energy\24585638\05_Analysis and Engineering\Geotech\Stability Analysis\Seismic\Top Soil B-B-Prime.slim

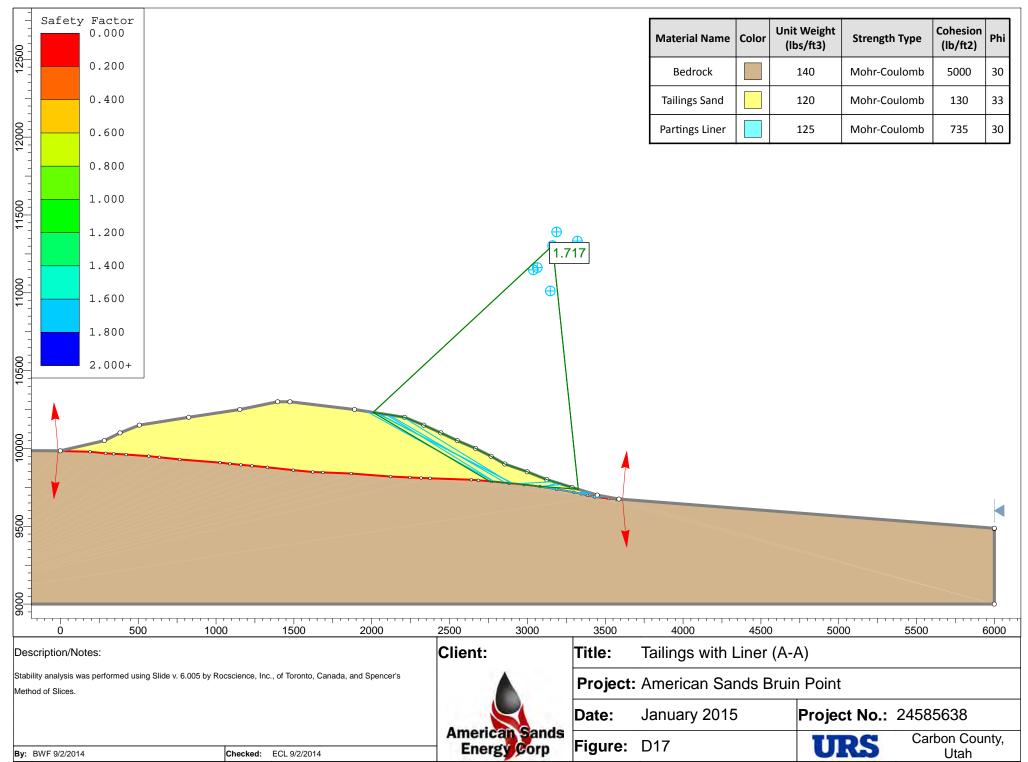

Q:\Projects\American Sands Energy\24585638\05_Analysis and Engineering\Geotech\Stability Analysis\Proposed Geometry\Top Soil A-A.slim

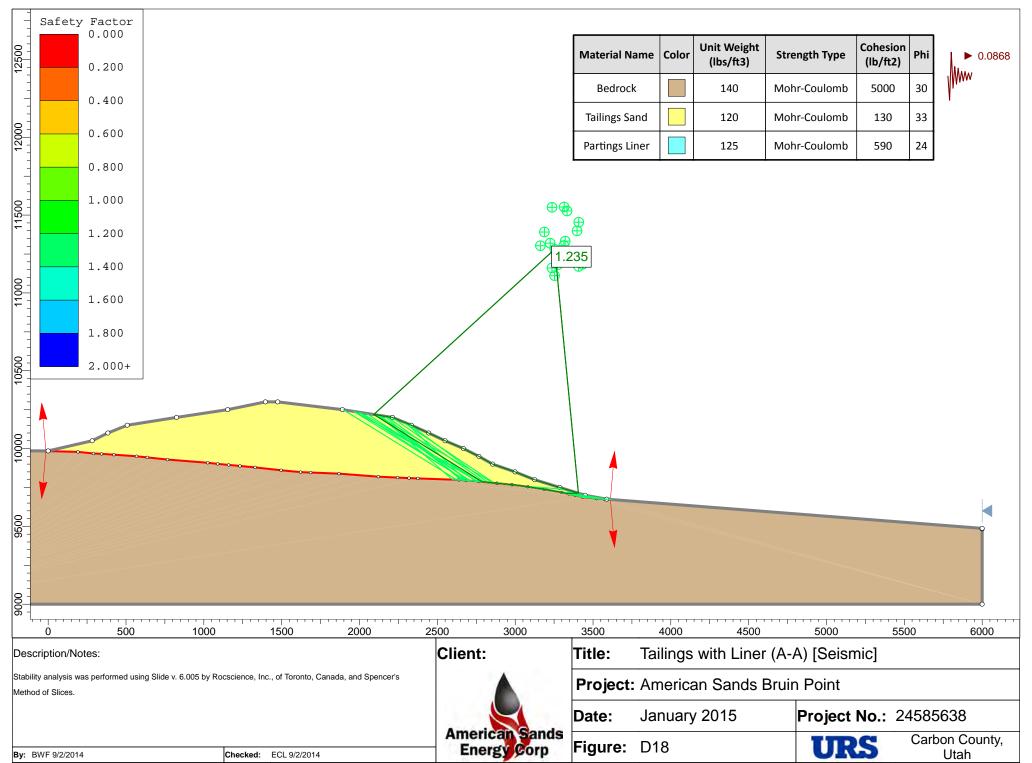

Q:\Projects\American Sands Energy\24585638\05_Analysis and Engineering\Geotech\Stability Analysis\Seismic\Top Soil A-A.slim

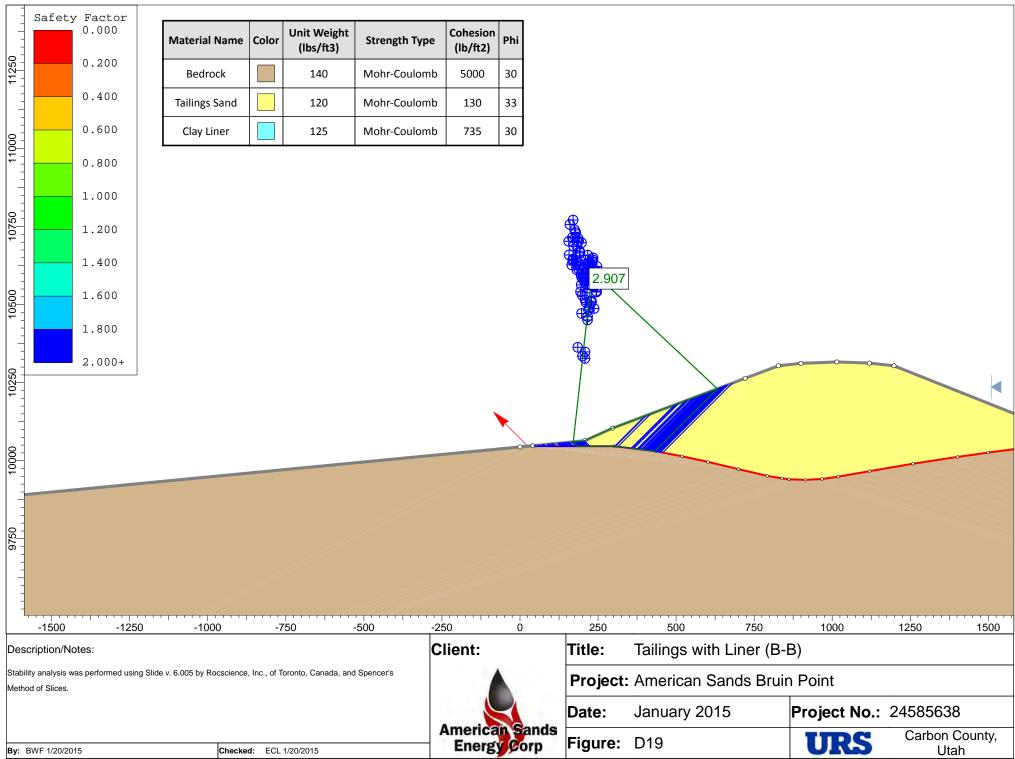

Q:\Projects\American Sands Energy\24585638\05_Analysis and Engineering\Geotech\Stability Analysis\Proposed Geometry\Top Soil A-A-Prime.slim

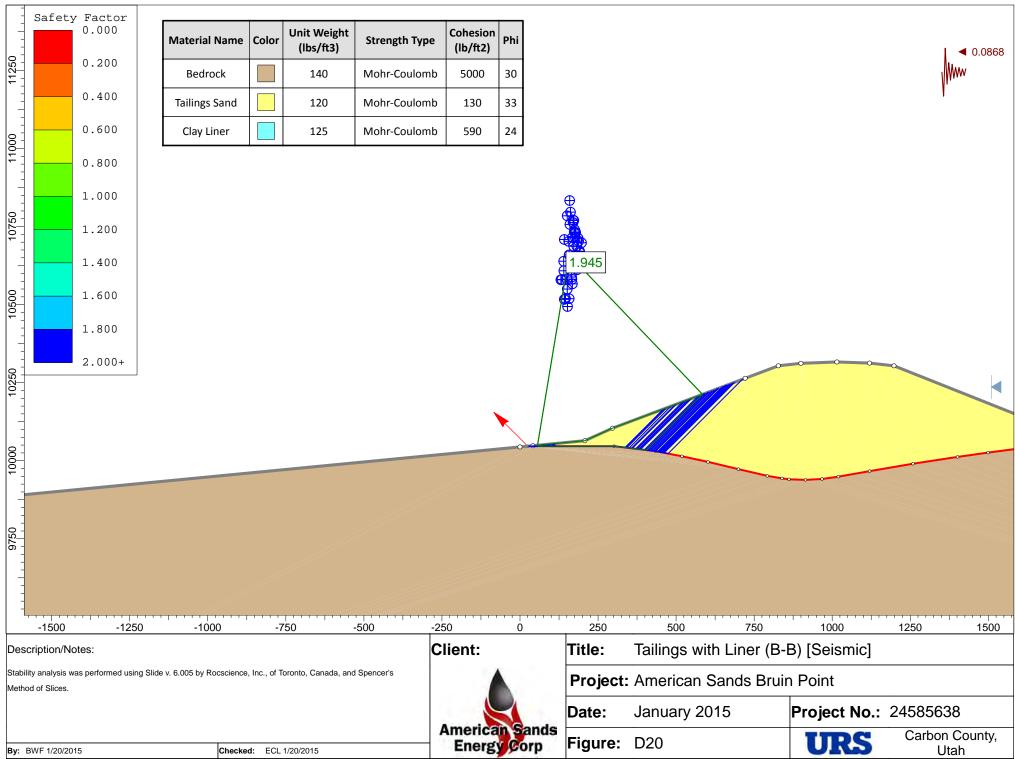

Q:\Projects\American Sands Energy\24585638\05_Analysis and Engineering\Geotech\Stability Analysis\Seismic\Top Soil A-A-Prime.slim


Q:\Projects\American Sands Energy\24585638\05_Analysis and Engineering\Geotech\Stability Analysis\Proposed Geometry\Tailings A-A (Right).slim


Q:\Projects\American Sands Energy\24585638\05_Analysis and Engineering\Geotech\Stability Analysis\Seismic\Tailings A-A (Right).slim


Q:Projects\American Sands Energy\24585638\05_Analysis and Engineering\Geotech\Stability Analysis\Proposed Geometry\Tailings B-B (Right).slim


Q:\Projects\American Sands Energy\24585638\05_Analysis and Engineering\Geotech\Stability Analysis\Seismic\Tailings B-B (Right).slim


Q:\Projects\American Sands Energy\24585638\05_Analysis and Engineering\Geotech\Stability Analysis\Proposed Geometry\Clay Liner\Tailings A-A (Right).slim

Q:\Projects\American Sands Energy\24585638\05_Analysis and Engineering\Geotech\Stability Analysis\Proposed Geometry\Clay Liner\Tailings A-A (Right)_Seismic.slim

Q:Projects\American Sands Energy\24585638\05_Analysis and Engineering\Geotech\Stability Analysis\Proposed Geometry\Clay Liner\Tailings B-B (Left).slim

Q:\Projects\American Sands Energy\24585638\05_Analysis and Engineering\Geotech\Stability Analysis\Proposed Geometry\Clay Liner\Tailings B-B (Left)_Seismic.slin

APPENDIX H

SAMPLING AND ANALYSIS PLAN AND QUALITY AND ASSURANCE PROJECT PLAN

SAMPLING AND ANALYSIS PLAN

BRUIN POINT MINE CARBON COUNTY, UTAH

Prepared for:

Green River Resources Inc. 201 South Main 1800 Salt Lake City, UT 84111

April 2015

Prepared by:

TABLE OF CONTENTS

1.0	INTR	INTRODUCTION 1				
	1.1	Site Background	1			
	1.2	Report Organization	. 1			
2.0	SAM	SAMPLE COLLECTION				
	2.1	Sampling Schedule and Locations	1			
	2.2	Surface Water Sampling Procedure	3			
	2.3	Groundwater Sampling Procedure	3			
	2.4	Dry Material Impoundment Sampling Procedure	3			
	2.5	Water Level Measurement Procedure	5			
	2.6	Water Quality Measurements	. 5			
	2.7	Surface Water Flow Measurement	. 5			
	2.8	Decontamination	. 6			
	2.9	Sample Identification	. 6			
	2.10	Quality Control / Quality Assurance (QA/QC) Samples	. 7			
	2.11	Field Documentation	. 7			
		2.11.1 Field Log Book	. 7			
		2.11.2 Field Forms	. 8			
3.0	SAM	PLE HANDLING AND ANALYSIS	. 8			
	3.1	Chain-of-Custody Procedures	. 8			
	3.2	Custody Seals	. 8			
	3.3	Sample Analysis	. 8			
4.0	REFERENCES					

LIST OF FIGURES

Figure 1-1 Site Location Map

Figure 2-1 Sampling Locations

LIST OF TABLES

- Table 2-1Summary of Measurement, Sampling, and Analytical Program
- Table 3-1Surface Water and Groundwater Analytes
- Table 3-2Dry Material Analytes

APPENDICES

- Appendix A Standard Operating Procedures (SOPs)
- Appendix B Field Forms

LIST OF ACRONYMS AND ABBREVIATIONS

BP	Bruin Point
DO	dissolved oxygen
DOGM	Division of Oil Gas and Mining
DMI	Dry Material Impoundment
EPA	Environmental Protection Agency
gpm	gallons per minute
GRR	Green River Resources, Inc.
ID	identification
mL	milliliter
MS/MSD	matrix spike/matrix spike duplicate
NOI	Notice of Intention
ORP	oxidation reduction potential
QAPP	Quality Assurance Project Plan
QA/QC	Quality Assurance/Quality Control
SAP	Sampling and Analysis Plan
SOP	Standard Operating Procedures
VOC	volatile organic compound

1.0 INTRODUCTION

This Sampling and Analysis Plan (SAP) provides descriptions of the procedures and methodologies for data collection to be conducted at the Green River Resources, Inc. (GRR) proposed Bruin Point Mine (the Site) in Carbon County, UT. This SAP outlines the samples to be collected, sample collection procedures, field sample analysis, and laboratory sample analysis to be performed. The companion plan to this SAP is the GRR Quality Assurance Project Plan (QAPP) (URS, 2014).

1.1 Site Background

GRR proposes to develop an oil sands mine and an associated processing facility within a contiguous 1,760-acre lease area. Mining activities are described in more detail in the Notice of Intention to Commence Large Mining Operations (NOI) submitted to the Utah Division of Oil Gas and Mining (DOGM) on March 4, 2014 (GRR, 2014).

The site area is located approximately six miles northeast of Sunnyside, UT, in Carbon County, directly east of Bruin Point (located at 39° 38' 38.87"N, 110° 20' 53.06"W). The property is located in the southwest portion of the Uinta Basin (**Figure 1-1**) and the area is currently largely undeveloped. Solvent used in the operating will be recovered from both the sand and the bitumen. The dry sand tailings will not contain more than 25 parts per million (ppm) of solvent (weight/weight).

1.2 Report Organization

This SAP is organized into four sections, including this introduction. Section 2.0 of this report provides the sample collection procedures and Section 3.0 presents the details of the sampling handling and analysis. Section 4.0 includes the references.

2.0 SAMPLE COLLECTION

Sample collection, as described in this SAP, includes collection of surface water, groundwater, and dry materials. The goal of the surface water sampling is to monitor for potential impacts to surface water adjacent to the proposed mining and ore processing activities. The goal of groundwater sampling is to monitor for potential impacts to groundwater downgradient of proposed processing and stockpiling operations. The goal of dry materials sampling is to monitor for potential impacts in the Dry Material Impoundment (DMI) area. This section provides the scope of the sampling to be performed to meet the objectives stated above.

2.1 Sampling Schedule and Locations

Surface water sampling will be performed during the spring, summer, and fall quarters. Sampling will not be conducted during the winter quarter, in which the sampling locations will be inaccessible due to weather conditions. Four surface water sampling locations, described below, were determined based on the Seep and Spring Inventory Report performed by JBR Environmental Consultants, Inc. (JBR, 2014). The fifth surface water sampling location is located at the Stormwater Retention Pond. The proposed surface water sample locations are shown in **Figure 2-1**.

Location #1– North Spring

North Spring is located in the north-central region of the permit boundary. It contributes to Range Creek.

Location #2 - South Spring/Tributary Spring

South Spring/Tributary Spring is southeast of North Spring and flows into Range Creek. Location #3 – Range Creek Flume

Range Creek Flume is directly south of South Spring/Tributary Spring and lies near the southeastern boundary of the permit area. A non-functional flume is present at this sampling location.

Location #4 – Cliff Seep

Cliff seep, located on the western edge of the permit area, contributes to an unnamed fork of Water Canyon, containing a historic mining area.

Location #5 – Stormwater Retention Pond

The Stormwater Retention Pond is located south of the Process Area.

Up to eight groundwater monitoring wells are proposed to be installed based on correspondence with the Utah Department of Environmental Quality. The monitoring wells will be installed and registered in accordance with Utah Administrative Code (UAC) R655-4 and as described in the Well Installation and Development Standard Operating Procedure (SOP) included in **Appendix A**. Wells are proposed to be installed at the edges of the dry material impoundment and processing areas.

Groundwater monitoring will be conducted during the first year, prior to operation, in order to establish background conditions at the site. Each monitoring well will be sampled eight times during the first year for a total of up to 64 data points. Statistical analysis will then be conducted to establish background conditions as detailed in the QAPP (URS, 2014).

Following the first year, groundwater monitoring will be conducted during the spring, summer, and fall quarters at each of the monitoring wells. Sampling will not be conducted during the winter quarter, in which the sampling locations will be inaccessible due to weather conditions. The location of monitoring wells, described below, was determined based on topographic and hydrologic gradients and locations of proposed future operations. The proposed monitoring well locations are shown in **Figure 2-1**.

Dry Material Impoundment Monitoring Wells

Up to five dry material impoundment monitoring wells are proposed to be installed on the northern, eastern, and southern edges of the proposed dry material impoundment area.

Process Monitoring Wells

Up to three process monitoring wells are proposed to be installed on the eastern and western edges of the processing area.

Sampling from the DMI area will occur during the first and second quarter that dry materials are produced (**Figure 2-1**). Dry material samples locations will be determined using Microsoft Excel's Random Number Generator.

Dry Material Impoundment (DMI) Area

DMI located in northwestern area of permit boundary, used to store dry material.

2.2 Surface Water Sampling Procedure

Surface water samples will be collected using a properly decontaminated long-handled sampler or the water will be collected directly into the laboratory provided glassware, when appropriate. All SOP protocols in **Appendix A** will be followed. Surface water samples will be transferred into the appropriate, new, certified-clean, sample containers supplied by the analytical laboratory, as described in the GRR QAPP (URS, 2014). If the sampler must stand in the water, samples will be collected upstream of the sampler's location. Surface water sampling activities will be recorded on the Surface Water Sampling Form included in **Appendix B**. A summary of the sampling, measurements, and analytical programs is provided in **Table 2-1**.

2.3 Groundwater Sampling Procedure

Groundwater samples will be collected using a properly decontaminated peristaltic pump, submersible pump, or bladder pump, or the water will be collected directly into the laboratory provided glassware if artesian conditions are observed. All SOP protocols in **Appendix A** will be followed. Groundwater samples will be transferred into the appropriate, new, certified-clean, sample containers supplied by the analytical laboratory, as described in the GRR QAPP (URS, 2014). Groundwater sampling activities will be recorded on the Groundwater Sampling Form included in **Appendix B**. A summary of the sampling, measurements, and analytical programs is provided in **Table 2-1**.

2.4 Dry Material Impoundment Sampling Procedure

Composite samples will not be collected due to the potential dilution effect in the composite sampling procedure. Discrete samples will be collected using disposable equipment for each

sample. At each random location, samples will be collected at approximately one foot below the surface and placed into new, certified-clean, sample containers supplied by the analytical laboratory. All field notes will be recorded on the Surface and Shallow Soil Sampling Log, provided in **Appendix B.** A summary of the sampling, measurements, and analytical programs is provided in **Table 2-1**.

Table 2-1	
Summary of Measurement, Sampling, and	l Analytical Program

Matrix	Sample Locations	Measurement	Field or Lab	Number of Normal Samples per Event	Number of QA/QC samples per Event	Frequency of Event
		Flow	Field	5	NA	Quarterly ⁽²⁾
		Water Quality Parameters ⁽¹⁾	Field	5	NA	Quarterly ⁽²⁾
Surface Water	See Figure 2-1	Table 3-1 Analytes	Lab	5	6 (FD at 10%, FB at 5%, & MS/MSD at 5% or per sampling event, whichever is greater. EB at one per sampling event, TB at one per cooler, only when samples analyzed for VOCs)	Quarterly ⁽²⁾
		Water Quality Parameters ⁽¹⁾	Field	9	NA	Quarterly ⁽²⁾
Ground water	See Figure 2-1	Table 3-1 Analytes	Lab	9	6 (FD at 10%, FB at 5%, & MS/MSD at 5% or per sampling event, whichever is greater. EB at one per sampling event, TB at one per cooler, only when samples analyzed for VOCs)	Quarterly ⁽²⁾
Dry Material	Randomly Selected	Table 3-2 Analytes	Lab	1	5 (FD at 10%, FB at 5%, & MS/MSD at 5% or per sampling event, whichever is greater. TB at one per cooler, only when samples analyzed for VOCs)	Quarterly ⁽³⁾

Notes:

FD = field duplicate

MS/MSD = matrix spike/matrix spike duplicate, which constitute two samples

TB = trip blank

EB = equipment blank

FB = field blank

NA = Not Applicable

QA/QC = Quality Assurance/Quality Control

VOCs = volatile organic compounds

⁽¹⁾ - Water Quality Parameters include: temperature, pH, specific conductance, oxidation reduction potential (ORP), and dissolved oxygen (DO)

⁽²⁾ Sampling will occur 3 out of 4 quarters due to the inability to sample during the winter quarter.

⁽³⁾ Dry material sampling will occur only during the first and second quarter that dry materials are produced.

2.5 Water Level Measurement Procedure

Water levels will be measured at each groundwater monitoring well prior to groundwater sample collection, using a properly decontaminated water level meter. All SOP protocols in **Appendix A** will be followed. Water level measurements will be recorded on the Water Level Form included in **Appendix B**.

2.6 Water Quality Measurements

Field water quality parameters will be measured at each surface water and groundwater sample location using a portable water quality meter, as described in the Water Quality Measurements SOP included in **Appendix A**. Field water quality measurements will consist of: pH, conductivity, temperature, dissolved oxygen (DO), and oxidation reduction potential (ORP). Data will be recorded on the sample forms included in **Appendix B**. The water quality meter will be properly maintained and calibrated in accordance with the manufacturer's instructions. Calibration information will be recorded on the Equipment Calibration Form included in **Appendix B**.

2.7 Surface Water Flow Measurement

Surface water flow will be measured concurrent with sample collection at four of the five surface water locations, as described below. Flow will not be measured in the Stormwater Retention Basin.

<u>Site #1 – North Spring (Estimated Flow: 3 - 42 gallons per minute (gpm))</u>

Flow will be measured by using a five-gallon bucket and determining the time it takes the spring to fill the bucket. This will be repeated three times and the average of the readings will be used as the flow.

<u>Site #2 – South Spring/Tributary Spring (Estimated Flow: 4.5 - 70 gpm)</u>

Flow will be measured by using a five-gallon bucket and determining the time it takes the spring to fill the bucket. This will be repeated three times and the average of the readings will be used as the flow.

<u>Site #3 – Range Creek Flume (Estimated Flow: 42 gpm)</u>

The existing flume will be inspected and cleaned out, as necessary. If possible, the flow will be measured following standard methods using the existing Parshall flume installed at the creek. If not, the bucket-method used at the North and South/Tributary Springs will be implemented.

<u>Site #4 – Cliff Seep (Estimated Flow: Unknown)</u>

Flow will be measured by using a 100-milliliter (mL) graduated cylinder and determining the time it takes the water to fill the cylinder. This will be repeated three times and the average of the readings will be used as the flow.

2.8 Decontamination

All non-dedicated sampling equipment (i.e., long-handled sampler, water quality meter, or pump) will be decontaminated before the start of each sampling or data collection event and between sample collection at each location. Decontamination will be performed using a weak phosphate-free detergent (Liquinox) and triple distilled water rinse. The sampler will wear a new pair of disposable gloves at each sampling location, before and after decontamination, and before collection quality control samples. Where possible, dedicated or disposable equipment will be used at each sample location to avoid cross-contamination. Decontamination will not be required for dry material sampling, as all equipment will be new and disposable.

2.9 Sample Identification

All sample containers will be labeled at the time of sample collection. Labels will be completed with permanent ink and will include the sample identification (ID), date and time of collection, project name, name of collector, analysis requested, and preservative.

Samples will be identified with a sample ID that consists of three fields. The first field indicates the site name and will consist of BP (for Bruin Point). The second field indicates the sample location and will consist of the location ID; NS for North Spring, SS for South Spring, RC for Range Creek Flume, CS for Cliff Seep, DMI for Dry Material Impoundment, and MW-X for monitoring wells, where "X" is the well identification number. The third field indicates the sampling event, represented by Q1, Q2, or Q3, for each quarter. Therefore, if the South Spring is sampled during the third quarter of sampling, the sample ID will be written as BP-SS-Q3.

For Quality Assurance/Quality Control (QA/QC) samples, consisting of field duplicate and matrix spike/matrix spike duplicate (MS/MSD) samples, the IDs will follow the same format as above, except that they will include a fifth field, to designate the type of QA/QC sample, as follows:

•	Field duplicate samples:	-Y	(Example: BP-SS-Q3-Y)

- MS samples: -MS (Example: BP-SS-Q3-MS)
- MSD samples: -MSD (Example: BP-SS-Q3-MSD)

When not using dedicated or disposable sampling equipment, equipment blanks will be labeled with "EB," the date of sampling, and the sample ID of the sample obtained immediately before the equipment blank was collected. The field blank will be labeled similarly, with "FB" and the date of sampling. Trip blanks will also accompany the samples, but they are lab prepared samples and placed in the cooler with volatile organic compounds (VOCs) samples. They remain unopened throughout the sampling event.

2.10 Quality Control / Quality Assurance (QA/QC) Samples

QA/QC sampling procedures will be followed to reduce cross contamination and sampling errors, as outlined in the GRR QAPP (URS, 2014). All sampling equipment will be stored and sealed in areas free of contamination.

Field duplicates and MS/MSD samples will be collected in the field at a frequency of 10% and 5%, respectively, or one per sampling event, whichever is greater for each sample type. Equipment blanks will each be collected once per sampling event when designated or disposable equipment is unavailable. Equipment blanks will not be collected during DMI sampling events since new, disposable equipment will be used each time. Field blanks will be collected at 5% or once per sampling event. Field blanks are to ensure reagent integrity and to check for environmental contamination. Field blanks will contain lab distilled water, be transported to the field, transferred to sample containers, and preserved identical to the normal samples.

A trip blank will only be included when samples are collected and analyzed for VOCs. The trip blank will be included in each cooler that contains the VOC samples. The trip blank, prepared by the laboratory, will indicate if sample contamination has occurred from the time samples are collected to the time they reach the laboratory. QA/QC sampling is further discussed in the GRR QAPP (URS, 2014).

2.11 Field Documentation

Documentation of field activities consists of the information recorded in the field log book and on the sample forms. The following subsections provide details regarding each type of documentation.

2.11.1 Field Log Book

The field logbook provides a means for recording observations and activities at a site. Field logbooks are intended to provide sufficient data and observation notes to enable participants to reconstruct events which occurred while performing field activities. Field logbooks are not intended to be used as the sole source of project or sampling information and, as such, are supplemented by field forms. Sufficient logbooks will be assigned to a project to ensure that each field team has a logbook with it at all times. If a logbook is not available, field forms should be used until a field log book becomes available.

Entries into the log book may contain a variety of information. At a minimum, log book entries must include the following information at the beginning of each day:

- Date;
- Start time;
- Weather;

- All field personnel present and directly involved;
- All visitors to the site;
- Field activities performed;
- Samples collected;
- Reference to any field forms used;
- Any field calculations not associated with a field form;
- Any significant events;
- Initials of personnel performing documentation at bottom of each page.

All log book entries will be made in indelible black or blue ink. No erasures are permitted. If an incorrect entry is made, the data will be crossed out with a single strike mark and initialed and dated by the originator.

2.11.2 Field Forms

Specific field activities related to sample collection and equipment calibration will be recorded on the field forms included in **Appendix B**. Field forms should be filled out completely and should include notes indicating any pertinent information regarding each specific sample. All field calculations associated with a measurement or sample that is being recorded on a field form should also be recorded on the appropriate field form.

3.0 SAMPLE HANDLING AND ANALYSIS

3.1 Chain-of-Custody Procedures

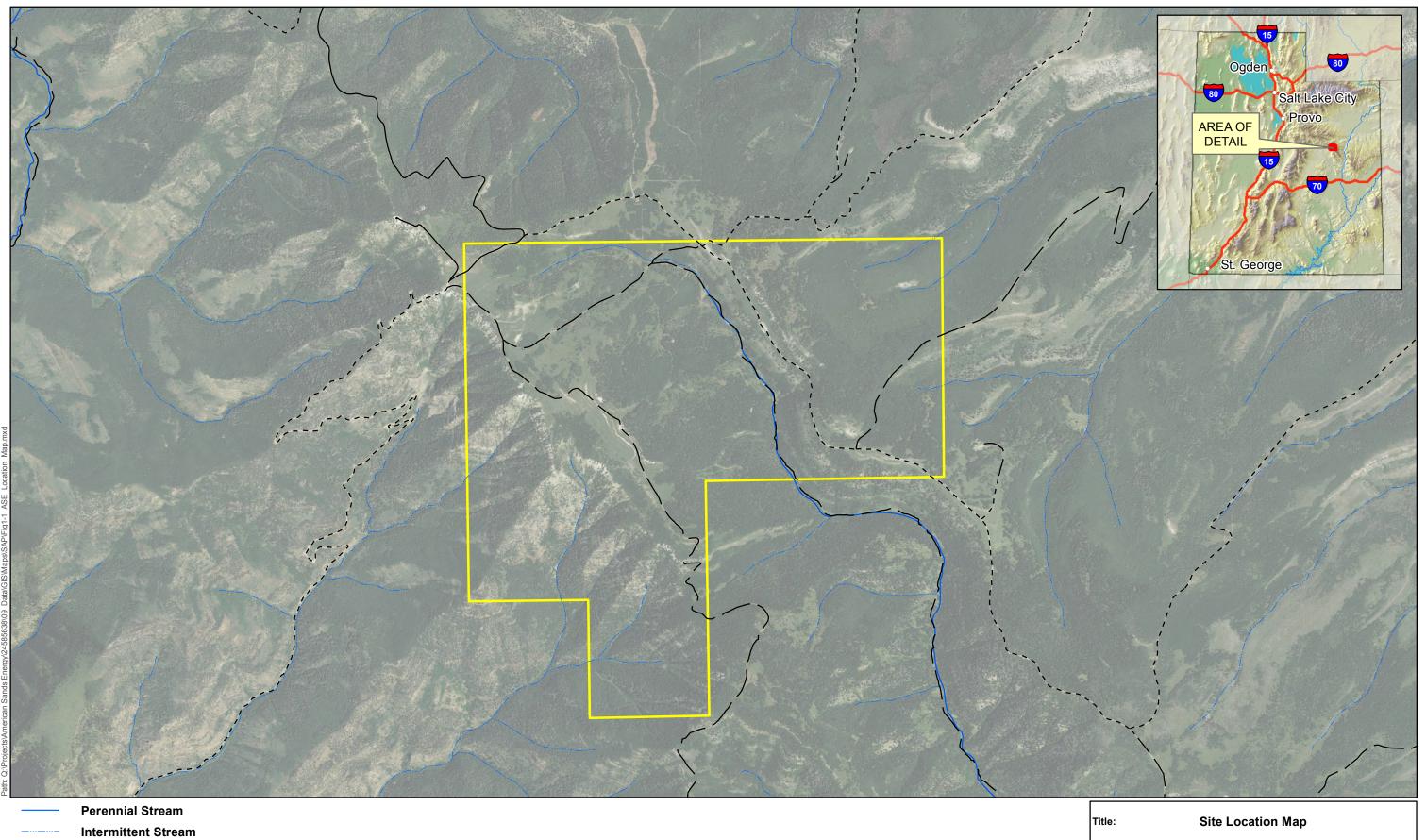
The possession and handling of all environmental samples will be traceable from the time of collection, through analysis, until final disposition using a Chain-of-Custody Form. The Chain-of-Custody Form will be completed by sampling and laboratory personnel and will accompany every sample drop-off. The Chain-of-Custody protocol is explained in greater detail in the GRR QAPP (URS, 2014).

3.2 Custody Seals

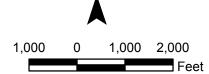
Custody seals will be used for any samples shipped to a laboratory and will be attached to all shipping containers before the samples leave the custody of sampling personnel. Custody seals will bear the signature of the collector and the date signed, and will be attached so that they must be broken in order to open shipping containers. Custody seals will not be required for containers taken directly to the laboratory by the sampling personnel. Refer to the GRR QAPP (URS, 2014) for additional information.

3.3 Sample Analysis

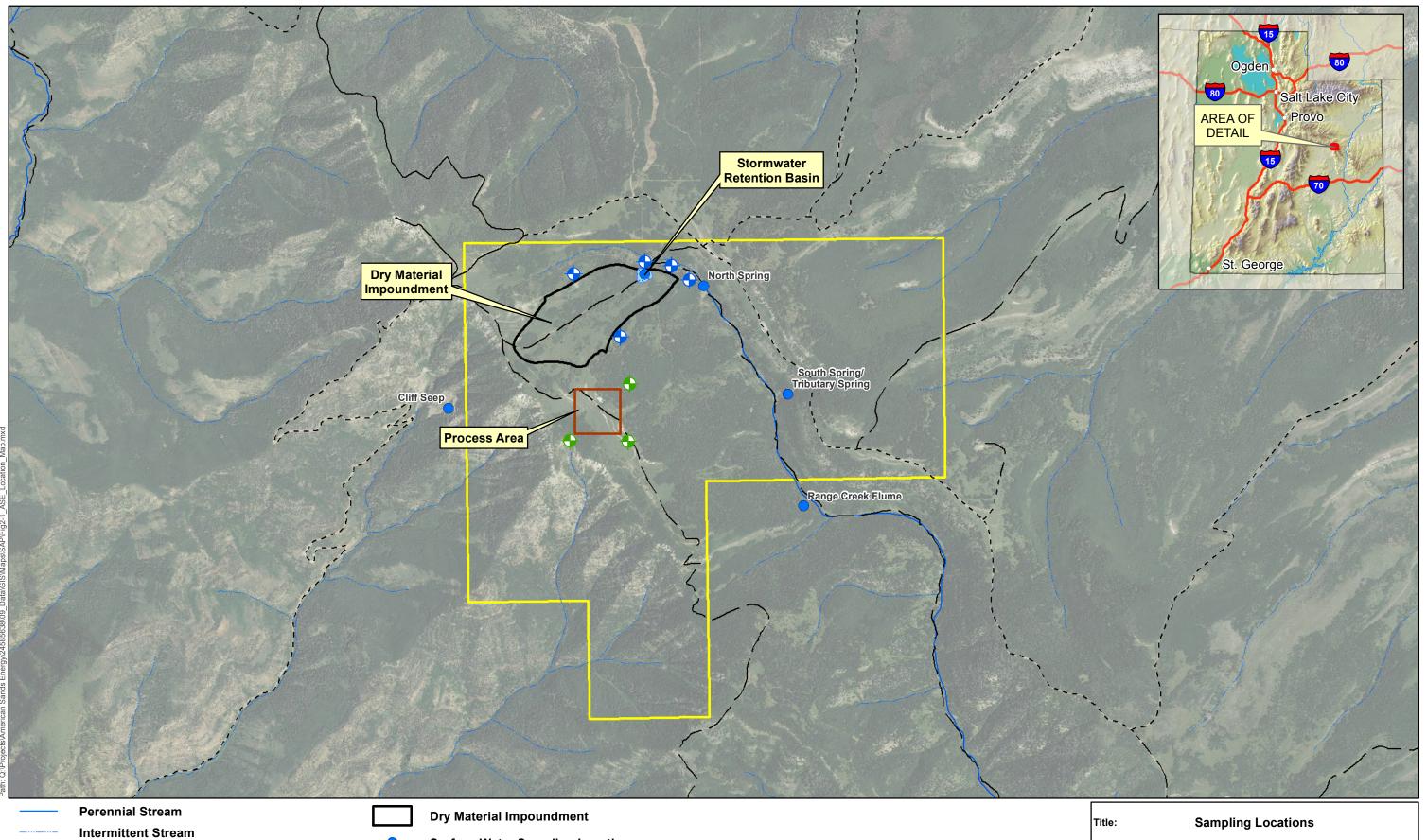
All surface water and groundwater samples will be submitted to a Utah certified laboratory and analyzed for the analytes and listed in **Table 3-1**. For the DMI samples, all potential proprietary


solvent constituents will undergo a total analysis. Semi-volatile organic compounds (SVOCs), VOCs, and metals will also be analyzed using the Synthetic Precipitation Leaching Procedure (SPLP) procedure. All other analytes unable to be analyzed via SPLP will undergo a total analysis. The analytes are listed in **Table 3-2.** Refer to the GRR QAPP (URS, 2014) for the appropriate sample containers, holding times, preservation, and methods for analytes listed in **Table 3-1** and **Table 3-2**.

4.0 **REFERENCES**


- Green River Resources (GRR), 2014. Notice of Intention to Commence Large Mining Operations, Green River Resources, Inc., Bruin Point Mine. March, 2014.
- JBR Environmental Consultants (JBR), 2014. American Sands Energy Corporation Proposed Bruin Point Mine Seep and Spring Inventory. February, 2014.

URS Corporation (URS), 2014. Quality Assurance Project Plan, Green River Resources Inc. Bruin Point Mine, Carbon County, UT. August 2014


FIGURES

- —— Improved Road
- ---- Dirt Road
- — Road (Conditions Unknown)
 - Lease Boundary

Bruin Point Mine Proj No: 245856	638
Sampling and Analysis Plan Figure: 1-1	
Date: April 2	2015
American sands Energy corp URS	

0 1,000 2,000

Feet

1,000

- Surface Water Sampling Location
 - Process Area Monitoring Well

lacksquare

 \bullet

Dry Material Impoundment Monitoring Well

Road (Conditions Unknown)

- -

Dirt Road

Lease Boundary

Improved Road

ns
No: 24585638
re: 2-1
: April 2015
URS

TABLES

Table 3-1 Surface Water and Groundwater Analytes

Analyte	Laboratory Method ⁽¹⁾	
General W	ater Chemistry	
Alkalinity as CaCO ₃	SM 2320B	
Ammonia as N	EPA 350.1	
Bicarbonate as CaCO ₃		
Carbonate as CaCO ₃	SM 2320B	
Chloride		
Sulfate	EPA 300.0	
Hardness as CaCO ₃	SM 2340C	
Nitrate as N	EPA 300.0	
Nitrate/Nitrite as N	EPA 353.2	
Nitrite as N	EPA 300.0	
Specific Conductance	SM 2510B	
Total Dissolved Solids	SM 2540C	
Total Suspended Solids	SM 2540D	
Total Organic Carbon	SM5310B	
Benzene		
Toluene		
Xylenes, Total	SW846 8260B/RSK 175	
Naphthalene	-	
TPH-GRO	SW846 8015C	
TPH-DRO	SW846 8015C	
HEM, SGT-HEM	1664	
Barium		
Cadmium		
Copper		
Manganese	7	
Iron	6010C	
Nickel	6020A	
1,2,3-Trimethylbenzene		
1,2,4-Trimethylbenzene		
1,3,5-Trimethylbenzene	8260B	
2-Butanone		
Methylene chloride		
Potential Proprietary Solvent Constituents ⁽²⁾		
Benzoic Acid	SW846 8270D	
Ethanol		
Propanol	SW846 8015B	
1,3-Dichloropropane		
Butane	7	
Ethylbenzene		
Iexanes SW846 8260B/RSK 175		
Isopropyl alcohol		
Methyl t-butyl ether		
Pentane		
Isopentane	TBD	
n-Propylbromide	TBD	

Notes:

(1) – Or equivalent method

(2) - Proprietary solvent is a mixture of some, but not all, of these constituents

- mg milligrams
- S/m siemens per meter
- SGT Silica Gel Treated
- HEM Hexane Extractable Material
- TPH Total Petroleum Hydrocarbons
- GRO Gasoline Range Organics
- DRO Diesel Range Organics
- SM Standard Method TBD - To be determined
- EPA Environmental Protection Agency

Table 3-2Dry Material Analytes

Analytes	Laboratory Method ⁽¹⁾
Analyzed using S	PLP Procedure ^{1,2}
	tals
Antimony	
Arsenic	
Barium	
Beryllium	SW 946 1212/6020
Cadmium	SW 846 1312/6020
Chromium	
Copper	
Lead	
Mercury	SW 846 1312/7470
Major cations	
Aluminum	
Calcium	
Iron	SW 846 1312 /6010
Magnesium	
Manganese	
Potassium	
Sodium	
Selenium	
Silver Thallium	SW 846 1312/6020
Zinc	
	Organics
Pentachlorophenol	
Di(2-ethylhexyl)adipate	
Benzo(a)pyrene	SW 846 1312/8270
Hexachlorocyclopentadiene	5 11 0 10 13 12/02/0
Di(2-ethylhexyl)phthalate	
	DCs
1,1-Dichloroethylene	
1,2 Dichloropropane	
1,2,4-Trichlorobenzene	
1,2-Dichlorobenzene	
1,4-Dichlorobenzene	
Benzene	
Carbon tetrachloride	
cis-1,2 dichloroethylene	
Dichloromethane	
Ethylene Dibromide	
Heptane	
Hexachlorobenzene	
Monochlorobenzene	SW 846 1312/8260B
Naphthalene	
Styrene Tetrachloroethylene	
Toluene	
trans-1,2 dichloroethylene	
Trichloroethylene	
Vinyl Chloride	
Xylenes, Total	
1,2,3-Trimethylbenzene	
1,2,4-Trimethylbenzene	
1,3,5-Trimethylbenzene	
2-Butanone	
Methylene chloride	

Table 3-2Dry Material Analytes

Analytes	Laboratory Method ⁽¹⁾		
Potential Proprietary Solvent Constituents ^(2,3)			
Benzoic Acid	SW 846 1312/8270D		
1,3-Dichloropropane			
Ethylbenzene	SW 846 1312/8260		
Methyl t-butyl ether			
n-Propylbromide	TBD		
Analyzed using To	otal Analysis Procedure ²		
Non-Halog	genated Organics		
TPH-DRO	8015C		
TPH-GRO	8015C		
HEM, SGT-HEM	9071B		
	Others		
Ammonia as N	350.1		
Chloride	9056A		
Sulfate	9056A		
Nitrate as N	9056A		
Nitrite as N	9056A		
Total Organic Carbon	9060A		
Total Nitrate/Nitrite as N	9056A		
Potential Proprietar	y Solvent Constituents ^(2, 3)		
Ethanol	8015B		
Hexanes	8260B		
Isopentane	TBD		
Isopropyl alcohol	8015B		
Propanol	8015B		
Pentane	Modified ASTM 1945		
Butane	Modified ASTM 1945		
1,3-Dichloropropane	8260B		
Benzoic Acid	8270D		
Ethylbenzene	8260B		
Methyl t-butyl ether	8260B		
n-Propylbromide	TBD		

Notes:

⁽¹⁾ – Or equivalent method

– Only SVOCs, VOCs, and metals can be analyzed using the SPLP procedure.

All other analytes shall undergo a total analysis.

 $^{(3)}$ – Proprietary solvent is a mixture of some, but not all, of these constituents

oz. - ounce

ASTM - American Society for Testing and Materials

RL - Reporting Limit

MDL - Method Detection Limit

SW - Solid Waste

SOP - Standard Operating Procedure

SPLP- Synthetic Precipitation Leaching Procedure

SGT - Silica Gel Treated

HEM - Hexane Extractable Material

HCL- Hydrochloric Acid

ml - milliliter

kg- kilogram

ug-microgram

L - Liter

mg - milligram

APPENDIX A

STANDARD OPERATING PROCEDURES (SOPS)

Water Quality Measurements Surface Water Sampling Groundwater Sampling Water Level Measurements Well Installation and Development

STANDARD OPERATING PROCEDURE

WATER QUALITY MEASUREMENTS

1.0 PURPOSE

This procedure outlines the types of field measurements and data requirements associated with the collection of surface water and groundwater samples. Water quality parameters will be collected to assess surface water and groundwater chemistry at the site.

This procedure provides guidance for quarterly surface water and groundwater sampling at the Green River Resources, Inc. (GRR) Bruin Point Mine.

2.0 DEFINITIONS AND ABBREVIATIONS

2.1 Definitions

Not applicable.

2.2 Abbreviations

mS/cm	millisiemens per centimeter
GRR	Green River Resources, Inc.
ORP	Oxidation and Reduction Potential
SAP	Sampling and Analysis Plan
SOP	Standard Operating Procedure

3.0 RESPONSIBILITIES

Sampling personnel are responsible for performing the applicable tasks and procedures outlined herein when conducting work related to environmental projects.

The URS Project Manager or an approved designee is responsible for checking all work performance and verifying that the work satisfies the applicable tasks required by this procedure. This will be accomplished by reviewing the GRR Field Sampling and Analysis Plan (SAP) and all applicable standard operating procedures (SOPs).

4.0 **PROCEDURES**

- Read and follow the specific manufacturer's operating instructions before using any equipment.
- Calibrate all equipment as specified below prior to and at the commencement of sampling activities to ensure proper equipment operation. Record these measurements in the Equipment Calibration Form (**Appendix B**).

4.1 Temperature

- Calibrate electronic thermometers (if applicable) according to their manufacturer's specifications.
- Record actual and meter reading on the Equipment Calibration Form.
- Collect the sample in a clean flask or beaker and insert the temperature probe into the water as per the manufacturer's specifications.
- Read the temperature from the meter and record the reading on the Surface Water Sampling form (Appendix B).
- Discard the sample and rinse the probe with Liquinox wash and distilled water rinse.

4.2 pH

- Thoroughly decontaminate the pH probe prior to use with Liquinox wash and distilled water rinse.
- Use a two point calibration, at a minimum, using pH 7.0 and 10.0 buffer solutions according to the manufacturer's specifications.
- Record meter reading in pH buffer solutions 7.0 and 10.0 on the Equipment Calibration Form. If reading is greater than \pm 0.2 units, recalibrate the meter.
- Collect the sample in a clean flask or beaker and insert the pH probe into the water according to the manufacturer's specifications.
- If appropriate, the probe may be inserted directly into the water, according to the manufacturer's specifications.
- Read the pH measurement from the meter approximately one minute from the time the sample was collected and record the reading on the Surface Water Sampling form.
- Discard the sample and decontaminate the probe with Liquinox wash and distilled water rinse.

4.3 Conductivity

- Thoroughly decontaminate the conductivity probe prior to use with Liquinox wash and distilled water rinse. Calibrate the conductivity meter according to the manufacturer's specifications.
- Record meter reading in a known specific conductance calibration solution (such as 1.412 millisiemens per centimeter (mS/cm)) on the Equipment Calibration Form. If reading is greater than ± 10 percent, recalibrate the meter.
- Collect the water sample in a clean flask or beaker and insert the conductivity probe into the water according to the manufacturer's specifications.
- Wait for the reading to stabilize and record the reading on Surface Water Sampling Form.
- Discard the sample and decontaminate the probe with Liquinox wash and distilled water rinse.

4.4 Dissolved Oxygen

- Decontaminate the dissolved oxygen probe according to the manufacturer's specifications with Liquinox wash and distilled water rinse. Because the probe membrane is very fragile and susceptible to dryness, keep it moist at all times.
- Calibrate the dissolved oxygen meter according to the manufacturer's specifications and record the results on the Equipment Calibration Form.

- Collect the water sample as close to the source as possible and place it in a clean flask or beaker.
- Be careful to minimize sample aeration during collection and transfer into the flask or beaker.
- Insert the dissolved oxygen probe into the sample so that the membrane is fully submerged. Very gently stir the probe through the sample. Do not agitate the probe as air bubbles cause erroneous measurements.
- When the reading stabilizes, record the reading on Surface Water Sampling form.
- Decontaminate the dissolved oxygen probe according to the manufacturer's specifications with Liquinox wash and distilled water rinse.

4.5 Oxidation Reduction Potential

- Decontaminate the oxidation reduction potential (ORP) probe according to the manufacturer's specifications with Liquinox wash and distilled water rinse.
- Calibrate the ORP probe according to the manufacturer's specifications. Correct for temperature according the calibration solutions specifications.
- Record meter reading in a known ORP calibration solution (corrected for temperature) on the Equipment Calibration Form. If reading is greater than ± 10 percent, recalibrate the meter. Collect the water sample in a clean flask or beaker and insert the ORP probe into the water
- according to the manufacturer's specifications
- When the reading stabilizes, record the reading on Surface Water Sampling form.
- Decontaminate the ORP probe according to the manufacturer's specifications with Liquinox wash and distilled water rinse.

4.6 Review

The reviewer shall check Surface Water Forms for completeness and accuracy. Any discrepancies will be noted and the forms will be returned to the originator for correction. The reviewer will acknowledge that the review comments have been incorporated by signing and dating the Surface Water Sampling Forms.

5.0 FORMS (Appendix B)

- Equipment Calibration Form
- Surface Water Sampling Form

STANDARD OPERATING PROCEDURE

SURFACE WATER SAMPLING

1.0 PURPOSE

The purpose of this procedure is to describe the equipment and operations for sampling surface water at the Green River Resources, Inc. (GRR) Bruin Point Mine. This procedure outlines methods for surface water sample collection using a long-handled sampler or directly into the lab provided glassware.

2.0 DEFINITIONS AND ABBREVIATIONS

2.1 Definitions

Blank: An artificial sample designed to monitor the introduction of contaminants into a process. For aqueous samples, lab provided water is used as a blank matrix.

2.2 Abbreviations

°C	degrees Celsius
COC	Chain-of-Custody Form
GRR	Green River Resources, Inc.
ID	identification
ORP	Oxidation Reduction Potential
QAPP	Quality Assurance Project Plan
QA/QC	Quality Assurance/Quality Control
SAP	Sampling and Analysis Plan
SOP	Standard Operating Procedure

3.0 **RESPONSIBILITIES**

Sampling personnel are responsible for performing the applicable tasks and procedures outlined herein when conducting work related to environmental projects.

The URS Project Manager or an approved designee is responsible for checking all work performance and verifying that the work satisfies the applicable tasks required by this procedure. This will be accomplished by reviewing GRR Sampling and Analysis Plan (SAP), and Quality Assurance Project Plan (QAPP).

4.0 **PROCEDURES**

- Prior to initiating sampling, check that equipment to be used is in good operating condition.
- If possible and where applicable, start at those locations that are the least contaminated and proceed to those locations that are the most contaminated.

- Thoroughly decontaminate all equipment entering surface water according to the SAP.
- Collect surface water sample as described below.

4.1 Surface Water Sample Collection

Prior to initiating surface water sampling, record the following parameters on the Surface Water Sampling Form (**Appendix B**):

- Project Name;
- Sample Location;
- Sample Date;
- Field Investigator;
- Chain-of-Custody (COC) number;
- Surface Water Sampling Method;
- Additional sampling comments;
- Sample ID;
- Quality Assurance/Quality Control (QA/QC) sample collected (type and ID);
- Sample Date and Time;
- Water Quality Meter Type;
- Water Color and Clarity;
- Water Quality Parameters; and
- Field Drawn Map

Surface water samples will be collected using a properly decontaminated long-handled sampler or directly into the lab provided glassware from each of the four locations (**Figure 2-1**). Surface water samples will be transferred in appropriate new, certified-clean, sample containers supplied by the analytical laboratory. If the sampler must stand in the water, samples will be collected upstream of the sampler's location. Surface water sampling activities will be recorded on the Surface Water Sampling Form included in **Appendix B**. The sampler will properly and thoroughly decontaminate sampling equipment prior to any sampling and between samples according to the methods outlined in the SAP. In addition, equipment blanks will be collected as outlined in the QAPP to verify that cross-contamination has not occurred.

Sampling should be performed deliberately and methodically to minimize disturbance of bottom sediments, yet quickly as possible to ensure a representative sample. Collect water quality parameters immediately after sampling to minimized disturbance of bottom sediments. Water quality parameters shall consist of pH, specific conductance, temperature, dissolved oxygen, and oxidation reduction potential (ORP) and shall be recorded on the Surface Water Sampling Form.

After sample collection, sample shipping shall include the following:

- Package samples and ship or deliver to the laboratory within 48 hours of sample collection under standard chain-of-custody protocol.
- Place samples on ice in an insulated cooler for shipment so that they will be cooled to the required temperature of $4^{\circ}C \pm 2^{\circ}C$ as quickly as possible.
- Package samples properly prior to transportation and shipment.
- Sign custody seals and attach to all shipping containers before the samples leave the

custody of sampling personnel.

4.2 Sample Containers

The proper sample containers and preservatives to be used for specific analyses are outlined in the QAPP.

4.3 Chain-of-Custody

All samples shall be accompanied by a COC at the time of transfer. The procedures for filling out a COC, transporting samples, and transferring custody of samples are outlined in the QAPP.

4.4 Sample Labeling

Label all samples according to the methods outlined in the SAP.

4.5 Review

The reviewer shall check Surface Water Sampling Forms, log book, and COCs for completeness and accuracy. Any discrepancies will be noted and the forms will be returned to the originator for correction. The reviewer will acknowledge that the review comments have been incorporated by signing and dating the forms.

5.0 FORMS (Appendix B)

- Surface Water Sampling Form
- Chain-of-Custody Form
- Equipment Calibration Form

STANDARD OPERATING PROCEDURE

GROUNDWATER SAMPLING

1.0 PURPOSE

The purpose of this procedure is to describe the equipment and operations for sampling groundwater at the Green River Resources, Inc. (GRR) Bruin Point Mine. This procedure outlines methods for groundwater sample collection including purging, sample collection, and filtration when using peristaltic pumps, submersible pumps, or bladder pumps. Water will be collected directly into the laboratory provided glassware if artesian conditions are observed.

The monitoring wells will be purged and sampled with a peristaltic pump, submersible pump, or bladder pump using dedicated or disposable tubing. Groundwater samples will be collected in appropriate containers. Groundwater quality data will be collected in the field and will consist of pH, specific conductivity, temperature, dissolved oxygen, and oxidation reduction potential (ORP) using calibrated field water-quality meters as discussed in the SOP for Water Quality Measurements. Static water level and total well depth will be measured with an electronic water-level meter as discussed in the SOP for Water Level Measurements. All field instruments will be calibrated according to the manufacturer's recommendations prior to use and documented in an Equipment Calibration Form (**Appendix B**).

2.0 DEFINITIONS AND ABBREVIATIONS

2.1 Definitions

Blank: An artificial sample designed to monitor the introduction of contaminants into a process. For aqueous samples, lab provided water is used as a blank matrix.

Equipment Blanks: Blanks prepared in the field from reagent-grade water that is poured over or passed through the sample collection device after the device has been decontaminated, then collected in a sample container and returned to the laboratory for analysis. Equipment blanks check the effectiveness of decontamination procedures.

2.2 Abbreviations

BGS	Below Ground Surface
ml/min	Milliliters per minute
ORP	Oxidation Reduction Potential
QAPP	Quality Assurance Project Plan
SAP	Sampling and Analysis Plan
SOP	Standard Operating Procedure

3.0 RESPONSIBILITIES

Sampling personnel are responsible for performing the applicable tasks and procedures outlined herein when conducting work related to environmental projects.

The URS Project Manager or an approved designee is responsible for checking all work performance and verifying that the work satisfies the applicable tasks required by this procedure. This will be accomplished by reviewing GRR Sampling and Analysis Plan (SAP), and Quality Assurance Project Plan (QAPP).

4.0 **PROCEDURES**

- Read and follow the specific manufacturer's operating instructions before using any equipment.
- Prior to initiating sampling of a groundwater, check that all equipment to be used is in good operating condition.
- If possible and where applicable, start at those locations that are the least contaminated and proceed to those locations that are the most contaminated.
- Thoroughly decontaminate all equipment entering each well according to the SAP.
- Remove the well cap, noting in the log book the following: personnel, well identification number, date, time, and weather conditions, as well as any evidence of damage or disturbance to the well head.
- Check water level as per the SOP for Water Level Measurements.
- Purge as per Section 4.1, Purging.
- Collect field water quality measurements as detailed in the SOP for Water Quality Measurements.
- Sample as per Section 4.2, Sample Collection.

4.1 Purging

In order to obtain a representative sample, groundwater within the monitoring well must be purged until water quality parameters stabilize as outlined in the SOP for Water Quality Measurements. This procedure allows for sampling of representative formation water.

- Purge and sample wells using "low-stress" techniques.
- To ensure groundwater is representative of the aquifer before samples are collected, purge each well at a maximum rate of 500 milliliters per minute (ml/min) until field-measured parameters stabilize.
- Exercise care during purging to not reduce the water column by more than 50% of initial height, to the extent practical.
- At a minimum, monitor pH, specific conductivity, temperature, dissolved oxygen, and ORP during purging using portable meters as outlined in the SOP for Water Quality Measurements. Take at least five readings during purging.
- At least three consecutive field measurements made three minutes apart shall fall within the ranges stated below before field parameters will be considered stabilized:
 - \circ pH = ± 0.2 units,
 - Specific Conductance = ± 10 percent,
 - Temperature = $\pm 1^{\circ}$ C,

• Dissolved Oxygen = $\pm 0.2 \text{ mg/L or } 10 \text{ percent, and}$

Prior to initiating purging, record the following groundwater parameters on a Groundwater Sampling Form (Appendix B):

- Project Name,
- Sample Location,
- Sample ID,
- Sample Date,
- Water Quality Meter and Serial Number,
- Depth of Pump Intake,
- Total Depth,
- Static Water Level,
- Water Column, and
- Sampling Method.

4.2 Sample Collection

With the exception of low-yield wells, groundwater samples shall be collected immediately after field-measured parameters have stabilized. Groundwater samples shall be collected in containers supplied by the analytical laboratory. Specific sample collection procedures include:

- Locate the pump intake approximately midway in the water column, within the screened interval, during purging and sample collection;
- Set the sampling flow rate at 500 ml/min or less during purging;
- Collect samples after field parameters (pH, specific conductance, temperature, and dissolved oxygen) have stabilized; and
- Wells that have a slow recovery, and are purged dry during the purging process, shall be considered adequately purged. Sample wells having a slow recovery once the water level reaches at least 70% of the original static water level, or within 24 hours of being purged dry.

Immediately after the sample is collected, record the following information on the Groundwater Sampling Form:

- Sample Time;
- QA/QC Sample Type and ID; and
- Actual Purge Volume.

Sample shipping shall include the following:

- Package samples and ship or deliver to the laboratory within 48 hours of sample collection under standard chain-of-custody protocol.
- Place samples on ice in an insulated cooler for shipment so that they will be cooled to the required temperature of 4°C ±2°C as quickly as possible.

- Package samples properly prior to transportation and shipment.
- Sign custody seals and attach to all shipping containers before the samples leave the custody of sampling personnel.

To ensure the groundwater sample is representative of formation water, it is important to minimize the possibility of cross-contamination by performing the following steps:

- Use only new or dedicated silicon and polyethylene discharge tubing.
- Thoroughly decontaminate sampling equipment prior to any sampling and between samples according to the methods outlined in the SAP.
- Collect equipment blanks as outlined in the QAPP to verify that cross-contamination has not occurred.

4.3 Sample Containers

The proper sample containers and preservatives to be used for specific analyses are outlined in the QAPP.

4.4 Chain-of-Custody

All samples shall be accompanied by a COC at the time of transfer. The procedures for filling out a COC, transporting samples, and transferring custody of samples are outlined in the QAPP.

4.5 Sample Labeling

Label all samples according to the methods outlined in the SAP.

4.6 Investigative Derived Waste

Investigative Derived Waste (IDW) including purged groundwater and decontamination fluids will be thin spread at a location at least 10 feet downgradient of the well. If in the future, analytes are detected in the groundwater at concentrations exceeding regulatory levels, a determination will be made regarding the method for IDW to be containerized and properly disposed of.

4.7 Review

The reviewer shall check Groundwater Sampling Forms, log book, and COCs for completeness and accuracy. Any discrepancies will be noted and the forms will be returned to the originator for correction. The reviewer will acknowledge that the review comments have been incorporated by signing and dating the forms.

5.0 FORMS (Appendix B)

- Groundwater Sampling Form
- Chain-of-Custody Form
- Equipment Calibration Form

STANDARD OPERATING PROCEDURE

WATER LEVEL MEASUREMENTS

1.0 PURPOSE

The purpose of this procedure is to describe the methods used for obtaining accurate water level measurements from groundwater wells. This procedure outlines the equipment available for water level measurement and its operation.

This procedure provides guidance for water level measurements at the Green River Resources, Inc. (GRR) Bruin Point Mine.

2.0 DEFINITIONS AND ABBREVIATIONS

2.1 Definitions

Not applicable.

2.2 Abbreviations

- QAPP Quality Assurance Project Plan
- SAP Sampling and Analysis Plan
- SOP Standard Operating Procedure

3.0 RESPONSIBILITIES

Personnel obtaining water level measurements are responsible for performing the applicable tasks outlined in this procedure when conducting work related to environmental projects.

The URS Project Manager or an approved designee is responsible for checking all work performance and verifying that the work satisfies the applicable tasks required by this procedure. This will be accomplished by reviewing GRR Sampling and Analysis Plan (SAP), and Quality Assurance Project Plan (QAPP).

4.0 **PROCEDURE**

4.1 Introduction

Accurate groundwater level measurements are a fundamental requirement of any characterization study. Groundwater level measurements are used to construct water table maps, to determine gradient, to provide basic data during aquifer testing, to determine permeability and hydrologic conductivity, and to determine purge volume for well development and sampling. Collect water level measurements as described below.

- Collect all groundwater level measurements with an electronic water level indicator. Read and follow the specific manufacturer's operating instructions before using any equipment.
- Measure water levels in wells in order of increasing contaminant level, where levels of contamination can be determined.
- Measure static water levels before the wells are disturbed by any other sampling or monitoring activities. Water levels should be taken within as short a time span as possible to ensure comparable readings.
- If there is a rush of air in or out of the well when the well cap is removed, take water level readings every two minutes until the water level stabilizes with three consecutive readings within 0.1 foot.
- Record the depth to water and total depth of the well to the nearest 0.01 foot on the Water Level Form (**Appendix B**), along with any observation such as sediment on bottom or damage to the well.

A measuring point is marked on each well casing stickup, either by an impressed mark or paint mark. All measurements should be taken from this measuring point. If a measuring point is not marked, then the water levels should be taken from the north side of the casing stickup. The measuring point used to obtain the water level reading (mark or north side of casing) should be noted in the field log book.

4.2 Electrical Water Level Indicator

An electrical water level indicator consists of a metallic probe on the end of a plastic tape graduated in fractions of feet or meters. The tape contains wires that transmit the probe's signals to a reel containing an audible alarm or light.

The probe is used by lowering it into the well or surface water measuring point until the alarm activates. The alarm should be tested prior to use. The depth on the tape is then compared with the measuring point and the depth is recorded on the Water Level Form. The probe can then be lowered until it touches the bottom of the well to determine the height of the water column.

4.3 Inspection and Decontamination

It is important to check the condition of electrical lines for nicks or breaks before each use. Breaks must be repaired before attempting to use the equipment. Periodically, the scale on the instrument tape should be compared to a tape of known accuracy as stretching of the instrument tape may occur after prolonged use.

All probes and tapes must be decontaminated after each use. The tape will be decontaminated at the beginning of each day and after each use. This is best accomplished as described below:

- Wipe tape with laboratory-grade detergent solution saturated cloth, and
- Wipe with distilled water saturated cloth.

Connections between the tape and probe, are often agitated up and down at the water interfaces and again at the bottom of the well to estimate sediment accumulation on the well bottom. Particles and fluids can lodge in the connections, so special considerations must be made to clean these areas.

4.4 Review

The reviewer will review the Water Level Forms for completeness and accuracy. Any discrepancies will be noted and the forms will be returned to the originator for correction. The reviewer will acknowledge that the review comments have been incorporated by signing and dating the forms.

5.0 FORMS (Appendix B)

Water Level Form

STANDARD OPERATING PROCEDURE

WELL INSTALLATION AND DEVELOPMENT

1.0 PURPOSE

The purpose of this procedure is to describe the methods for groundwater monitoring well installation and development. It describes designs, procedures, and materials that will be used to construct monitoring wells that will produce accurate groundwater level measurements and representative groundwater samples.

This procedure provides guidance for monitoring well installation and development at the Green River Resources, Inc. (GRR) Bruin Point Mine.

2.0 DEFINITIONS AND ABBREVIATIONS

2.1 Definitions

Annulus/Annular Space: The space between the borehole wall and well casing, or the space between a casing pipe and liner pipe.

Saturated Borehole Volume: The volume of the finished well that included the wet casing volume plus the saturated annulus assuming 30 percent porosity.

Bridging: The development of gaps or obstructions in either grout or filter pack materials during emplacement or development.

Conductor Casing: Outer casing used to stabilize or seal off a formation to prevent formation collapse or vertical cross-contamination within the well.

Filter Pack: Sand, gravel, or glass beads that are uniform, clean, and well-rounded that are placed in the annulus of the well between the borehole wall and the well intake to prevent formation material from entering through the well intake, and to stabilize the formation.

Grout: A fluid mixture of neat cement and water possibly with various additives or bentonite of a consistency that can be forced through a pipe and emplaced in the annular space between the borehole and casing to form a seal.

Hydraulic Conductivity (K): A standardized measure of the flow of a liquid through a porous medium. Hydraulic conductivity is generally expressed in terms of a unit hydraulic gradient so that different media can be compared with one another.

Hydraulic Gradient: A pressure gradient. Applied to an aquifer, it is the rate of change in pressure head per unit distance of flow at a given point and in a given direction (ft/ft).

Permeability: Capacity of a rock or soil to transmit fluid, such as water, under a hydraulic gradient.

Turbidity: Cloudiness in water due to suspended and colloidal organic and inorganic material.

Schedule Pipe: The standardization of casing diameters and wall thicknesses where casing wall thickness increases as the schedule number increases.

Screen/Well Intake: A screening device used to keep materials other than formation fluids from entering the well.

Slot Size: The width of the slots machined into a slotted casing (screen) that allows formation fluids into the well.

2.2 Abbreviations

bgs	Below Ground Surface
EPA	U.S. Environmental Protection Agency
PVC	Polyvinyl chloride
QAPP	Quality Assurance Project Plan
SOP	Standard Operating Procedure

3.0 RESPONSIBILITIES

Field personnel are responsible for performing the applicable tasks in accordance with this procedure when conducting work related to environmental projects.

The URS Project Manager or an approved designee is responsible for checking all work performance and verifying that the work satisfies the applicable tasks required by this procedure. This will be accomplished by reviewing GRR Sampling and Analysis Plan (SAP), and Quality Assurance Project Plan (QAPP).

4.0 **PROCEDURE**

4.1 Introduction

Groundwater monitoring wells are proposed in the tailings storage area of the Bruin Point Mine to monitor for potential impacts to groundwater. According to available data, depth to groundwater can range from approximately 60 to 400 feet below ground surface (bgs). Installation of wells will be accomplished using a sonic, air rotary, or equivalent drilling method based on the depth and geology.

Up to eight groundwater monitoring wells will be installed using a sonic, air rotary, or equivalent drilling method by a Utah licensed well driller. Ideally, the wells will be installed in the late spring/early summer, during a period of high groundwater levels. All wells will be screened

across the water table, taking into consideration its seasonal fluctuation. If artisan conditions are encountered, then the wells will be screened across the water producing unit/fractures.

Contamination of the water bearing zone by drilling equipment, or cross-contamination of wells during the drilling process must be avoided. Vertical seepage of surface water into the wells must also be minimized.

In order to maintain quality control and obtain accurate formation information, a field geologist will be on the site during well installation to log subsurface conditions and construction details for each well.

4.2 **Precautions**

Use the following precautions during well installation operations:

- Conduct all activities in conformance with the Site Health and Safety Plan;
- Underground and overhead utilities may exist at the site. Underground utilities shall be cleared by Blue Stakes of Utah and the property owner representative; and
- Make every attempt to minimize the transfer of potentially contaminated material to downhole equipment and well materials, or to any equipment and supplies stored on the site. The outer drill casing will act as conductor casing and will prevent the boring from collapse and prevent cuttings from flowing into the bore hole while drilling.

4.3 Drill Cuttings

Spread drill cuttings evenly across the area where each monitoring well is installed. Cuttings should not be placed such that mounds or piles are created. Following well completion, the general topography of the area should be relatively unchanged.

4.4 Decontamination

Thoroughly decontaminate all down-hole equipment that is used directly in the well installation (i.e., casing, screen, tremie pipe, rods, etc.) prior to use or installation in each well. Decontamination equipment such as steam cleaners and high pressure, hot water cleaners effectively remove potential contaminants left on casings and screens during the manufacturing process.

4.5 Well Installation

• Wells that are completed to a depth greater than 30 feet below ground surface are required to be installed and registered as per Utah Administrative Code (UAC) R655-4.

- Install wells using a sonic, air rotary, or equivalent drilling method. Wells will be screened across the first water bearing fractures, total depth of well and screen length will be determined in the field, based on observed conditions.
- Continuously log soil profiles during installation of the wells. Record soil lithologic descriptions on the Boring Log Form (**Appendix B**).
- Construct wells from 2 to 4-inch Schedule (80) 0.020 slotted PVC well screens and 2 to 4-inch Schedule 80 PVC casing, or equivalent. An end cap shall be placed at the bottom of each screen.
- Slowly retract the drilling equipment and add filter pack to the annular space in a slow and methodical process that will limit bridging of the filter media (10-20 silica sand, or pea gravel if significant artesian conditions are observed). The filter pack shall extend approximately 2-3 feet above the well screen. After the filter pack has been placed, place granular bentonite or bentonite slurry above the sand to approximately 10 feet bgs and hydrate the bentonite. Place Portland cement from 0-10 feet bgs. Record well completion information on the Boring Log Form. The wells shall be installed according to general specification below and EPA's March 1991 Handbook of Suggested Practices Ground-Water Monitoring for the Design and Installation of Wells (http://www.epa.gov/oust/cat/wwelldct.pdf). Allow the well to stabilize for at least 24hours before development.
- Well centralizers should be installed as appropriate based on the field conditions observed, depth of wells, and recommendations of the field geologist.

4.6 General Well Specification

- ➢ 2 to 4-inch schedule 80 PVC casing
- ➢ 2 to 4-inch schedule 80 PVC well screen (0.020 slots)
- Threaded bottom cap
- Lockable pressure cap on top
- ➢ 10-20 silica or pea gravel filter pack
- > Hydrated bentonite seal from 10-feet to the top of the filter pack
- Portland cement from 0-10-feet
- Stick-up well protector with protective bollards, high visibility flagging, or concrete barriers/boulders

4.7 Well Development

Development of newly installed wells shall be performed as soon as practical after installation, but no sooner than 24 hours after installation and annular seal placement is complete.

Development is necessary to repair damage done to the formation during drilling so that the natural hydraulic properties are restored; to remove clays, silts, and fine sands (fines) from the

filter pack and screen; and to remove any remnant drilling fluids or drilling-introduced contaminants.

Development will be performed using the following method:

- Lower a submersible pump and surge block down the well until it contacts the bottom of the well. Use short strokes near the bottom of the well to help to produce a sediment slurry that can be removed.
- After a majority of the sediment is removed and well has been surged sufficiently to mobilize fines from filter pack, raise and lower the pump intake through the screened section of the well to continue to remove fines from the filter pack.
- Measure temperature, turbidity, pH, and specific conductivity using portable monitoring equipment during well development. Collect a minimum of 5 measurements during development (one per saturated borehole volume) and record the results on the Well Development Log.

Development shall continue until the following conditions are met:

- Sediment which rapidly settles out of solution is no longer present in water samples;
- At least 3 saturated borehole volumes have been removed; and
- Two consecutive water quality measurements (one per saturated borehole volume) meet the following criteria:
 - ▶ pH: < 10 percent difference in consecutive readings,
 - ➤ Temperature: < 10 percent difference in consecutive readings,
 - Specific conductivity: < 10 percent difference in consecutive readings, and
 - Turbidity: ≤ 10 nephelometric turbidity units (NTUs) or stable (+/- 10%).

If groundwater recharge is so slow that the required volume cannot be met within 24 hours, or water quality criteria cannot be met, the Project Manager will determine how development should continue.

Calibrate meters used for water quality measurements on each day of use according to the manufacturer's specifications. Recalibrate the meters any time meter drift is suspected. Document instrument calibration in the field logbook and/or on the Equipment Calibration Form.

Record pertinent information collected during development on the Well Development Log. Pertinent information required includes:

- Well identification,
- Date and time of development,
- Field personnel,
- Method of development,
- Meters used to measure water quality parameters,
- Measured water quality parameters,
- Estimated discharge rates,

- Amount of water evacuated from the well (in gallons),
- Beginning and ending water level, and
- Total well depth measurements.

No water, dispersing agents, acids, disinfectants, or other additives shall be introduced to the well after the annular seal is installed and during development. Development water will be thin spread at a location at least 10 feet downgradient of the well.

4.8 Review

The reviewer shall check Boring Log Forms and Well Development Logs for completeness and accuracy. Any discrepancies will be noted and the forms will be returned to the originator for correction. The reviewer will acknowledge that the review comments have been incorporated by signing and dating the forms.

5.0 FORMS (Appendix B)

Boring Log Form Well Development Log Equipment Calibration Form

APPENDIX B

FIELD FORMS

Equipment Calibration Form Surface Water Sampling Form Chain-of-Custody Form Surface and Shallow Soil Sampling Log Groundwater Sampling Form Water Level Form Boring Log Form Well Development Log

	Sm	rface	Water Sa	mnling Fa	orm	Log of:							
	Ju	inuce	vi uter Su		/	Northing:	Eas	sting:					
						Surface Eleva		·····g·					
lio	Proje	ect Name:					Page: 1 of 1						
General Informatio	Samp	ole Locati	on:			Date:							
Gen	Field	Investiga	ator:			C of C#:							
l , d													
					Comments	5							
Sample Information													
e In					Surface V	Vater							
ldm	Ä		Sample Filtered			ple (Type & ID	0): Water	Quality Meter:					
Sa	r Sample		Analyte: Filter Filter Size:	lter Manufacturer:		ate and Time:	Water C	Color & Clarity:					
	Surface Water Sample ID:	рН	Conductivity (mS/cm)	Temperature (°C)	ORP (mV)	Dissolved Oxygen (mg/L)	d Add	itional Notes:					
Plan View								Not to scale)					
Recorde	d By			Date	Checked	Ву		Date					
L				I	I								

Sı	urface an	d Sha	llow	Log of: Coordinate System:					
	un nuce un			son sampi	8	Coordinate Northing:	System:	East	ting:
		J	Log			Surface Ele	vation:	East	<u>5</u> .
T	Project Numbe	r:		Project Name:			Page: 1 c	of 1	
General Information	Location:						Date:		
General formatic	Field Investigat	tor:					C of C#:		
Ge	Sampling Exca	vation Me	ethod:						
I	Depth of Excav	ation:		Depth to Water:		Backfill Mat	erial:		
-	Sample Number	Depth (ft)		Lithologic	e Descrip	tion		Com	ments /Analysis Requested
Sample Information									
Plan View									(Not to scale)
Recorded	l By			Date	Checked	Ву			Date

Equipment Calibration Form

Project:		
Project Number:		
Instrument:		
Model/Serial Number:		
Weather:		

	Calibration										
Date	Time	Calibration Standard	Standard Expiration Date	Meter Reading	Comments						

			Calib	ration Che	ecks
Date	Time	Calibration Standard	Standard Expiration Date	Meter Reading	Comments

Calibration Personnel:

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

PAGE ____ OF ____

URS Corporation ● 756 East Winchester Street, Suite 400, Salt Lake City, UT 84107 ● 801-904-4000 ● Fax 801-904-4100

Project Name:						ANALYSIS REQUESTED																			
Project Manager:	Report CC:																								
Project Location:				ers																					
Phone #	FAX #				ontain																				
Sampler's Signature	Sampler's Printed Name				Name	D	Total Number of Containers																		
FIELD	SAM	PLE		MS/MSD	al Nı																		REMARKS		
SAMPLE ID	DATE	TIME	MATRIX	MS	Tot																				
INVOICE INFORMATION Matrix Key: GW = Ground Water SW = Surface Water O = Other URS CORPORATION O = Other			ound Water		_	SPE	CIAL II	NSTRU	JCTIO	NS/CO	DMME	NTS					•			•					
			SAM	IPLE R	ECEIP	T: CC	NDIT	ION/C	COOL	ER T	EMP:						С	USTO	DY SI	EALS	: Y	N			
	RELINQUISHED BY						RECE	IVED	BY							REL	LINQU	ISHEI	O BY				RECEIVED BY		
Signature				Sign	ature	_	_				_		Signa		_	_				_	_		Signature		
Printed Name				Print	ed Name	e							Print	ed Nan	ne								Printed Name		
Date/Time				Date/Time									Date/Time									Date/Time			

GROUNDWATER SAMPLING FORM

Project Name:	Total Depth (ft BTOC):					
Sample Location:	Static Water Level (ft BTOC):					
Sample ID:	Water Column (ft): = Hv	NC				
Sample Date:	Purge Vol (gal):					
Sample Time:	Sample Method:					
QA/QC Sample (Type and ID):	Water Quality Meter:					
Sampling Personnel:	Depth of Pump Intake (ft BTOC):					

Time	Vol (gal)	рН	Cond (mS/cm)	Temp (°C)	DO (mg/L)	ORP (mV)	Turb (NTU)	Notes and Comments

Recorded by: _____ Approved by: _____

URS

Page_____ of _____

Water Level Form

Site: _____ Personnel: _____

Location ID	Date	Time	Depth to Water (ft BTOC)	Total Depth (ft BTOC)	Comment

WELL DEVELOPMENT LOG

Location:
Initial Total Depth (ft BTOC):
Initial Depth to Water (ft BTOC):
Final Total depth (ft BTOC)
Final Depth to Water (ft BTOC)
Casing Diameter (in):
Saturated Borehole Volume (gal):
Method/Equipment:

Time	Vol. (gal)	Clarity/ Color	рН	Temp (°C)	Cond (ms/cm)	Turb (NTU)	Notes and Comments

Recorded by:

Approved b<u>y:</u>

Page____ of ____

Project:			Log of:	
Project Location:		North:		East:
Project Number:		Surf Elev:		Casing Elevation:
Date(s) Drilled	Logged By		Approved By	d
Drilling Method	Diameter of Borehole		Approxim Water El	nate Ground evation
Drill Rig Type	Drilling Company		Total Depth	
Driller's Name	Sampler Type			

Comments

_			nt ery		LITHOLOGIC DESCRIPTION	REMARKS/	WE	ELL	
Depth, Feet	DID	Blow Count	Percent Recovery	USCS Class	(USCS NAME; COLOR; SIZE AND ANGULARITY OF EACH COMPONENT OR PLASTICITY; DENSITY; MOISTURE CONTENT; ADDITIONAL FACTS)	OTHER TESTS	Well Material	Pack Material	Depth, Feet
-									-
-									-
_									-
_									_
5 -									- 5
-									-
-									-
-									_
_									_
10 -									- 10
-									-
-									-
-									-
-									_
15-									- 15
Ľ					URS	Sheet	of		

	ject:						Log of:			
	ject L ject N					North: Surf Elev:		East: Casing Ele	evation:	
										 T
ŕ.			ent very	USCS Classification	LITHOLOGIC DESCRIPTION (USCS NAME; COLOR; SIZE AND ANGULARITY O EACH COMPONENT OR PLASTICITY; DENSITY; MOISTURE CONTENT; ADDITIONAL FACTS)	F	REMARKS/ OTHER TESTS		WELL	oth,
51 Depth, Feet	DID	Blow Count	Percent Recovery	USCS Class	MOISTURE CONTENT; ADDITIONAL FACTS)			Well Material	Pack Material	Depth, feet
_										_
-										_
_										-
-										_
20 -										- 20
-										-
-										-
-										_
_										_
25 -										- 25
-										-
_										-
-										-
_										_
30										- 30
_										_
_										
					URS		Sheet	_ of	_	

	ject:						Log of:			
	ject L ject N					North:	_	East:		
						Surf Elev:		Casing El	evation:	
			nt ery	USCS Classification	LITHOLOGIC DESCRIPTION (USCS NAME; COLOR; SIZE AND ANGULARITY O EACH COMPONENT OR PLASTICITY; DENSITY; MOISTURE CONTENT; ADDITIONAL FACTS)	F	REMARKS/ OTHER TESTS		WELL	ţ,
Depth, Feet	GIA	Blow Count	Percent Recovery	USCS Classi	MOISTURE CONTENT; ADDITIONAL FACTS)		OTHER TESTS	Well Material	Pack Material	Depth, feet
_										_
-										_
35 -										- 35
-										-
_										-
-										-
40 -										- 40
										_
_										_
-										_
-										_
45										- 45
-										_
-										-
-										_
-										-
50 -	<u> </u>						Sheet	of		⊥ 50
<u>ــــــــــــــــــــــــــــــــــــ</u>					URS					

QUALITY ASSURANCE PROJECT PLAN

BRUIN POINT MINE CARBON COUNTY, UTAH

Prepared for:

Green River Resources Inc. 201 South Main 1800 Salt Lake City, UT 84111

April 2015

Prepared by:

TABLE OF CONTENTS

1.0	Introduction
2.0	Project Description
3.0	Data Quality Objectives
3.1	Precision1
3.2	Accuracy
3.3	Representativeness
3.4	Comparability
3.5	Completeness
4.0	Sampling Procedures
4.1	Sample Locations
4.2	Field Calibration
4.3	Sample Quality Control
4.4	Field Documentation
4.5	Decontamination Procedures7
4.6	Sample Containers, Preservation, Holding Times, and Analytical Method7
5.0	Sample Custody
6.0	Laboratory Analytical Protocols
7.0	Data Validation
8.0	References

LIST OF FIGURES

- Figure 2-1 Site Location Map
- Figure 4-1 Sampling Locations

LIST OF TABLES

- Table 3-1
 Drinking Water Standards and Tap Water Risk-Based Screening Levels
- Table 4-1Quality Assurance/Quality Control Samples
- Table 4-2Surface Water and Groundwater Analytes
- Table 4-3Dry Material Analytes

LIST OF ACRONYMS AND ABBREVIATIONS

DMIDry Material ImpoundmentDOdissolved oxygenDOGMDivision of Oil Gas and MiningDQOsdata quality objectivesDWSDrinking water standardsFBfield blankFDfield duplicateGRRGreen River Resources, Inc.GWSGroundwater Drinking StandardsIDidentificationLCSlaboratory control spikesMDLMethod Detection LimitmLmilliliterMS/MSDmatrix spike/matrix spike duplicate
DOGMDivision of Oil Gas and MiningDQOsdata quality objectivesDWSDrinking water standardsFBfield blankFDfield duplicateGRRGreen River Resources, Inc.GWSGroundwater Drinking StandardsIDidentificationLCSlaboratory control spikesMDLMethod Detection LimitmLmilliliter
DQOsdata quality objectivesDWSDrinking water standardsFBfield blankFDfield duplicateGRRGreen River Resources, Inc.GWSGroundwater Drinking StandardsIDidentificationLCSlaboratory control spikesMDLMethod Detection LimitmLmilliliter
DWSDrinking water standardsFBfield blankFDfield duplicateGRRGreen River Resources, Inc.GWSGroundwater Drinking StandardsIDidentificationLCSlaboratory control spikesMDLMethod Detection LimitmLmilliliter
FBfield blankFDfield duplicateGRRGreen River Resources, Inc.GWSGroundwater Drinking StandardsIDidentificationLCSlaboratory control spikesMDLMethod Detection LimitmLmilliliter
FDfield duplicateGRRGreen River Resources, Inc.GWSGroundwater Drinking StandardsIDidentificationLCSlaboratory control spikesMDLMethod Detection LimitmLmilliliter
GRRGreen River Resources, Inc.GWSGroundwater Drinking StandardsIDidentificationLCSlaboratory control spikesMDLMethod Detection LimitmLmilliliter
GWSGroundwater Drinking StandardsIDidentificationLCSlaboratory control spikesMDLMethod Detection LimitmLmilliliter
IDidentificationLCSlaboratory control spikesMDLMethod Detection LimitmLmilliliter
LCSlaboratory control spikesMDLMethod Detection LimitmLmilliliter
MDL Method Detection Limit mL milliliter
mL milliliter
MS/MSD matrix spike/matrix spike duplicate
1 1 1
NOI Notice of Intention
ORP oxidation reduction potential
ppm parts per million
QAPP Quality Assurance Project Plan
QA/QC Quality Assurance/Quality Control
RL Reporting Limit
RSL Risk-Based Screening Level
SAP Sampling and Analysis Plan
SPLP Synthetic Precipitation Leaching Procedure
SVOC semi-volatile organic compound
UPL Upper Prediction Limit
USEPA United States Environmental Protection Agency
VOC volatile organic compound

1.0 INTRODUCTION

This Quality Assurance Project Plan (QAPP) has been prepared for the Green River Resources, Inc. (GRR) surface water, groundwater, and dry material sampling activities to be performed at the Bruin Point Mine, in Carbon County, UT. The purpose of this QAPP is to ensure representative data is collected and analyzed to support the project data quality objectives DQOs during surface water and groundwater sampling, flow measurements, and dry material sampling. This plan outlines policies, organization, objectives, functional activities, and specific quality assurance (QA) and quality control (QC) activities designed to achieve DQOs of the project.

2.0 **PROJECT DESCRIPTION**

GRR proposes to develop an oil sands mine and an associated processing facility within a contiguous 1,760-acre lease area. Mining activities are described in more detail in the Notice of Intention to Commence Large Mining Operations (NOI) submitted to the Utah Division of Oil Gas and Mining (DOGM) on March 4, 2014 (GRR, 2014).

The mining site area is located approximately six miles northeast of Sunnyside, Utah, in Carbon County (**Figure 2-1**), directly east of Bruin Point (located at 39° 38' 38.87"N, 110° 20' 53.06"W). The property is positioned in the southwest portion of the Uinta Basin and the area is currently largely undeveloped. Solvent used in the operating will be recovered from both the sand and the bitumen. The dry sand tailings will not contain more than 25 parts per million (ppm) of solvent (weight/weight).

This QAPP is meant as a guide for all surface water, groundwater, and dry material sampling that will occur at the Site, as part of the Green River Resources, Inc. Groundwater Discharge Permit Application (Permit No. UGW070003). This QAPP is intended to ensure that all information, data, and resulting decisions are technically sound, statistically valid, and properly documented.

3.0 DATA QUALITY OBJECTIVES

DQOs are established to promote collection of data that are sufficient and of adequate quality for their intended uses. Data quality will be assessed during data validation in terms of its precision, accuracy, representativeness, completeness, and comparability. Data validation will be conducted following receipt of the full analytical data package after each sampling event. The objectives are defined in the following paragraphs.

3.1 Precision

Precision is the degree of reproducibility of measurements under a given set of conditions. Specifically, it is a quantitative measure of the variability of a pair of measurements compared to their average value, expressed as relative percent difference (RPD). Matrix spike (MS)/matrix spike duplicate (MSD) and field duplicate (FD) data will be reviewed to evaluate precision. FDs will be collected at a ten percent frequency for normal samples or one per sampling event,

whichever is greater. FDs will be analyzed for the same analytes as the associated normal sample. MSD samples will be collected at a five percent frequency or one per sampling event, whichever is greater.

RPD will be calculated according to the following equation, where A and B represent normal/duplicate sample results:

RPD (%) =
$$\frac{|A-B|}{(A+B)/2} \ge 100$$

3.2 Accuracy

Accuracy is a measure of bias in a measurement system. Laboratory accuracy will be evaluated by comparing the analytical difference of measurements to reference values. Laboratory accuracy will be expressed as percent recovery (%R). The accuracy of data collected will be assessed in the following manner:

- Calculation of the %R of MS and laboratory control spikes (LCS).
- Evaluation of the concentrations of target analytes present, if any, in blanks.

Percent recovery will be calculated according to the following calculations:

For MSs: %R = $(\frac{Spiked Sample Result-Sample Result}{Spike Added}) \times 100$

For LCSs: $\% R = (\frac{Analyzed Result}{True Value}) \ge 100$

3.3 Sensitivity

Sensitivity is evaluated by comparing the reporting limits – also referred to as reporting limits (RLs) and method detection limits (MDLs) – to the regulatory standards being used for the project. Laboratory reporting limits will be below regulatory limits. **Table 3-1** includes a list of analytes and applicable regulatory limits. Many of the compounds analyzed for do not have Utah Groundwater Drinking Standards (GWS) or USEPA Risk-Based Screening Levels (RSLs) (EPA, 2014). For the analytes without established groundwater standards, laboratory reporting limits will be compared to site-specific background levels.

3.4 Representativeness

Representativeness indicates the degree to which sample data accurately and precisely represent a characteristic of a population, parameter variations at a sampling point, or an environmental condition. This QAPP is intended to ensure environmental conditions at the site are represented through the samples collected.

3.5 Comparability

Comparability is a qualitative parameter that indicates the confidence with which one data set can be compared to another. Comparability will be promoted by using approved sampling plans, standardizing analytical and field procedures, and reporting data in uniform units. Data will be grouped and evaluated according to sampling media and laboratory analytical methods.

3.6 Completeness

Completeness is defined as the percentage of the total number of measurements judged to be acceptable for their intended use under normal conditions. Under normal sampling and analysis efforts, it is expected that 90 percent completeness is realistic. The completeness goal will be to obtain a sufficient amount of valid data to address the objectives stated for the investigation and to reach the necessary conclusions. The Project Quality Assurance Officer will assess completeness by calculating the percentage of valid data points compared to the total data set. A valid data point is a data point judged to be acceptable for its intended use.

4.0 SAMPLING PROCEDURES

The objectives of sampling procedures are to obtain samples that represent the environment being investigated. Trace levels of contaminants from external sources must be eliminated through the use of experienced field personnel, good sampling techniques, proper sampling equipment, and adequate documentation. Field measurements and sampling will be performed in accordance with United States Environmental Protection Agency (USEPA)-accepted procedures.

Surface water samples will be collected using a properly decontaminated long-handled sampler or the water will be collected directly into the laboratory provided glassware, when appropriate. Surface water samples will be collected in appropriate new, certified-clean, sample containers supplied by the analytical laboratory. If the sampler must stand in the water, samples will be collected upstream of the sampler's location. All Standard Operating Procedure (SOP) protocols will be followed. SOPs can be found in the GRR Sampling and Analysis Plan (SAP) (URS, 2014).

Up to eight groundwater monitoring wells are proposed to be installed based on correspondence with the Utah Department of Environmental Quality. The monitoring wells will be installed and registered in accordance with Utah Administrative Code (UAC) R655-4 and as described in the GRR SAP (URS, 2014). Wells are proposed to be installed at the edges of the dry material impoundment area and the processing area. Groundwater samples will be collected from the monitoring wells using a properly decontaminated peristaltic pump, submersible pump, or bladder pump, or the water will be collected directly into the laboratory provided glassware if artesian conditions are observed. Groundwater samples will be transferred into the appropriate, new, certified-clean, sample containers supplied by the analytical laboratory. All SOP protocols will be followed. SOPs can be found in the GRR SAP (URS, 2014).

Dry material sample locations will be determined using Microsoft Excel's Random Number Generator. Discrete sample will be collected rather than composite samples due to the potential dilution effect of the composite sampling procedure. Discrete samples will be collected using disposable equipment for each sample. At each random location, samples will be collected approximately one foot below the surface and placed into new, certified-clean, sample containers supplied by the analytical laboratory. All field notes will be recorded in a Surface and Shallow Soil Sampling Log, provided in the GRR SAP (URS, 2014).

4.1 Sample Locations

The dry material impoundment area and the five surface water sampling locations are described below and shown in **Figure 4-1**.

Location #1- North Spring

North Spring is located in the north-central region of the permit boundary. It contributes to Range Creek.

Location #2 –South Spring/Tributary Spring

South Spring/Tributary Spring is southeast of North Spring and flows to Range Creek.

Location #3 – Range Creek Flume

Range Creek Flume is directly south of South Spring/Tributary Spring and lies near the southeastern boundary of the permit area. A non-functional flume is present at this sampling location.

Location #4 – Cliff Seep

Cliff seep, located on the western edge of the permit area, contributes to an unnamed fork of Water Canyon, containing a historic mining area.

Location #5 – Stormwater Retention Pond

The Stormwater Retention Pond is located south of the Process Area.

Location #6 – Dry Material Impoundment (DMI) Area

DMI located in northwestern area of permit boundary, used to store dry material.

The eight proposed monitoring well locations are described below and shown in Figure 4-1.

Dry Impoundment Monitoring Wells

Up to five dry impoundment monitoring wells are proposed to be installed on the northern, eastern, and southern edges of the proposed dry material impoundment area.

Process Monitoring Wells

Up to three process monitoring wells are proposed to be installed on the eastern and western edges of the processing area.

4.2 Field Calibration

A portable water quality meter will be used in the field to measure pH, conductivity, temperature, dissolved oxygen (DO), and oxidation reduction potential (ORP). Field instruments will be calibrated at a minimum of once per day, before field work begins. Calibration checks should be performed as determined by the field personnel, especially if the meter readings appear to be anomalous. Meter calibration will be recorded on the calibration form provided in the GRR SAP (URS, 2014). There will be no equipment calibration required when sampling dry material because field instruments will not be used.

4.3 Sample Quality Control

The general QC objective is to ensure that data are not biased by contamination or sampling error. **Table 4-1** summarizes each QC sample type and frequency analyzed.

To meet this objective, the following QC samples will be collected in the field:

- One FD will be collected in the field at a frequency of 10% (one per 10 normal samples) or one per sampling event, whichever is greater for each sample type. FDs are collected to document the precision of the sampling and analytical processes. They are samples taken from the same source, collected as close as possible to the same point in space and time as the primary sample. Field duplicates will be labeled with a separate ID and sample time than the primary sample, and will be noted in the field notebook, and relevant field forms.
- A MS/MSD will be collected at a frequency of 5% (one per 20 normal samples) or one per sampling event, whichever is greater for each sample type. The MS/MSD samples assess the accuracy and precision with respect to the site-specific sample matrix.
- Field blanks (FBs) shall be collected at 5% or once per sampling event, whichever is greater. These samples are to ensure reagent integrity and to check environmental contamination. FBs will contain distilled water, be transported to the field, transferred to sample containers, and preserved.
- An equipment blank is a sample of distilled water provided by the lab that will be passed through each piece of sample collection equipment. This sample will indicate if the equipment introduced contaminants and was not properly decontaminated. These samples will be collected once per sampling event. Equipment blanks will not be required when sampling dry material, as all sampling equipment will be new and disposable.
- Trip blanks will be transported to the site, handled like a sample, but will remain sealed until they are returned to the laboratory for the same analyses as the other samples in the batch. Trip blanks will be analyzed for volatile organic compounds (VOCs) to determine if any contamination of samples has occurred from the time samples are

collected to the time they reach the laboratory. This samples is only included when samples are collected and analyzed for VOCs.

Table 4-1

QC Sample Type	Frequency of Sample/Analysis	Details			
Field Duplicate Samples	1 per 10 normal samples or 1 per sampling event (whichever is greater)	Samples collected by same method and at same time as original sample. Verifies sampling and analytical reproducibility.			
Matrix Spike/Matrix Spike Duplicate	1 per 20 normal samples or 1 per sampling event (whichever is greater)	Assess accuracy and precision with respect to the site- specific sample matrix.			
Field Blank	1 per 20 normal samples or 1 per sampling event (whichever is greater)	These are to ensure reagent integrity and to check environmental contamination.			
Equipment Blank	1 per sampling event	Assess the adequacy of the decontamination process and helps determine error arising from carryover contamination from successive use of sampling equipment. An Equipment Blank will not be required when sampling dry material since all equipment will be new and disposable.			
Trip Blanks	1 per sample cooler only when samples are analyzed for VOCs	Bottles/vials contain lab provided water and accompany samples during transit, collection, and storage. Trip blanks measure contamination from the laboratory water, sample transit, sample site, and sample storage.			

Quality Assurance/Quality Control Samples

Notes:

QC – Quality Control

VOC – volatile organic compounds

4.4 Field Documentation

Information pertinent to the sampling effort will be documented on preprinted field forms located in the GRR SAP (URS, 2014) or in a bound logbook. All entries will be made in indelible ink and all corrections will be made by drawing one line through the error and initialing and dating the correction.

At a minimum, field documentation entries will include the following:

- Date;
- Start time;
- Weather;
- All field personnel present and directly involved;
- All visitors to the site;
- Field activities performed;
- Samples collected;

- Reference to any field forms used;
- Any field calculations not associated with a field form;
- Any significant events;
- Initials of personnel performing documentation at bottom of each page.

Because sampling situations vary widely, no general rules can specify the extent of information that must be documented. However, documentation will contain sufficient information to reconstruct the sampling activity without relying on the sampler's memory. The field documentation will be kept under strict chain-of-custody. Relevant field forms for this excavation and sampling event can be in the GRR SAP (URS, 2014).

4.5 Decontamination Procedures

All non-dedicated sampling equipment (i.e., long-handled sampler container, water quality meter, or pump) will be decontaminated before the start of each sampling or data collection event and between sample collections at each location. Decontamination will be performed using a weak phosphate-free detergent (Liquinox) and triple distilled water rinse. The sampler will wear a new pair of disposable gloves at each sampling location, before and after decontamination, and before collection quality control samples. Where possible, dedicated or disposable equipment will be used at each sample location to avoid cross-contamination. Decontamination will not be required for dry material sampling, as all equipment will be new and disposable.

4.6 Sample Containers, Preservation, Holding Times, and Analytical Method

Applicable surface water and groundwater analytes, including the appropriate container, preservation, and hold time, to be analyzed at a Utah certified laboratory are listed in **Table 4-2**. **Table 4-2** includes general water quality parameters and potential proprietary solvent constituents. The proprietary solvent is a mixture of some, but not all, of the listed constituents. Dry material will be analyzed for all the analytes listed in **Table 4-3**. Preservation, hold time, and laboratory methods for dry material samples are also listed in **Table 4-3**. For the dry material samples, all potential proprietary solvent constituents will undergo a total analysis. Semi-volatile organic compounds (SVOCs), VOCs, and metals will also be analyzed using the Synthetic Precipitation Leaching Procedure (SPLP) procedure. All other analytes unable to be analyzed via SPLP will undergo a total analysis. All appropriate sample containers, preservation, holding times, and sample methods should be confirmed with a Utah certified lab before commencing sampling.

5.0 SAMPLE CUSTODY

The handling of all samples collected will be traceable from the time of collection, through analyses, until final disposition. Documentation of the sample history is referred to as chain-of-custody. The components of field chain-of-custody (chain-of-custody record and custody seals) and procedures for their use are described in the following paragraphs. A sample chain-of-custody is provided in the GRR SAP (URS, 2014)

A sample is considered to be under a person's custody if it is:

- In a person's physical possession;
- In view of the person after he/she has taken possession;
- Secured by that person so that no one can tamper with the sample; and
- In a secure area accessible only to authorized personnel.

At the time of sample collection, labels will be affixed to the sample containers. These labels will contain the following information:

- Sample Identification (ID);
- Date and time of sampling;
- Preservative;
- Requested analysis; and
- Name or initials of sampler.

To establish the documentation necessary to trace sample possession from the time of collection, a chain-of-custody record will be completed and accompany every sample shipment. At a minimum, chain-of-custody records should contain the following information:

- Project name;
- Sample ID;
- Date and time of sample collection;
- Type of matrix;
- Number of containers;
- Preservative;
- Analyses requested;
- Signature of sampler; and
- Date and time of each change in custody.

Each person who has custody of the samples must sign the record. The completed chain-ofcustody record will be put in a waterproof plastic bag and placed inside the sample cooler. The sampler will keep a copy of each chain-of-custody record. Custody seals will be affixed to the front and back of the cooler and covered with clean tape.

The laboratory Sample Custodian will assess the integrity of the custody seals upon sample arrival. The Sample Custodian will also verify and document the following information upon sample receipt:

- Condition of shipping container;
- Condition of sample container(s);
- Condition of custody seals;
- Presence/absence of custody seals;
- Presence/absence of custody records;

- Presence/absence of sample labels;
- Agreement/non-agreement of documents;
- Cross-reference of laboratory numbers; and
- Temperature inside shipping container.

The Sample Custodian will document any problems or discrepancies with the samples or custody documents, contact the URS project manager, and document the resolution to the problems or discrepancies.

6.0 LABORATORY ANALYTICAL PROTOCOLS

All analyses will be conducted by a Utah certified laboratory, and USEPA-approved methods will be used for all analyses. Laboratory qualifications, analytical methods, target detection limits, calibration procedures and frequency, and criteria for laboratory QC samples will be outlined in the laboratory's QA/QC manual, available upon request.

Any omission in this plan of relevant requirements, tasks, and other items found in the referenced methods does not constitute a waiver of the omitted requirement, task, or item. The laboratory manager and analysts are expected to be cognizant of all relevant aspects of the referenced methods to the extent necessary to provide accurate, precise, and defensible data.

7.0 DATA ANALYSIS

7.1 Data Validation

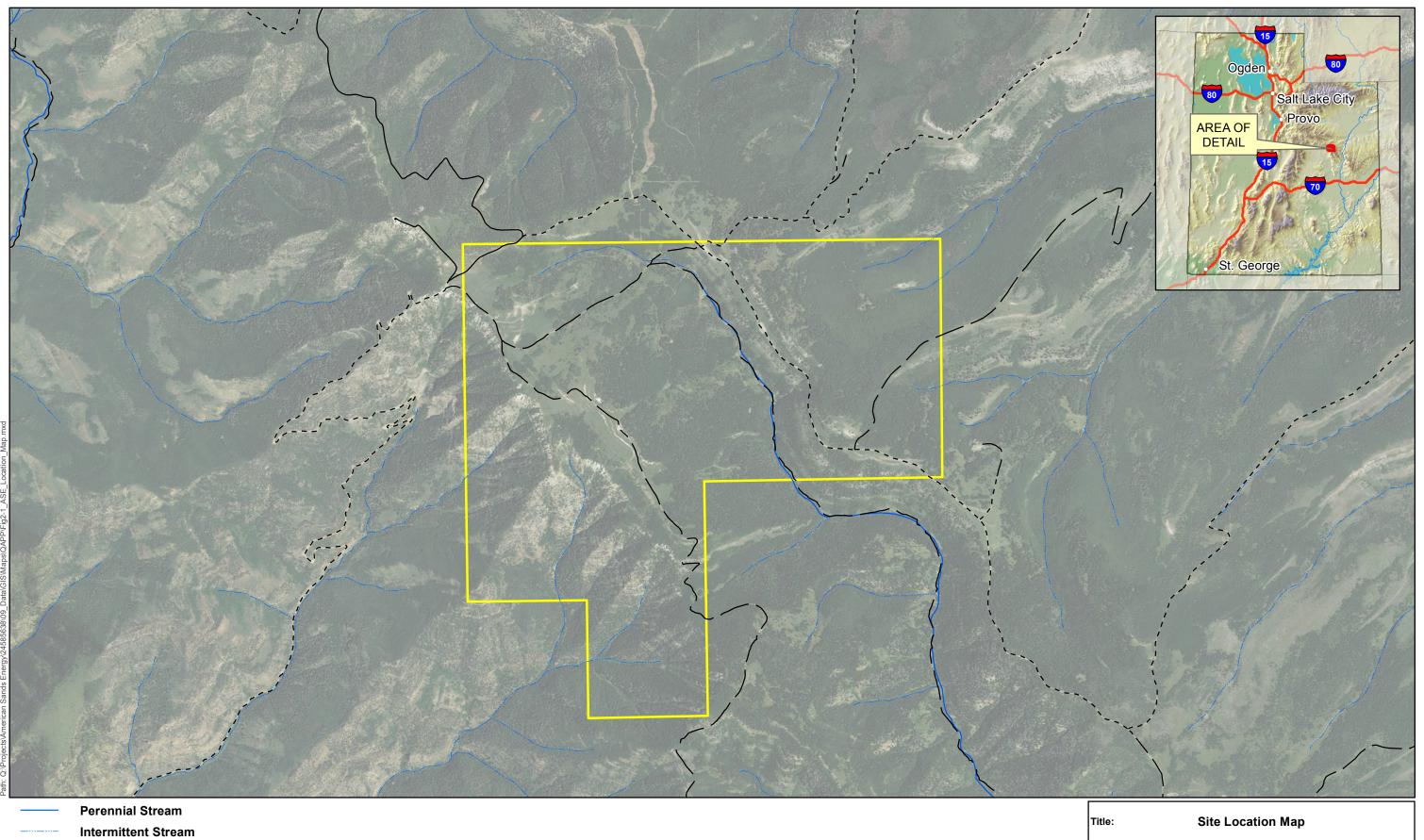
All analytical data generated as part of the remediation project will be reviewed and validated by a consultant independent of the analytical laboratory, and an environmental professional will determine if the data is usable for its intended purpose for the project. Data quality will be assessed in terms of DQOs listed in **Section 3.0** and will be qualified based on USEPA National Functional Guidelines (EPA, 2013a, 2013b). The following data qualifiers may be assigned as a result of data validation:

- U The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
- J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
- R The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the sample.

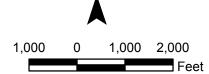
7.2 **Pre-Operation Data Analyses**

The background groundwater data, collected at least eight times over a one-year period from the eight monitoring wells, will be used to establish site-specific background levels. The 95% upper prediction limit (UPL) will be calculated for each analyte using the USEPA software package, ProUCL 5.0. The

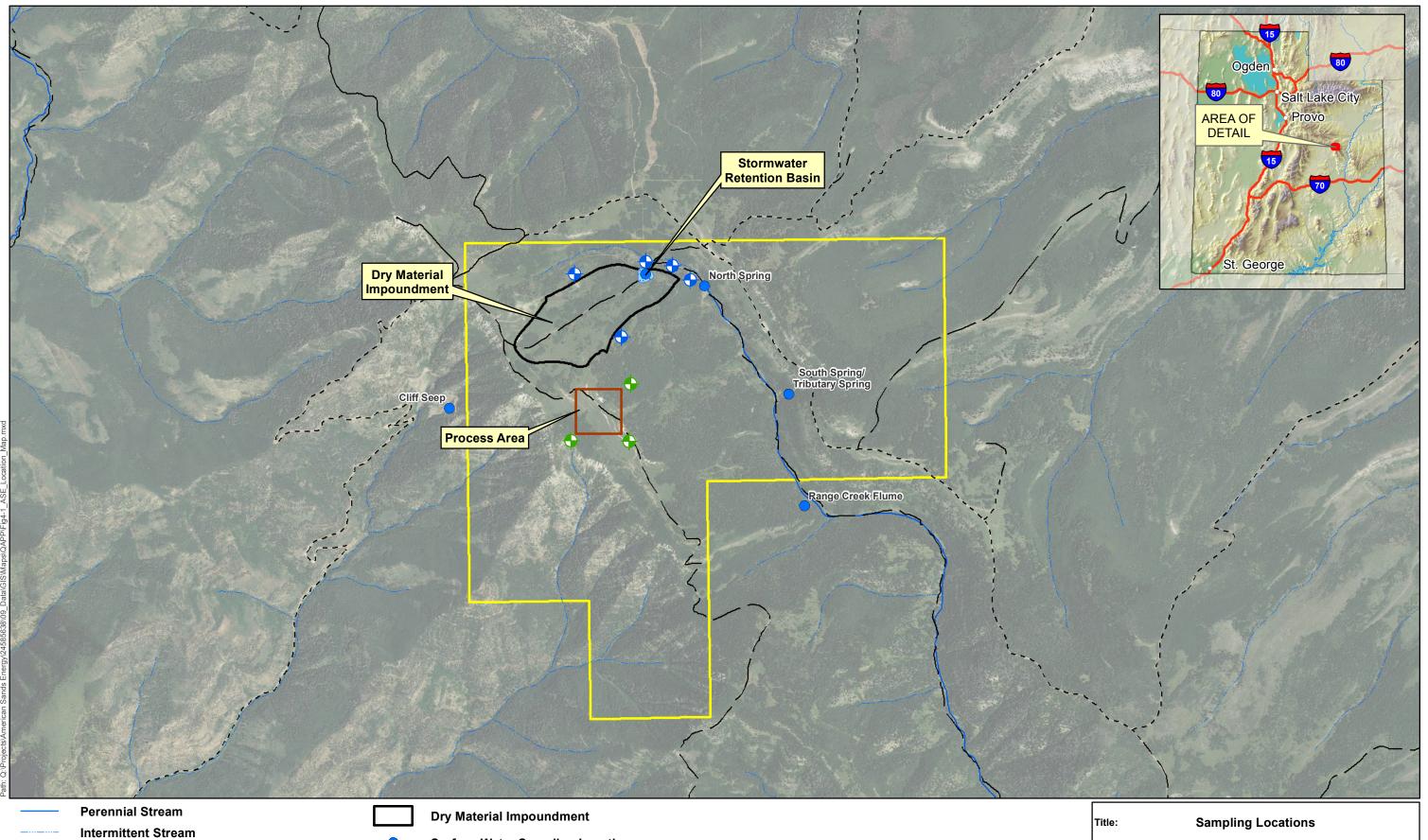
95% UPL will be used as the site's background concentration. Only primary sample results (not field duplicate results) will be used in statistical analysis. For non-detect results, the MDL will be used in the data evaluation.


7.3 Post-Operation Data Analyses

Once site operation begins, routine monitoring data will be compared to the established background concentration (the 95% UPL). If the post-operation analytical data exceeds the 95% UPL once within the last year, then a trend analysis will be performed to determine whether a statistically significant trend exists at the 95% confidence level. USEPA software, ProUCL 5.0, will be used for analyses. To determine if a statistically significant trend exists, a Mann-Kendall Trend analysis will be performed on the data. A minimum of four sampling events must occur before statistical analysis may be performed. For compounds demonstrating a statistically significant increasing trend, the Theil-Sen Slope will be calculated in ProUCL 5.0 to provide the rate of change in concentration. Only primary sample results (not field duplicate results) will be used in data comparison and statistical analysis. For non-detect results, the MDL will be used in the data evaluation. The dry sand tailings will be limited to 25 ppm of solvent (weight/weight).


8.0 **REFERENCES**

- EPA, 2013a. National Functional Guidelines for Inorganic Superfund Data Review. OSWER 9200.2-133, EPA-540-R-013-011. October 2013.
- EPA, 2013b. National Functional Guidelines for Superfund Organic Methods Data Review. OSWER 9200.2-134, EPA-540-R-014-002. October 2013.
- EPA, 2014. Regional Screening Levels (Formally PRGs). November 2014.
- Green River Resources (GRR), 2014. Notice of Intention to Commence Large Mining Operations, Green River Resources, Inc., Bruin Point Mine. March, 2014.
- URS Corporation (URS), 2014. Sampling and Analysis Plan, Green River Resources Inc. Bruin Point Mine, Carbon County, UT. August 2014


FIGURES

- Improved Road
- Dirt Road _ _
 - Road (Conditions Unknown)
 - Lease Boundary

Title: Site Location Map								
E	Bruin Point Mine	Proj No	24585638					
Quality /	Assurance Project Plan	Figure:	2-1					
		Date:	April 2015					
	American Sands Energy Corp		URS					

0 1,000 2,000

Feet

1,000

- Surface Water Sampling Location
 - Process Area Monitoring Well

lacksquare

 \bullet

Dry Material Impoundment Monitoring Well

Road (Conditions Unknown)

Dirt Road

_ _

Lease Boundary

Improved Road

Title: Sampling Locations								
Bruin Point Mine	Proj No: 24585638							
Quality Assurance Project Plan	Figure: 4-1							
	Date: April 2015							
American Sands Energy Corp	URS							

TABLES

Table 3-1 Drinking Water Standards and Tap Water Risk-Based Screening Levels

Analyte	GWQS (mg/L)	Utah Drinking Water Standard MCLs (mg/L)	Tapwater RSLs (ug/L)		
	General Wate	er Chemistry			
Alkalinity as CaCO ₃	NE	NE	NE		
Ammonia as N	NE	NE	NE		
Bicarbonate as CaCO ₃	NE	NE	NE		
Carbonate as CaCO ₃	NE	NE	NE		
Chloride	NE	NE	NE		
Sulfate	NE	1000	NE		
Hardness as CaCO ₃	NE	NE	NE		
Nitrate as N	10	10	3.20E+04		
Nitrate/Nitrite as N	10	10	NE		
Nitrite as N	1	1	2.00E+03		
Specific Conductance	NE	NE	NE		
Total Dissolved Solids	NE	2000	NE		
Total Suspended Solids	NE	NE	NE		
Total Organic Carbon	NE	NE	NE		
Benzene	0.005	0.005	4.50E-01		
Toluene	1	1	1.10E+03		
Xylenes, Total	10	10	1.90E+02		
Naphthalene	NE	NE	1.70E-01		
TPH-GRO	NE	NE	NE		
TPH-DRO	NE	NE	NE		
HEM, SGM-HEM	NE	NE	5.50E+00		
Barium	2	2	3.80E+03		
Cadmium	0.005	0.005	9.20E+00		
Copper	1.3	NE	8.00E+02		
Manganese	NE	NE	4.30E+02		
Iron	NE	NE	1.40E+04		
Nickel	NE	NE	NE		
1,2,3-Trimethylbenzene	NE	NE	1.00E+01		
1,2,4-Trimethylbenzene	NE	NE	1.50E+01		
1,3,5-Trimethylbenzene	NE	NE	1.20E+02		
2-Butanone	NE	NE	5.60E+03		
Methylene chloride	NE	NE	1.10E+01		
	Potential Proprietary	Solvent Constituents ⁽¹⁾			
Benzoic Acid	NE	NE	7.50E+04		
Ethanol	NE	NE	NE		
Propanol	NE	NE	NE		
1,3-Dichloropropane	0.005	0.005	3.70E+02		
Butane	NA	NE	NE		
Ethylbenzene	0.7	0.7	1.50E+00		
Hexanes	NE	NE	3.20E+02		
Isopropyl alcohol	NE	NE	4.00E+04		
Methyl t-butyl ether	NE	NE	1.40E+01		
Pentane	NE	NE	2.10E+03		
Isopentane	NE	NE	NE		
n-Propylbromide	NE	NE	NE		

Notes:

 $^{\left(1\right) }$ – Proprietary solvent is a mixture of some, but not all, of these constituents

NE - Not Established

GWQS - Groundwater Quality Standard

RSL - Risk-Based Screening Level

mg/l - milligrams per liter

ug/L - micrograms per liter

as N - as Nitrogen

MCL - Maximum Contaminant Level

SGT - Silica Gel Treated

HEM - Hexane Extractable Material

TPH - Total Petroleum Hydrocarbons

GRO – Gasoline Range Organics

DRO - Diesel Range Organics

Tapwater RSLs - November 2014

Table 4-2 Surface Water and Groundwater Analytes

Analyte	Container ⁽¹⁾	Preservation ⁽¹⁾	Hold Time	Laboratory Method ⁽²⁾	Method Detection Limit (MDL)	Reporting Limit (RL)	Units	Comments
			General	Water Chemistry				
Alkalinity as CaCO3		≤6°C	14 days	SM 2320B	1.07	5	mg/L	TAL Denver
Ammonia as N		<u></u> H₂SO₄, ≤6°C	28 days	EPA 350.1	0.022	0.1	mg/L	TAL Denver
Bicarbonate as CaCO ₃					1.07	5	mg/L	TAL Denver
Carbonate as CaCO ₃		≤6°C	14 days	SM 2320B	1.07	5	mg/L	TAL Denver
Chloride		~~~~~	20.1	EDA 200.0	0.254	3	mg/L	TAL Denver
Sulfate	500 ml polyethylene	≤6°C	28 days	EPA 300.0	0.232	5	mg/L	TAL Denver
Hardness as CaCO ₃		≤6°C	14 days	SM 2340C	1.3	5	mg/L	TAL Denver
Nitrate as N		≤6°C	48 hours	EPA 300.0	0.042	0.5	mg/L	TAL Denver
Nitrate/Nitrite as N		$H_2SO_4, \leq 6^{\circ}C$	14 days	EPA 353.2	0.019	0.1	mg/L	TAL Denver
Nitrite as N		≤6°C	48 hours	EPA 300.0	0.049	0.5	mg/L	TAL Denver
Specific Conductance		≤6°C	28 days	SM 2510B		2	S/m	TAL Denver
Total Dissolved Solids		≤6°C	7 days	SM 2540C	4.7	10	mg/L	TAL Denver
Total Suspended Solids		≤6°C	7 days	SM 2540D	1.1	4	mg/L	TAL Denver
Total Organic Carbon	3-40 ml glass vials with septa	<6°C, H2S04	28 days	SM5310B	0.155	1	mg/L	TAL Denver
Benzene					0.16	1	ug/L	TAL Denver
Toluene	2-40 ml glass vials with septa	HCL, 4°C	14 days	SW846 8260B/RSK 175	0.17	1	ug/L	TAL Denver
Xylenes, Total					0.19	2	ug/L	TAL Denver
Naphthalene			14.1	OW/046 0015C	0.22	1	ug/L	TAL Denver
TPH-GRO TPH-DRO	3-40 ml glass vials with septa 2 – 1L Amber Glass	HCL, ≤6°C <6°C	14 days 7 days to extraction, 40	SW846 8015C SW846 8015C	10 0.0326	25 0.25	ug/L mg/l	TAL Denver TAL Denver
HEM, SGT-HEM	2 II Amban Class	HCL, ≤6°C	days after extraction	1664	2.76	5		If 1664 method, TAL Denver
	2 – 1L Amber Glass 1-250 mL HDPE	HCL, ≤6°C HNO ₃ , pH < 2; Cool < 6°C	28 days 180 days	1664 6020A	0.00029	5 0.001	mg/L	TAL Denver
Barium				6020A	0.00029		mg/L	TAL Deriver TAL Deriver
Cadmium	1-250 mL HDPE	HNO ₃ , pH < 2; Cool < 6°C HNO ₃ , pH < 2; Cool < 6°C	180 days			0.001	mg/L	
Copper	1-250 mL HDPE		180 days	6020A	0.00056	0.002	mg/L	TAL Denver
Manganese	1-250 mL HDPE	HNO_3 , $pH < 2$; $Cool < 6^{\circ}C$	180 days	6020A	0.00031	0.001	mg/L	TAL Denver
Iron	1-250 mL HDPE	HNO_3 , $pH < 2$; $Cool < 6^{\circ}C$	180 days	6010C	0.022	0.1	mg/L	TAL Denver
Nickel	1-250 mL HDPE	HNO ₃ , pH < 2; Cool < 6°C	180 days	6020A	0.0003	0.002	mg/L	TAL Denver
1,2,3-Trimethylbenzene	3-40 ml glass vials with septa	<6°C; adjust pH <2; 0.008% Na2S2O3	14 Days – Preserved	8260B	0.00027	0.002	mg/L	TAL Denver
1,2,4-Trimethylbenzene	3-40 ml glass vials with septa	<6°C; adjust pH <2; 0.008% Na2S2O3	14 Days - Preserved	8260B	0.00015	0.001	mg/L	TAL Denver
1,3,5-Trimethylbenzene	3-40 ml glass vials with septa	<6°C; adjust pH <2; 0.008% Na2S2O3	14 Days – Preserved	8260B	0.00016	0.001	mg/L	TAL Denver
2-Butanone	3-40 ml glass vials with septa	<6°C; adjust pH <2; 0.008% Na2S2O3	14 Days – Preserved	8260B	0.002	0.006	mg/L	TAL Denver
Methylene chloride	3-40 ml glass vials with septa	<6°C; adjust pH <2; 0.008% Na2S2O3	14 Days – Preserved	8260B	0.00032	0.002	mg/L	TAL Denver
			Potential Propriet	ary Solvent Constituents ⁽³⁾				
Benzoic Acid	1 – 1L Amber	<6°C	7 days to extraction, 40 days after extraction	SW846 8270D	10	25	mg/L	TAL Denver
Butane				SW846 8260B/RSK 175	0.0025	0.005	mg/L	by RSK 175, TAL Nashville
1,3-Dichloropropane	2-40 ml glass vials with septa	HCL, 4°C	14 days	SW846 8260B/RSK 175	0.22	1	ug/L	TAL Denver
Ethanol	1-1L glass bottle	4°C	14 days	SW846 8015	2	10	mg/L	TAL Nashville
Ethylbenzene	2-40 ml glass vials with septa	HCL, 4°C	14 days	SW846 8260B/RSK 175	0.16	1	ug/L	TAL Denver
Hexanes	2-40 ml glass vials with septa	HCL, 4°C	14 days	SW846 8260B/RSK 175	0.024	0.026	mg/L	by RSK 175, TAL Nashville
Isopentane	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD
Isopropyl alcohol	2-40 ml glass vials with septa	HCL, 4°C	14 days	SW846 8260B/RSK 175	2	10	mg/L	TAL Denver or by 8015 at TAL Nashville
Methyl t-butyl ether	2-40 ml glass vials with septa	HCL, 4°C	14 days	SW846 8260B/RSK 175	0.25	5	ug/L	TAL Denver
n-Propylbromide	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD
Pentane	2-40 ml glass vials with septa	HCL, 4°C	14 days	SW846 8260B/RSK 175	0.016	0.026	mg/L	TAL Denver
Propanol	2-40 ml glass vials with septa	HCL, 4°C	14 days	SW846 8015B	2.3	10	mg/L	TAL Nashville

Notes:

(1) - Provided by Utah certified laboratory

(2) - Or equivalent method

⁽³⁾ – Proprietary solvent is a mixture of some, but not all, of these constituents

°C – degrees Celsius mg - milligrams ml - milliliters

ug - micrograms

S/m - siemens per meter HCL - Hydrochloric Acid SM - Standard Method EPA - Environmental Protection Agency

TPH - Total Petroleum Hydrocarbons GRO - Gasoline Range Organics DRO – Diesel Range Organics TBD - To be determined

SGT - Silica Gel Treated HEM - Hexane Extractable Material

HDPE - High-Density Polyethylene

Table 4-3Dry Material Analytes

Analytes	Container ⁽¹⁾	Preservation ⁽¹⁾	Hold Time	Laboratory Method ⁽²⁾	MDL (ug/L)	RL (ug/L)	Units
			Analyzed using SPLP Procedu	ure ³			
			Metals				
Antimony					0.400	2.00	ug/L
Arsenic					0.330	5.00	ug/L
Barium	_				0.290	1.00	ug/L
Beryllium	_		6 Months	SW 846 1312/6020	0.0800	1.00	ug/L
Cadmium	_			-	0.265	1.00	ug/L
Chromium Conner	_			-	0.560	2.00 2.00	ug/L ug/L
Copper Lead	-			-	0.180	1.00	ug/L ug/L
Mercury	-		28 days	SW 846 1312/7470	0.03	2	ug/L ug/L
Major cations							8
Aluminum	8 oz glass jar	≤6°C			18.0	100	ug/L
Calcium					34.5	2000	ug/L
Iron			6 months	SW 846 1312 /6010	22.0	1000	ug/L
Magnesium	4		0 11011015	5,, 5, 6, 6, 1512, 0010	10.7	200	ug/L
Manganese	-				0.253	10.0	ug/L
Potassium	-				237	3000	ug/L
Sodium Solonium	-				91.6 0.700	10000 5	ug/L
Selenium Silver	-				0.0330	5.00	ug/L ug/L
Thallium			6 Months	SW 846 1312/6020	0.0500	1.00	ug/L ug/L
Zinc				-	2.00	10.0	ug/L ug/L
			SVOC Organics				
Pentachlorophenol					20	50	ug/L
Di(2-ethylhexyl)adipate			14 SPLP Extraction/7 days		10	10	ug/L
Benzo(a)pyrene	4 oz glass jar	≤6°C	Water extraction/40 days to	SW 846 1312/8270	0.31	4	ug/L
Hexachlorocyclopentadiene			analyze		1.53	50	ug/L
Di(2-ethylhexyl)phthalate			TOC		0.56	10	ug/L
1.1 Dishlana athalana			VOCs		0.23	1	
1,1-Dichloroethylene1,2 Dichloropropane	-				0.23	1.00	ug/L ug/L
1,2,4-Trichlorobenzene	_				0.21	1.00	ug/L ug/L
1,2-Dichlorobenzene					0.16	1.00	ug/L
1,4-Dichlorobenzene					0.16	1.00	ug/L
Benzene					0.16	1.00	ug/L
Carbon tetrachloride					0.19	1.00	ug/L
cis-1,2 dichloroethylene					0.15	1.00	ug/L
Dichloromethane				_	0.32	2.00	ug/L
Ethylene Dibromide	_				0.18	1.00	ug/L
Heptane	_				0.20	5.00	ug/L
Hexachlorobenzene Monochlorobenzene	-		14 SPLP Extraction/7 days		0.66	10.00 1.00	ug/L ug/L
Naphthalene	4 oz glass jar	≤6°C	analysis	SW 846 1312/8260B	0.17	1.00	ug/L ug/L
Styrene	-				0.17	1.00	ug/L ug/L
Tetrachloroethylene	-				0.20	1.00	ug/L
Toluene]				0.17	1.00	ug/L
trans-1,2 dichloroethylene				ļ Ē	0.15	1.00	ug/L
Trichloroethylene	_			[0.16	1.00	ug/L
Vinyl Chloride	-↓ ↓				0.10	1.00	ug/L
Xylenes, Total	-				0.19	2.00	ug/L
1,2,3-Trimethylbenzene	-				0.27	2.00	ug/L
1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	-				0.15 0.16	1.00 1.00	ug/L ug/L
2-Butanone	-				2.00	6.00	ug/L ug/L
Methylene chloride	-				0.32	2.00	ug/L ug/L
		Potent	ial Proprietary Solvent Consti	ituents ^(3, 4)	0.02	2.00	<u>че</u> , п
Benzoic Acid	4 oz glass jar	≤6°C	7 days to extraction, 40 days after extraction	SW 846 1312/8270D	10	25.00	ug/L
	4 or close ion	≤6°C			0.22	1.00	ug/L
1.3-Dichloropropage	4 07 01400 141		- · · · · ·	-	0.22	1.00	~ <u></u> ,
1,3-Dichloropropane Ethylbenzene	4 oz glass jar 4 oz glass jar		14 SPLP Extraction/7 days	SW 846 1312/8260	0.16	1.00	
1,3-Dichloropropane Ethylbenzene Methyl t-butyl ether	4 oz glass jar 4 oz glass jar 4 oz glass jar	<u></u> 6°C <u>≤6</u> °C ≤6°C	 14 SPLP Extraction/7 days analysis 	SW 846 1312/8260	0.16 0.25	1.00 5.00	ug/L ug/L

Page 3 of 4

Table 4-3Dry Material Analytes

Analytes	Container ⁽¹⁾	Preservation ⁽¹⁾	Hold Time	Laboratory Method ⁽²⁾	MDL (ug/L)	RL (ug/L)	Units
		Ana	lyzed using Total Analysis Pro	ocedure ³			
			Non-Halogenated Organic	S			
TPH-DRO	4 oz glass jar	≤6°C	14 days Extraction/ 40 days after extraction	8015C	0.678	4	mg/kg
TPH-GRO	4 oz glass jar	≤6°C	14 days	8015C	0.325	1.2	mg/kg
HEM, SGT-HEM	4 oz glass jar	≤6°C	14 days	9071B	84.8	500	mg/kg
			Others				
Ammonia as N	4 oz glass jar	≤6°C	28 days	350.1	0.022	0.10	mg/L
Chloride	4 oz glass jar	≤6°C	28 days	9056A	2.0	30.0	mg/kg
Sulfate	4 oz glass jar	≤6°C	28 days	9056A	1.7	50.0	mg/kg
Nitrate as N	4 oz glass jar	≤6°C	48 hours	9056A	0.314	5.00	mg/kg
Nitrite as N	4 oz glass jar	≤6°C	48 hours	9056A	0.336	5.00	mg/kg
Total Organic Carbon	4 oz glass jar	≤6°C	28 days	9060A	1.7	4.00	g/Kg
Total Nitrate/Nitrite as N	4 oz glass jar	H₂SO₄, ≤6°C	14 days	9056A	0.314	5.00	ug/kg
		Potent	ial Proprietary Solvent Const	ituents ^(3, 4)		-	
Ethanol	4 oz glass jar	≤6°C	7 days	8015B	2	10	mg/kg
Hexanes	4 oz glass jar	≤6°C	7 days	8260B	31	250	ug/kg
Isopentane	TBD	TBD	TBD	TBD	TBD	TBD	TBD
Isopropyl alcohol	4 oz glass jar	≤6°C	7 days	8015B	2	10.00	mg/kg
Propanol	4 oz glass jar	≤6°C	7 days	8015B	2	10	mg/kg
Pentane	650 ml glass jar with septum	≤6°C	7 days	Modified ASTM 1945	1	1.00	mg/L
Butane	650 ml glass jar with septum	≤6°C	7 days	Modified ASTM 1945	1	1.00	mg/L
1,3-Dichloropropane	4 oz glass jar	≤6°C	7 days	8260B	0.51	5.00	ug/kg
Benzoic Acid	4 oz glass jar	≤6°C	7 days	8270D	330	1600	ug/kg
Ethylbenzene	4 oz glass jar	≤6°C	7 days	8260B	0.67	5.00	ug/kg
Methyl t-butyl ether	4 oz glass jar	≤6°C	7 days	8260B	20	0.34	ug/kg
n-Propylbromide	TBD	TBD	TBD	TBD	TBD	TBD	TBD

Notes:

⁽¹⁾ – Provided by Utah certified laboratory

⁽²⁾ – Or equivalent method

⁽³⁾ – Only SVOCs, VOCs, and metals can be analyzed using the SPLP procedure. All other analytes shall undergo a total analysis.

 $^{(4)}$ – Proprietary solvent is a mixture of some, but not all, of these constituents

oz. - ounce

ASTM - American Society for Testing and Materials

RL - Reporting Limit

- MDL Method Detection Limit
- SW Solid Waste

SOP - Standard Operating Procedure

- SPLP- Synthetic Precipitation Leaching Procedure
- SGT Silica Gel Treated
- HEM Hexane Extractable Material
- HCL- Hydrochloric Acid
- ml milliliter

kg- kilogram

ug- microgram L - Liter

mg - milligram

Page 4 of 4

APPENDIX I

WATER QUALITY ANALYTICAL RESULTS

Analytical Results Green River Resources, Inc. American Sands Energy Corporation

January 2012 Analytical Results

In January 2012, Green River Resources, Inc. (GRR) batch collected three samples of processed ore. The samples were processed using American Sands Energy Corp. (ASEC's) proprietary solvent in a manner designed to emulate, as accurately as possible, the process that the company plans to use on a production scale at the mine site. The processed samples replicate, to the extent possible, the sand tailings that will be generated by the production facility when the site is in operation.

For each of the samples, three sample containers were filled and sent to American West Analytical Laboratories (AWAL) in Salt Lake City, Utah for analysis. The three processed ore samples are identified as: 1A+BC, 2A+BC, and 3A+BC, where "A," "B," and "C" represent the three sample containers.

Each sample was analyzed for volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs) using U.S. Environmental Protection Agency (EPA) Method 1312, the Synthetic Precipitation Leaching Procedure (SPLP), which simulates rainfall and snowmelt that might infiltrate a stockpile of the sample material and the resulting leachate that might seep out of the stockpile. The purpose of this SPLP procedure is to estimate the maximum level of contaminants with the potential to leach from the stockpile into soil, and potentially groundwater, underneath. The SPLP extract was also analyzed for general water quality parameters, including nitrate/nitrate as nitrogen (N), chloride, total dissolved solids (TDS), and total organic carbon (TOC), as well as oil and grease (O&G) and total recoverable petroleum hydrocarbons (TRPH). O&G and TRPH are of interest since they are the nearest proxies for bitumen (the compound for which the ore is processed).

The results of the SPLP analyses are shown in **Table 1**. The general water quality parameters, O&G, and TRPH analyses are also included in **Table 1**. Samples with compound concentrations in excess of Utah Groundwater Quality Standards (GWQS) are bolded. The GWQS, as codified in Utah Administrative Code (UAC) R317-6-2.1 (UDEQ, 2014), are listed in **Table 2**. **Table 3** demonstrates the Utah Initial Screening Levels for groundwater, which constitute the action levels for excavating leaking underground storage tanks (UDEQ, 2005). Though the initial screening levels are not applicable to tailings or stockpiles, they are included to provide a standard for comparison, particularly for TPH-DRO and TPH-GRO.

Laboratory analytical results indicate the pH of the leaching solution under the SPLP analysis ranges from 9.35-9.42. These values are above the Utah GWQS pH limits of 6.5-8.5. The benzene concentration in Sample 3A+BC, 0.00516 milligrams per liter (mg/L), was the only other compound above Utah GWQS. The majority of compounds were non-detect. The full laboratory analytical reports from AWAL are attached.

The full laboratory analytical reports from AWAL are included with this report.

September 2012 Analytical Results

In September 2012, GRR batch collected three samples of processed ore and one sample of raw tar sands from the Sunnyside, Utah ore body. The samples were processed similarly to the January 2012 samples. The processed samples replicate, to the extent possible, the sand tailings that will be generated by the production facility when the site is in operation.

For each of the samples, two sample containers were filled and sent to AWAL in Salt Lake City, Utah for analysis. The three processed ore samples are identified as: U-001A/B, U-002A/B, and U-003A/B and the raw tar sands sample as: U-004A/B, where "A" and "B" designate the two sample containers.

Each sample was analyzed for VOC and SVOC using U.S. EPA Method 1312 (SPLP). The SPLP extract was also analyzed for general water quality parameters, including chloride, total dissolved solids (TDS), and total organic carbon (TOC). In addition, the raw tar sands sample (U-004B) was analyzed for O&G and TRPH.

The results of the SPLP analyses are shown in **Table 4**. The general water quality parameters, O&G, and TRPH analyses are also shown in **Table 4**. Samples with compound concentrations in excess of Utah Groundwater Quality Standards (GWQS) are bolded.

Laboratory analytical results indicate the pH of the leaching solution from the SPLP analysis ranges from 3.6-6.27. These values are below the Utah GWQS pH limits of 6.5-8.5. A leaching solution of pH 4.2 is used under SPLP analysis to simulate the pH of acid rain. The SPLP procedure instructs that for mine waste, an acidic extraction fluid (of pH 4.2) should be used. There were no other analytes in violation of the Utah GWQS.

Sample U-004B, the raw tar sands sample, contained 34,900 mg/kg O&G and 13,400 mg/kg TRPH. However, in the SPLP analyses, O&G and TRPH were below the detection limit (3 mg/L). The results indicate the low mobility of these components in the environment.

The full laboratory analytical reports from AWAL are included with this report.

The laboratory analytical results from January 2012 and September 2012 help demonstrate that the stockpiles of raw tar sand and processed ore produced by the ASEC process pose a *de minimis* risk to the general environment, specifically groundwater, from seepage of precipitation through the stockpile.

References

Utah Department of Environmental Quality (UDEQ), 2005. Initial Screening Levels. Utah Administrative Code R311-205. November 2005. http://www.deq.utah.gov/ProgramsServices/programs/tanks/lust/docs/2006/08Aug/cleanupLevels.pdf

Utah Department of Environmental Quality (UDEQ), 2014. Utah Ground Water Protection Program. Ground Water Quality Standards – Table 1 of R317-6-2.1. June 2014.

Tables:Table 1 – January 2012 Analytical DataTable 2 – Utah Groundwater Quality StandardsTable 3 – Utah Initial Screening LevelsTable 4 – September 2012 Analytical Data

TABLES

Table 1 January 2012 Analytical Data

			Sample ID		
Compound	Units —	1A,B+C	2A,B+C	3A,B+C	
Antimony	mg/L	< 0.00100	< 0.00100	< 0.00100	
Arsenic	mg/L	0.00106	0.00146	0.00135	
Barium	mg/L	0.012	0.0124	0.0142	
Beryllium	mg/L	< 0.000600	< 0.000600	< 0.000600	
Boron	mg/L	< 0.500	< 0.500	< 0.500	
Cadmium	mg/L	< 0.000180	< 0.000180	< 0.000180	
Calcium	mg/L	1.27	1.31	1.86	
Chromium	mg/L	< 0.0100	< 0.0100	< 0.0100	
Copper	mg/L	0.00161	0.0013	0.00134	
Iron	mg/L	0.782	1.2	1.1	
Lead	mg/L	0.00071	0.000846	0.000676	
Lithium	mg/L	< 0.100 ~	< 0.100 ~	< 0.100 ~	
Magnesium	mg/L	< 1.00	< 1.00	< 1.00	
Manganese	mg/L	0.216	0.243	0.366	
Mercury	mg/L	< 0.0100 *	< 0.0100 *	< 0.0100 *	
Molybdenum	mg/L	< 0.0200	< 0.0200	< 0.0200	
Nickel	mg/L	0.00336	0.00364	0.00449	
Pottassium	mg/L	< 1.00	< 1.00	< 1.00	
Selenium	mg/L	< 0.000800	0.00105	< 0.000800	
Silver	mg/L	< 0.000400	< 0.000400	< 0.000400	
Sodium	mg/L	1.07	< 1.00	< 1.00	
Strontium	mg/L	< 0.0500	< 0.0500	< 0.0500	
Thallium	mg/L	< 0.000400	0.000692	< 0.000400	
Tin	mg/L	< 0.500	< 0.500	< 0.500	
Vanadium	mg/L	< 0.0500	< 0.0500	< 0.0500	
Zinc	mg/L	0.0245	0.021	0.0156	
Alkalinity (as CaCO ₃)	mg/L	14.6	13.7	10.9	
Chloride	mg/L	< 0.100	< 0.100	< 0.100	
Fluoride	mg/L	< 0.100	< 0.100	< 0.100	
Nitrate/Nitrite (as N)	mg/L	0.0419	0.0407	0.0422	
Oil & Grease	mg/L	3.07	4.39	3.69	
рН	s.u.	9.42	9.42	9.35	
Sulfate	mg/L	2.63	2.68	3.13	
Total Dissolved Solids	mg/L	< 20.0	< 20.0	< 20.0	
Total Organic Carbon	mg/L	3.96	4.58	4.51	

Notes:

 \boldsymbol{Bold} indicates an exceedance of DWQ water quality standards.

< - Value is less than reporting limit.

 \ast - The reporting limits were raised due to sample matrix interferences.

~ - Result was not performed in accordance with National Environmental Laboratory Accreditation Program (NELAP) requirements.

µmhos/cm - micromhos per centimeter

mg/L - milligram per liter

N - Nitrogen

SPLP - Synthetic Precipitation Leaching Procedure

s.u. - standard unit

CaCO₃ - Calcium Carbonate

Page 1 of 5

Table 1January 2012 Analytical Data

	Anaryucai Kes	ult GC/MS Method 82					
Compound	Units	ts Sample ID 1A,B+C 2A,B+C 3A,B+C					
1,1 '-Biphenyl	mg/L	<pre> (0.0100</pre>	2A,B+C < 0.0100	3A,B+C < 0.0100			
1,2,4,5-Tetrachl oro benzene	mg/L mg/L	< 0.0100	< 0.0100	< 0.0100			
.2.4-Trichlorobenzene	mg/L	< 0.0100	< 0.0100	< 0.0100			
,2-Dichlorobenzene	mg/L	< 0.0100	< 0.0100	< 0.0100			
,3,5-Trinitrobenzene	mg/L	< 0.0100	< 0.0100	< 0.0100			
I,4-Naphthoquinone	mg/L	< 0.0100	< 0.0100	< 0.0100			
1,3-Dichlorobenzene	mg/L	< 0.0100	< 0.0100	< 0.0100			
,3-Dinitrobenzene	mg/L	< 0.0100	< 0.0100	< 0.0100			
,4-Dichlorobenzene	mg/L	< 0.0100	< 0.0100	< 0.0100			
1,4-Phenylenediamine	mg/L	< 0.0100	< 0.0100	< 0.0100			
l-Chloronaphthalene	mg/L	< 0.0100	< 0.0100	< 0.0100			
I-Methylnaphthalene	mg/L	< 0.0100	< 0.0100	< 0.0100			
l-Naphthylamine	mg/L	< 0.0100	< 0.0100	< 0.0100			
2,3,4,6-Tetrachlorophenol	mg/L	< 0.0100	< 0.0100	< 0.0100			
2,4,5-Trichlorophenol	mg/L	< 0.0100	< 0.0100	< 0.0100			
2,4,6-Trichlorophenol	mg/L	< 0.0100	< 0.0100	< 0.0100			
2,4-Dichlorophenol	mg/L	< 0.0100	< 0.0100	< 0.0100			
2,4-Dimethylphenol	mg/L	< 0.0100	< 0.0100	< 0.0100			
2,4-Dinitropbenol 2,4-Dinitrotoluene	mg/L	< 0.0100	< 0.0100 < 0.0100	< 0.0100			
2,4-Dinitrotoluene	mg/L mg/L	< 0.0100	< 0.0100	< 0.0100			
2,6-Dinitrotoluene	mg/L mg/L	< 0.0100	< 0.0100	< 0.0100			
2-Acetylaminofluorene	mg/L mg/L	< 0.0100	< 0.0100	< 0.0100			
2-Cbloronaphthalene	mg/L mg/L	< 0.0100	< 0.0100	< 0.0100			
2-Chlorophenol	mg/L mg/L	< 0.0100	< 0.0100	< 0.0100			
2-Methylnaphthalene	mg/L mg/L	< 0.0100	< 0.0100	< 0.0100			
2-Methylphenol	mg/L	< 0.0100	< 0.0100	< 0.0100			
2-Naphthylamine	mg/L	< 0.0100	< 0.0100	< 0.0100			
2-Nitroaniline	mg/L	< 0.0100	< 0.0100	< 0.0100			
2-Nitrophenol	mg/L	< 0.0100	< 0.0100	< 0.0100			
2-Picoline	mg/L	< 0.0100	< 0.0100	< 0.0100			
&4-Methylphenol	mg/L	< 0.0100	< 0.0100	< 0.0100			
3,3 '-Dichlorobenzidine	mg/L	< 0.0100	< 0.0100	< 0.0100			
3,3'-Dimethylbenzidine	mg/L	< 0.0100	< 0.0100	< 0.0100			
3-Methylcholanthrene	mg/L	< 0.0100	< 0.0100	< 0.0100			
3-Nitroaniline	mg/L	< 0.0100	< 0.0100	< 0.0100			
4,6-Dinitro-2-methylphenol	mg/L	< 0.0100	< 0.0100	< 0.0100			
4-Arninobiphenyl	mg/L	< 0.0100	< 0.0100	< 0.0100			
4-Bromophenyl phenyl ether	mg/L	< 0.0100	< 0.0100	< 0.0100			
4-Chloro-3-methylphenol	mg/L	< 0.0100	< 0.0100	< 0.0100			
4-Chloroaniline	mg/L	< 0.0100	< 0.0100	< 0.0100			
4-Chlorophenyl phenyl ether	mg/L	< 0.0100	< 0.0100	< 0.0100			
4-Nitroaniline	mg/L	< 0.0100	< 0.0100	< 0.0100			
4-Nitrophenol	mg/L	< 0.0100	< 0.0100	< 0.0100			
5-Nitro-o-toluidine	mg/L	< 0.0100	< 0.0100	< 0.0100			
7,12-Dimethylbenz(a)anthracene a,a-Dimethylphenethylamine	mg/L mg/L	< 0.0100	< 0.0100 < 0.0100	< 0.0100			
Acenaphthene	mg/L mg/L	< 0.0100	< 0.0100	< 0.0100			
Acenaphthylene	mg/L mg/L	< 0.0100	< 0.0100	< 0.0100			
Acetophenone	mg/L mg/L	< 0.0100	< 0.0100	< 0.0100			
alpha-Terpineol	mg/L mg/L	< 0.0100	< 0.0100	< 0.0100			
Aniline	mg/L	< 0.0100	< 0.0100	< 0.0100			
Anthracene	mg/L	< 0.0100	< 0.0100	< 0.0100			
Aramite	mg/L	< 0.0100	< 0.0100	< 0.0100			
Azobenzene	mg/L	< 0.0100	< 0.0100	< 0.0100			
Benz(a)anthracene	mg/L	< 0.0100	< 0.0100	< 0.0100			
Benzidine	mg/L	< 0.0100	< 0.0100	< 0.0100			
Benzo(a)pyrene	mg/L	< 0.0100	< 0.0100	< 0.0100			
Benzo(b)fluoranthene	mg/L	< 0.0100	< 0.0100	< 0.0100			
Benzo(g,h,i)perylene	mg/L	< 0.0100	< 0.0100	< 0.0100			
Benzo(k)fluoranthene	mg/L	< 0.0100	< 0.0100	< 0.0100			
Benzoic acid	mg/L	< 0.0100	< 0.0100	< 0.0100			
Benzyl alcohol	mg/L	< 0.0100	< 0.0100	< 0.0100			
Bis(2-chloroethoxy)methane	mg/L	< 0.0100	< 0.0100	< 0.0100			
Bis(2-chloroethyl) ether	mg/L	< 0.0100	< 0.0100	< 0.0100			
Bis(2-chloroisopropyl) ether	mg/L	< 0.0100	< 0.0100	< 0.0100			
Bis(2-ethylhexyl) phthalate	mg/L	< 0.0100	< 0.0100	< 0.0100			
bis(2-ethylhexyl)adipate Butyl benzyl phthalate	mg/L	< 0.0100	< 0.0100	< 0.0100			
Carbazole	mg/L	< 0.0100	< 0.0100 < 0.0100	< 0.0100			
Carbazole	mg/L mg/L	< 0.0100	< 0.0100	< 0.0100			
Chrysene	mg/L mg/L	< 0.0100	< 0.0100	< 0.0100			

Table 1January 2012 Analytical Data

	Analytical	Result GC/MS Method 8	270D/3510C*	
Compound	Units		Sample ID	
Compound	Onits	1A,B+C	2A,B+C	3A,B+C
Di-n-butyl phthalate	mg/L	< 0.0100	< 0.0100	< 0.0100
Di-n-octyl phthalate	mg/L	< 0.0100	< 0.0100	< 0.0100
Diallate (cis or trans)	mg/L	< 0.0100	< 0.0100	< 0.0100
Dibenz(a,h)anthracene	mg/L	< 0.0100	< 0.0100	< 0.0100
Dibenzofuran	mg/L	< 0.0100	< 0.0100	< 0.0100
Diethyl phthalate	mg/L	< 0.0100	< 0.0100	< 0.0100
Dimethoate	mg/L	< 0.0100 < 0.0100	< 0.0100 < 0.0100	< 0.0100
Dimethyl phthalate Dimethylaminoazobenzene	mg/L mg/L	< 0.0100	< 0.0100	< 0.0100 < 0.0100
Dinoseb	mg/L	< 0.0100	< 0.0100	< 0.0100
Diphenylamine	mg/L	< 0.0100	< 0.0100	< 0.0100
Disulfoton	mg/L	< 0.0100	< 0.0100	< 0.0100
Ethyl methanesulfonate	mg/L	< 0.0100	< 0.0100	< 0.0100
Famphur	mg/L	< 0.0100	< 0.0100	< 0.0100
Fluoranthene	mg/L	< 0.0100	< 0.0100	< 0.0100
Fluorene	mg/L	< 0.0100	< 0.0100	< 0.0100
Hexachlorobenzene	mg/L	< 0.0100	< 0.0100	< 0.0100
Hexachlorobutadiene	mg/L	< 0.0100	< 0.0100	< 0.0100
Hexachlorocyclopentadiene	mg/L	< 0.0100	< 0.0100	< 0.0100
Hexachloroethane	mg/L	< 0.0100	< 0.0100	< 0.0100
Hexachlorophene	mg/L	< 0.0100	< 0.0100	< 0.0100
Hexachloropropene	mg/L	< 0.0100	< 0.0100	< 0.0100
Indene	mg/L	< 0.0100	< 0.0100	< 0.0100
Indeno(1,2,3-cd)pyrene	mg/L	< 0.0100	< 0.0100	< 0.0100
Isodrin	mg/L	< 0.0100	< 0.0100	< 0.0100
lsophorone	mg/L	< 0.0100	< 0.0100	< 0.0100
lsosafrole	mg/L	< 0.0100	< 0.0100	< 0.0100
Kepone	mg/L	< 0.0100	< 0.0100	< 0.0100
Methapyrilene	mg/L	< 0.0100	< 0.0100	< 0.0100
Methyl methanesulfonate n-Decane	mg/L mg/L	< 0.0100 < 0.0100	< 0.0100 < 0.0100	< 0.0100 < 0.0100
N-Nitrosodi-n-butylamine	mg/L	< 0.0100	< 0.0100	< 0.0100
N-Nitrosodiethylamine	mg/L mg/L	< 0.0100	< 0.0100	< 0.0100
N-Nitrosodimethylamine	mg/L	< 0.0100	< 0.0100	< 0.0100
N-Nitrosodiphenylamine	mg/L	< 0.0100	< 0.0100	< 0.0100
N-Nitrosodi-n-propylamine	mg/L	< 0.0100	< 0.0100	< 0.0100
N-Nitrosomethylethylamine	mg/L	< 0.0100	< 0.0100	< 0.0100
N-Nitrosomorpholine	mg/L	< 0.0100	< 0.0100	< 0.0100
N-Nitrosopiperidine	mg/L	< 0.0100	< 0.0100	< 0.0100
N-Nitrosopyrrolidine	mg/L	< 0.0100	< 0.0100	< 0.0100
n-Octadecane	mg/L	< 0.0100	< 0.0100	< 0.0100
Naphthalene	mg/L	< 0.0100	< 0.0100	< 0.0100
Nitrobenzene	mg/L	< 0.0100	< 0.0100	< 0.0100
Nitroquinoline-1-oxide	mg/L	< 0.0100	< 0.0100	< 0.0100
O,O,O-Triethyl phosphorothioate	mg/L	< 0.0100	< 0.0100	< 0.0100
a-Toluidine	mg/L	< 0.0100	< 0.0100	< 0.0100
Parathion	mg/L	< 0.0100	< 0.0100	< 0.0100
Methyl parathion	mg/L	< 0.0100	< 0.0100	< 0.0100
Pentachlorobenzene	mg/L	< 0.0100	< 0.0100	< 0.0100
Pentachloronitrobenzene	mg/L	< 0.0100	< 0.0100	< 0.0100
Pentachlorophenol Phenacetin	mg/L	< 0.0100	< 0.0100	< 0.0100
Phenacetin Phenanthrene	mg/L	< 0.0100 < 0.0100	< 0.0100 < 0.0100	< 0.0100 < 0.0100
Phenol	mg/L mg/L	< 0.0100	< 0.0100	< 0.0100
Phonate	mg/L mg/L	< 0.0100	< 0.0100	< 0.0100
Pronamide	mg/L mg/L	< 0.0100	< 0.0100	< 0.0100
Pronamide Pyrene	mg/L mg/L	< 0.0100	< 0.0100	< 0.0100
Pyridine	mg/L	< 0.0100	< 0.0100	< 0.0100
Quinoline	mg/L	< 0.0100	< 0.0100	< 0.0100
Safrole	mg/L mg/L	< 0.0100	< 0.0100	< 0.0100
Tetraethyl dithiopyrophosphate	mg/L	< 0.0100	< 0.0100	< 0.0100
Thionazin	mg/L	< 0.0100	< 0.0100	< 0.0100

Notes:

< - Value is less than reporting limit.

* SVOA SPLP 1312 List by GC/MS Method 8270D/3510C

GC/MS - gas chromatography/mass spectrometry

mg/L - milligrams per Liter

SPLP - Synthetic Precipitation Leaching Procedure

Table 1January 2012 Analytical Data

	Analytical Res	ult GC/MS Method 82		
Compound	Units —		Sample ID	
,1,1,2-Tetrachloroethane	ma/I	1A,B+C < 0.00200	2A,B+C < 0.00200	3A,B+C < 0.00200
,1,1-Trichloroethane	mg/L mg/L	< 0.00200	< 0.00200	0.00200
,1,2,2-Tetrachloroethane	mg/L mg/L	< 0.00200	< 0.00200	< 0.00200
,1,2-Trichloro-1,2,2-trifluoroethane		< 0.00200	< 0.00200	< 0.00200
,1,2-Trichloroethane	mg/L	< 0.00200	< 0.00200	< 0.00200
,1-Dichloropropene	mg/L	< 0.00200	< 0.00200	< 0.00200
,1-Dichloroethane	mg/L	< 0.00200	< 0.00200	< 0.00200
,1-Dichloroethene	mg/L	< 0.00200	< 0.00200	< 0.00200
,2,3-Trichlorobenzene	mg/L	< 0.00200	< 0.00200	< 0.00200
,2,3-Trichloropropane	mg/L	< 0.00200	< 0.00200	< 0.00200
,2,3-Trimethylbenzene	mg/L	< 0.00200	< 0.00200	< 0.00200
,2,4-Trichlorobenzene	mg/L	< 0.00200	< 0.00200	< 0.00200
,2,4-Trimethylbenzene	mg/L	< 0.00200	< 0.00200	0.00460
,2-Dibromo-3-chloropropane	mg/L	< 0.00500	< 0.00500	< 0.00500
,2-Dibromoethane	mg/L	< 0.00200	< 0.00200	< 0.00200
,2-Dichlorobenzene	mg/L	< 0.00200	< 0.00200	< 0.00200
,2-Dichloroethane	mg/L	< 0.00200	< 0.00200	< 0.00200
,2-Dichloropropane	mg/L	< 0.00200	< 0.00200	< 0.00200
,3,5-Trimethylbenzene ,3-Dichlorobenzene	mg/L	< 0.00200 < 0.00200	< 0.00200 < 0.00200	< 0.00200 < 0.00200
,3-Dichloropenzene ,3-Dichloropropane	mg/L mg/L	< 0.00200	< 0.00200	< 0.00200
,3-Dichlorobenzene	mg/L mg/L	< 0.00200	< 0.00200	< 0.00200
.4-Dioxane	mg/L mg/L	< 0.00200	< 0.0500	< 0.00200
2,2-Dichloropropane	mg/L mg/L	< 0.00200	< 0.00200	< 0.00200
2-Butanone	mg/L mg/L	0.0722	0.0648	0.0426
2-Chloroethyl vinyl ether	mg/L	< 0.00500	< 0.00500	< 0.00500
2-Chlorotoluene	mg/L	< 0.00200	< 0.00200	< 0.00200
2-Hexanone	mg/L	< 0.00500	< 0.00500	< 0.00500
2-Nitropropane	mg/L	< 0.00500	< 0.00500	< 0.00500
-Chlorotoluene	mg/L	< 0.00200	< 0.00200	< 0.00200
-Isopropyltoluene	mg/L	< 0.00200	< 0.00200	< 0.00200
-Methyl-2-pentanone	mg/L	< 0.00500	< 0.00500	< 0.00500
Acetone	mg/L	< 0.0100	< 0.0100	0.01040
Acetonitrile	mg/L	< 0.00500	< 0.00500	< 0.00500
Acrolein	mg/L	< 0.00500	< 0.00500	< 0.00500
Acrylonitrile	mg/L	< 0.0100	< 0.0100	< 0.0100
Allyl chloride	mg/L	< 0.00500	< 0.00500	< 0.00500
Benzene	mg/L	< 0.00100	< 0.00100	0.00516
Benzyl chloride	mg/L	< 0.00500	< 0.00500	< 0.00500
Bis(2-chloroisopropyl) ether	mg/L	< 0.00500	< 0.00500	< 0.00500
Bromobenzene	mg/L	< 0.00200	< 0.00200	< 0.00200
Bromochloromethane	mg/L	< 0.00200	< 0.00200	< 0.00200
Bromodichloromethane	mg/L	< 0.00200	< 0.00200	< 0.00200
Bromoform	mg/L	< 0.00200	< 0.00200	< 0.00200
Bromomethane	mg/L	< 0.00500	< 0.00500	< 0.00500
Butyl acetate Carbon disulfide	mg/L mg/L	< 0.00500 < 0.00200	< 0.00500 < 0.00200	< 0.00500 < 0.00200
Larbon disulfide	mg/L mg/L	< 0.00200	< 0.00200	< 0.00200
Chlorobenzene	mg/L mg/L	< 0.00200	< 0.00200	< 0.00200
Chloroethane	mg/L mg/L	< 0.00200	< 0.00200	< 0.00200
Chloroform	mg/L mg/L	< 0.00200	< 0.00200	< 0.00200
Chloromethane	mg/L	< 0.00200	< 0.00200	< 0.00300
Chloroprene	mg/L	< 0.00200	< 0.00200	< 0.00200
is-1,2-Dichloroethene	mg/L	< 0.00200	< 0.00200	< 0.00200
is-1,3-Dichloropropene	mg/L	< 0.00200	< 0.00200	< 0.00200
Cyclohexane	mg/L	< 0.00200	< 0.00200	< 0.00200
Cyclohexanone	mg/L	< 0.0500	< 0.0500	< 0.0500
Dibromochloromethane	mg/L	< 0.00200	< 0.00200	< 0.00200
Dibromomethane	mg/L	< 0.00200	< 0.00200	< 0.00200
Dichlorodifluoromethane	mg/L	< 0.00200	< 0.00200	< 0.00200
Ethyl acetate	mg/L	< 0.0100	< 0.0100	< 0.0100
Ethyl ether	mg/L	< 0.0100	< 0.0100	< 0.0100
Ethyl methacrylate	mg/L	< 0.00200	< 0.00200	< 0.00200
Ethylbenzene	mg/L	< 0.00200	< 0.00200	0.00761
Iexachlorobutadiene	mg/L	< 0.00200	< 0.00200	< 0.00200
odomethane	mg/L	< 0.00500	< 0.00500	< 0.00500
sobutyl alcohol	mg/L	< 0.100	< 0.100	< 0.100
sopropyl acetate	mg/L	< 0.0200	< 0.0200	< 0.0200
	mg/L	< 0.0250	< 0.0250	< 0.0250
sopropyl alcohol sopropylbenzene	mg/L mg/L	< 0.00200	< 0.00200	< 0.00200

Table 1 January 2012 Analytical Data

Analytical Result GC/MS Method 8260C/5030C [*]						
Compound	Units		Sample ID			
Compound	Units	1A,B+C	2A,B+C	3A,B+C		
Methacrylonitrile	mg/L	< 0.00500	< 0.00500	< 0.00500		
Methyl Acetate	mg/L	< 0.00500	< 0.00500	< 0.00500		
Methyl methacrylate	mg/L	< 0.00500	< 0.00500	< 0.00500		
Methyl tert-butyl ether	mg/L	< 0.00200	< 0.00200	< 0.00200		
Methylcyclohexane	mg/L	< 0.00200	< 0.00200	< 0.00200		
Methylene chloride	mg/L	< 0.00200	< 0.00200	< 0.00200		
n-Amyl acetate	mg/L	< 0.00200	< 0.00200	< 0.00200		
n-Butyl alcohol	mg/L	< 0.0500	< 0.0500	< 0.0500		
n-Butylbenzene	mg/L	< 0.00200	< 0.00200	< 0.00200		
n-Hexane	mg/L	< 0.00200	< 0.00200	< 0.00200		
n-Octane	mg/L	< 0.00200	< 0.00200	< 0.00200		
n-Propylbenzene	mg/L	< 0.00200	< 0.00200	< 0.00200		
Naphthalene	mg/L	< 0.00200	< 0.00200	< 0.00200		
o-Xylene	mg/L	< 0.00200	< 0.00200	0.01460		
Pentachloroethane	mg/L	< 0.00500	< 0.00500	< 0.00500		
Propionitrile	mg/L	< 0.0250	< 0.0250	< 0.0250		
Propyl	mg/L	< 0.00200	< 0.00200	< 0.00200		
sec-Butylbenzene	mg/L	< 0.00200	< 0.00200	< 0.00200		
Styrene	mg/L	< 0.00200	< 0.00200	< 0.00200		
tert-Butyl alcohol	mg/L	< 0.0200	< 0.0200	< 0.0200		
tert-Butylbenzene	mg/L	< 0.00200	< 0.00200	< 0.00200		
Tetrachloroethene	mg/L	< 0.00200	< 0.00200	0.00312		
Tetrahydrofuran	mg/L	< 0.00200	< 0.00200	< 0.00200		
Toluene	mg/L	< 0.00200	< 0.00200	0.05110		
trans-1,2-Dichloroethene	mg/L	< 0.00200	< 0.00200	< 0.00200		
trans-1,3-Dichloropropene	mg/L	< 0.00200	< 0.00200	< 0.00200		
trans-1,4-Dichloro-2-butene	mg/L	< 0.00200	< 0.00200	< 0.00200		
Trichloroethene	mg/L	< 0.00200	< 0.00200	< 0.00200		
Trichlorofluoromethane	mg/L	< 0.00200	< 0.00200	< 0.00200		
Vinyl acetate	mg/L	< 0.0100	< 0.0100	< 0.0100		
Vinyl chloride	mg/L	< 0.00100	< 0.00100	< 0.00100		
Xylenes, Total	mg/L	< 0.00200	0.00663	0.0528		
TPH (DRO)	mg/L	0.0308	0.0363	0.0429		
TPH (GRO)	mg/L	< 0.0200	0.0223	0.134		

Notes:

Bold indicates an exceedance of DWQ water quality standards.

< - Value is less than reporting limit.

* VOCs SPLP 1312 List by GC/MS Method 8260C/5030C

GC/MS - gas chromatography/mass spectrometry

mg/L - milligrams per Liter

SPLP - Synthetic Precipitation Leaching Procedure

TPH-DRO - total petroleum hydrocarbons, diesel range organics

TPH-GRO - total petroleum hydrocarbons, gasoline range organics

VOCs -volatile organic compounds

Table 2Utah Groundwater Quality Standards

Parameter	GWQS	Unit	Alternate Name
	Physical Characteristics		
pН	6.5 - 8.5	s.u.	
	Inorganic Chemicals		
Fluoride	4	mg/l	
Total Nitrate + Nitrite (both as N)	10	mg/l	
	Metals		
Antimony	0.006	mg/l	
Arsenic	0.05	mg/l	
Barium	2	mg/l	
Beryllium	0.004	mg/l	
Cadmium	0.005	mg/l	
Chromium (total)	0.1	mg/l	
Copper	1.3	mg/l	
Lead	0.015	mg/l	
Mercury (inorganic)	0.002	mg/l	
Selenium	0.05	mg/l	
Silver	0.1	mg/l	
Thallium	0.002	mg/l	
Zinc	5	mg/l	
	Organic Chemicals		
Dinoseb	0.007	mg/l	
Pentachlorophenol	0.001	mg/l	
1	Volatile Organic Chemicals	-	
Benzene	0.005	mg/l	
Benzo(a)pyrene (PAH)	0.0002	mg/l	
Carbon tetrachloride	0.005	mg/l	
Dichloroethane (1,2 -)	0.005	mg/l	1,2 Dichloroethane
Dichloroethylene (1,1 -)	0.007	mg/l	1,1-Dichloroethene
Dichloromethane	0.005	mg/l	methylene chloride
Di (2-ethylhexyl) adipate	0.4	mg/l	bis(2-ethylhexyl)adipate
Di (2-ethylhexyl) phthalate (PAE)	0.006	mg/l	Bis(2-ethylhexyl) phthalate
Dichlorobenzene (para -)	0.075	mg/l	1,4-Dichlorobenzene
Dichlorobenzene (o -)	0.6	mg/l	1,2-Dichlorobenzene
Dichloroethylene (cis - 1,2)	0.07	mg/l	cis-1,2-Dichloroethene
Dichloroethylene (trans - 1,2)	0.1	mg/l	trans-1,2-Dichloroethene
Dichloropropane (1,2 -)	0.005	mg/l	1,2-Dichloropropane
Ethylbenzene	0.7	mg/l	
Hexachlorobenzene	0.001	mg/l	
Hexachlorocyclopentadiene	0.05	mg/l	
Monochlorobenzene	0.1	mg/l	Chlorobenzene
Styrene	0.1	mg/l	
Tetrachloroethylene	0.005	mg/l	Tetrachloroethene
Toluene	1	mg/l	
Trichlorobenzene (1,2,4-)	0.07	mg/l	1,2,4-Trichlorobenzene
Trichloroethane (1,1,1-)	0.2	mg/l	1,1,1-Trichloroethane
Trichloroethane (1,1,2-)	0.005	mg/l	1,1,2-Trichloroethane
Trichloroethylene	0.005	mg/l	Trichloroethene
Vinyl chloride	0.002	mg/l	
Xylenes (Total)	10	mg/l	
		-	-

Notes:

GWQS - Groundwater Quality Standard mg/L - milligram per liter s.u. - standard units

Utah Department of Environmental Quality, Division of Water Quality (DWQ), 2014. Utah

Ground Water Quality Standards – Table 1 of R317-6-2.1. Last Updated June 17, 2014. http://www.waterquality.utah.gov/GroundWater/gwstandards.htm

Table 3Utah Initial Screening Levels

Compounds	Groundwater (mg/L)
Benzene	0.005
Toluene	1
Ethylbenzene	0.7
Xylenes	10
Naphthalene	0.7
Methyl t-butyl ether (MTBE)	0.2
Total Petroleum Hydrocarbons (TPH) as gasoline	1
Total Petroleum Hydrocarbons (TPH) as diesel	1
Oil and Grease or (TRPH)	10

Notes:

mg/L - milligram per liter

TRPH - Total Recoverable Petroleum Hydrocarbons

Table 4September 2012 Analytical Data

An	alytical Result S	PLP Metals Met	thod 1312		
				ple ID	
Compound	Units	U-001A	U-002A	U-003A	U-004A
Antimony	mg/L	< 0.00200	< 0.00200	< 0.00200	< 0.00200
Arsenic	mg/L	< 0.00200	< 0.00200	< 0.00200	< 0.00200
Barium	mg/L	0.0413	0.0401	0.0353	0.0266
Beryllium	mg/L	< 0.00200	< 0.00200	< 0.00200	< 0.00200
Boron	mg/L	< 0.500	< 0.500	< 0.500	< 0.500
Cadmium	mg/L	< 0.000500	< 0.000500	< 0.000500	0.000924
Calcium	mg/L	2.81	2.62	2.24	5.42
Chromium	mg/L	< 0.0100	< 0.0100	< 0.0100	< 0.0100
Copper	mg/L	< 0.00200	0.00302	0.00252	0.0176
Iron	mg/L	1.17	1.18	1.17	0.3
Lead	mg/L	< 0.0100	< 0.0100	< 0.0100	< 0.0100
Lithium	mg/L	<0.100 ~	<0.100 ~	<0.100 ~	<0.100 ~
Magnesium	mg/L	<1.00	<1.00	<1.00	<1.00
Manganese	mg/L	0.684	0.614	0.457	0.0669
Mercury	mg/L	< 0.00100	< 0.00100	< 0.00100	< 0.00100
Molybdenum	mg/L	< 0.0200	< 0.0200	< 0.0200	< 0.0200
Nickel	mg/L	0.0277	0.0283	0.0243	0.0309
Potassium	mg/L	<1.00	<1.00	<1.00	<1.00
Selenium	mg/L	< 0.00200	< 0.00200	< 0.00200	< 0.00200
Silver	mg/L	< 0.00200	< 0.00200	< 0.00200	< 0.00200
Sodium	mg/L	<1.00	1.24	1.5	1.48
Strontium	mg/L	< 0.0500	< 0.0500	< 0.0500	< 0.0500
Thallium	mg/L	< 0.00200	< 0.00200	< 0.00200	< 0.00200
Tin	mg/L	< 0.500	< 0.500	< 0.500	< 0.500
Vanadium	mg/L	< 0.0500	< 0.0500	< 0.0500	< 0.0500
Zinc	mg/L	< 0.100	< 0.100	< 0.100	0.306
		1	1	1	
Alkalinity (as CaCO ₃)	mg/L	<10.0	<10.0	<10.0	<10.0
Chloride	mg/L	<5.00	<5.00	< 5.00	< 5.00
Oil & Grease	mg/L	<3.00	<3.00	<3.00	<3.00
рН	s.u.	6.27	5.89	4.51	3.6
Sulfate	mg/L	11.2	9.03	7.95	22.1
Total Dissolved Solids	mg/L	14.0 #	14.0	20.0	46.0
Total Organic Carbon	mg/L	6.69 B	7.14 B	6.9 B	2.83 B
Total Recoverable Hydrocarbons	mg/L	<3.00	<3.00	<3.00	<3.00

Notes:

Bold indicates an exceedance of DWQ water quality standards.

< - Value is less than reporting limit.

~ - Result was not performed in accordance with National Environmental Laboratory Accreditation Program (NELAP) requirements

High relative percent difference (RPD) due to low analyte concentration. In this range high RPDs are expected.

µmhos/cm - micromhos per centimeter

B - This analyte was also detected in the SPLP method blank above the practical quantification limit (PQL) at 1.0056 mg/L. The batch method blank was below the PQL.

mg/L - milligram per liter

SPLP - Synthetic Precipitation Leaching Procedure

s.u. - standard unit

CaCO₃ - Calcium Carbonate

Analytical Result SPLP Metals Method 1312				
Compound	Units	Sample ID		
Compound	Units	U-004B		
Oil & Grease	mg/L	34,900 ³ H		
Total Recoverable Hydrocarbons	mg/L	13,400 H		

Notes:

Bold indicates an exceedance of DWQ water quality standards.

³ - Matrix spike recoveries and/or high RPDs indicate suspected sample non-homogeneity. The method is in control as indicated by the LCS.

H - Analysis requested by the client after the holding time expired.

mg/L - milligram per liter

SPLP - Synthetic Precipitation Leaching Procedure

Analytical Result							
Compound	Units		Samp	ole ID			
Compound	Units	U-001B	U-002B	U-003B	U-004B		
¹ Conductivity	µmhos/cm	169	179	223	332		
pH	s.u.	4.90 H	4.74 H	4.70 H	4.24 H		
¹ Sodium Absorption Ratio	SAR	0.0861	0.0947	0.104	0.222		

Notes:

Bold indicates an exceedance of DWQ water quality standards.

¹ Analysis performed on a 1:1 DI water extract for soils.

 $\mu mhos/cm$ - micromhos per centimeter

H - Sample was received outside of the holding time.

SAR - Sodium Absorption Ratio

s.u. - standard unit

Table 4September 2012 Analytical Data

Analytical Result GC/FID Method 8015D/3510C								
Commound	Units	Sample ID						
Compound	Umts	U-001A	U-002A	U-003A	U-004A			
Diesel Range Organics (DRO)	mg/L	0.676	0.755	0.832	1.4			

Notes:

mg/L - milligrams per Liter

GC/FID - gas chromatography/flame ionization detector

Analytical Result GC/MS Method 8260C/5030C*							
Compound	Units		Samj	mple ID			
Compound		U-001A	U-002A	U-003A	U-004A		
1,1,1,2-Tetrachloroethane	mg/L	< 0.00200	< 0.00200	< 0.00200	< 0.00200		
1,1,1-Trichloroethane	mg/L	< 0.00200	< 0.00200	< 0.00200	< 0.00200		
1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane	mg/L	< 0.00200	< 0.00200	< 0.00200	< 0.00200 < 0.00200		
1,1,2-Trichloroethane	mg/L mg/L	< 0.00200 < 0.00200	< 0.00200 < 0.00200	< 0.00200 < 0.00200	< 0.00200		
1,1-Dichloropropene	mg/L mg/L	< 0.00200	< 0.00200	< 0.00200	< 0.00200		
1,1-Dichloroethane	mg/L mg/L	< 0.00200	< 0.00200	< 0.00200	< 0.00200		
1,1-Dichloroethene	mg/L	< 0.00200	< 0.00200	< 0.00200	< 0.00200		
1,2,3-Trichlorobenzene	mg/L	< 0.00200	< 0.00200	< 0.00200	< 0.00200		
1,2,3-Trichloropropane	mg/L	< 0.00200	< 0.00200	< 0.00200	< 0.00200		
1,2,3-Trimethylbenzene	mg/L	< 0.00200	< 0.00200	0.00281	< 0.00200		
1,2,4-Trichlorobenzene	mg/L	< 0.00200	< 0.00200	< 0.00200	< 0.00200		
1,2,4-Trimethylbenzene	mg/L	< 0.00200	0.0175	0.00425	< 0.00200		
1,2-Dibromo-3-chloropropane	mg/L	< 0.00500	< 0.00500	< 0.00500	< 0.00500		
1,2-Dibromoethane	mg/L	< 0.00200	< 0.00200	< 0.00200	< 0.00200		
1,2-Dichlorobenzene	mg/L	< 0.00200	< 0.00200	< 0.00200	< 0.00200		
1,2-Dichloroethane	mg/L	< 0.00200	< 0.00200	< 0.00200	< 0.00200		
1,2-Dichloropropane	mg/L	< 0.00200	< 0.00200	< 0.00200	< 0.00200		
1,3,5-Trimethylbenzene	mg/L	< 0.00200	0.011	0.00245	< 0.00200		
1,3-Dichlorobenzene 1,3-Dichloropropane	mg/L mg/I	< 0.00200 < 0.00200	< 0.00200 < 0.00200	< 0.00200 < 0.00200	< 0.00200 < 0.00200		
1,3-Dichloropropane 1,4-Dichlorobenzene	mg/L mg/L	< 0.00200	< 0.00200	< 0.00200	< 0.00200		
1,4-Dioxane	mg/L mg/L	< 0.0500	< 0.0500	< 0.0500	< 0.00200		
2,2-Dichloropropane	mg/L	< 0.00200	< 0.00200	< 0.00200	< 0.00200		
2-Butanone	mg/L	0.0101	1.0101	0.0118	< 0.0100		
2-Chloroethyl vinyl ether	mg/L	< 0.00500	< 0.00500	< 0.00500	< 0.00500		
2-Chlorotoluene	mg/L	< 0.00200	< 0.00200	< 0.00200	< 0.00200		
2-Hexanone	mg/L	< 0.00500	< 0.00500	< 0.00500	< 0.00500		
2-Nitropropane	mg/L	< 0.00500	< 0.00500	< 0.00500	< 0.00500		
4-Chlorotoluene	mg/L	< 0.00200	< 0.00200	< 0.00200	< 0.00200		
4-Isopropyltoluene	mg/L	< 0.00200	< 0.00200	< 0.00200	< 0.00200		
4-Methyl-2-pentanone	mg/L	< 0.00500	< 0.00500	< 0.00500	< 0.00500		
Acetone	mg/L	< 0.0100	< 0.0100	< 0.0100	< 0.0100		
Acetonitrile	mg/L	< 0.00500	< 0.00500	< 0.00500	< 0.00500		
Acrolein	mg/L	< 0.00500	< 0.00500	< 0.00500	< 0.00500		
Acrylonitrile Allyl chloride	mg/L mg/L	< 0.0100 < 0.00500	< 0.0100 < 0.00500	< 0.0100 < 0.00500	< 0.0100 < 0.00500		
Benzene	mg/L mg/L	< 0.00100	< 0.00100	< 0.00100	< 0.00100		
Benzyl chloride	mg/L mg/L	< 0.00500	< 0.00500	< 0.00500	< 0.00500		
Bis(2-chloroisopropyl) ether	mg/L	< 0.00500	< 0.00500	< 0.00500	< 0.00500		
Bromobenzene	mg/L	< 0.00200	< 0.00200	< 0.00200	< 0.00200		
Bromochloromethane	mg/L	< 0.00200	< 0.00200	< 0.00200	< 0.00200		
Bromodichloromethane	mg/L	< 0.00200	< 0.00200	< 0.00200	< 0.00200		
Bromoform	mg/L	< 0.00200	< 0.00200	< 0.00200	< 0.00200		
Bromomethane	mg/L	< 0.00500	< 0.00500	< 0.00500	< 0.00500		
Butyl acetate	mg/L	< 0.00500	< 0.00500	< 0.00500	< 0.00500		
Carbon disulfide	mg/L	< 0.00200	< 0.00200	< 0.00200	< 0.00200		
Carbon tetrachloride	mg/L	< 0.00200	< 0.00200	< 0.00200	< 0.00200		
Chlorobenzene	mg/L	< 0.00200	< 0.00200	< 0.00200	< 0.00200		
Chloroethane	mg/L	< 0.00200	< 0.00200	< 0.00200	< 0.00200		
Chloroform	mg/L	< 0.00200	< 0.00200	< 0.00200	< 0.00200		
Chloromethane Chloroprene	mg/L mg/L	< 0.00300 < 0.00200	< 0.00300 < 0.00200	< 0.00300 < 0.00200	< 0.00300 < 0.00200		
cis-1,2-Dichloroethene	mg/L mg/L	< 0.00200	< 0.00200	< 0.00200	< 0.00200		
cis-1,3-Dichloropropene	mg/L mg/L	< 0.00200	< 0.00200	< 0.00200	< 0.00200		
Cyclohexane	mg/L mg/L	< 0.00200	< 0.00200	< 0.00200	< 0.00200		
Cyclohexanore	mg/L	< 0.0500	< 0.0500	< 0.0500	< 0.0500		
Dibromochloromethane	mg/L	< 0.00200	< 0.00200	< 0.00200	< 0.00200		
Dibromomethane	mg/L	< 0.00200	< 0.00200	< 0.00200	< 0.00200		
Dichlorodifluoromethane	mg/L	< 0.00200	< 0.00200	< 0.00200	< 0.00200		
Ethyl acetate	mg/L	< 0.0100	< 0.0100	< 0.0100	< 0.0100		
Ethyl ether	mg/L	< 0.0100	< 0.0100	< 0.0100	< 0.0100		
Ethyl methacrylate	mg/L	< 0.00200	< 0.00200	< 0.00200	< 0.00200		
Ethylbenzene	mg/L	< 0.00200	0.00209	< 0.00200	< 0.00200		
Hexachlorobutadiene	mg/L	< 0.00200	< 0.00200	< 0.00200	< 0.00200		
Iodomethane	mg/L	< 0.00500	< 0.00500	< 0.00500	< 0.00500		
Isobutyl alcohol	mg/L	< 0.100	< 0.100	< 0.100	< 0.100		
Isopropyl acetate	mg/L	< 0.0200	< 0.0200	< 0.0200	< 0.0200		

Table 4September 2012 Analytical Data

Ai	Analytical Result GC/MS Method 8260C/5030C*								
		Sample ID							
Compound	Units	U-001A	U-002A	U-003A	U-004A				
Isopropyl alcohol	mg/L	< 0.0250	< 0.0250	< 0.0250	< 0.0250				
Isopropylbenzene	mg/L	< 0.00200	< 0.00200	< 0.00200	< 0.00200				
m,p-Xylene	mg/L	< 0.00200	0.0156 B	< 0.00200	< 0.00200				
Methacrylonitrile	mg/L	< 0.00500	< 0.00500	< 0.00500	< 0.00500				
Methyl Acetate	mg/L	< 0.00500	< 0.00500	< 0.00500	< 0.00500				
Methyl methacrylate	mg/L	< 0.00500	< 0.00500	< 0.00500	< 0.00500				
Methyl tert-butyl ether	mg/L	< 0.00200	< 0.00200	< 0.00200	< 0.00200				
Methylcyclohexane	mg/L	< 0.00200	< 0.00200	< 0.00200	< 0.00200				
Methylene chloride	mg/L	0.00329 B	0.00327 B	0.00268 B	0.00304 B				
n-Amyl acetate	mg/L	< 0.00200	< 0.00200	< 0.00200	< 0.00200				
n-Butyl alcohol	mg/L	< 0.0500	< 0.0500	< 0.0500	< 0.0500				
n-Butylbenzene	mg/L	< 0.00200	< 0.00200	< 0.00200	< 0.00200				
n-Hexane	mg/L	0.0129	0.015	0.0138	< 0.00200				
n-Octane	mg/L	< 0.00200	< 0.00200	< 0.00200	< 0.00200				
n-Propylbenzene	mg/L	< 0.00200	< 0.00200	< 0.00200	< 0.00200				
Naphthalene	mg/L	< 0.00200	0.0035	0.00351	< 0.00200				
o-Xylene	mg/L	< 0.00200	0.00569	< 0.00200	< 0.00200				
Pentachloroethane	mg/L	< 0.00500	< 0.00500	< 0.00500	< 0.00500				
Propionitrile	mg/L	< 0.0250	< 0.0250	< 0.0250	< 0.0250				
Propyl acetate	mg/L	< 0.00200	< 0.00200	< 0.00200	< 0.00200				
sec-Butylbenzene	mg/L	< 0.00200	< 0.00200	< 0.00200	< 0.00200				
Styrene	mg/L	< 0.00200	< 0.00200	< 0.00200	< 0.00200				
tert-Butyl alcohol	mg/L	< 0.0200	< 0.0200	< 0.0200	< 0.0200				
tert-Butylbenzene	mg/L	< 0.00200	< 0.00200	< 0.00200	< 0.00200				
Tetrachloroethene	mg/L	< 0.00200	< 0.00200	< 0.00200	< 0.00200				
Tetrahydrofuran	mg/L	< 0.00200	< 0.00200	< 0.00200	< 0.00200				
Toluene	mg/L	< 0.00200	0.00466	< 0.00200	< 0.00200				
trans-1,2-Dichloroethene	mg/L	< 0.00200	< 0.00200	< 0.00200	< 0.00200				
trans-1,3-Dichloropropene	mg/L	< 0.00200	< 0.00200	< 0.00200	< 0.00200				
trans-1,4-Dichloro-2-butene	mg/L	< 0.00200	< 0.00200	< 0.00200	< 0.00200				
Trichloroethene	mg/L	< 0.00200	< 0.00200	< 0.00200	< 0.00200				
Trichlorofluoromethane	mg/L	< 0.00200	< 0.00200	< 0.00200	< 0.00200				
Vinyl acetate	mg/L	< 0.0100	< 0.0100	< 0.0100	< 0.0100				
Vinyl chloride	mg/L	< 0.00100	< 0.00100	< 0.00100	< 0.00100				
Xylenes, Total	mg/L	< 0.00200	0.0213 B	< 0.00200	< 0.00200				
TPH (DRO)	mg/L	< 0.0200	< 0.0200	< 0.0200	< 0.0200				
TPH (GRO)	mg/L	0.0971	0.190	0.162	< 0.0200				

Notes:

< - Value is less than reporting limit.

* VOCs SPLP 1312 List by GC/MS Method 8260C/5030C

B - This analyte was also detected in MB-SPLP-21377, which was a method blank

GC/MS - gas chromatography/mass spectrometry

mg/L - milligrams per Liter

SPLP - Synthetic Precipitation Leaching Procedure

TPH-DRO - total petroleum hydrocarbons, diesel range organics

TPH-GRO - total petroleum hydrocarbons, gasoline range organics

VOCs -volatile organic compounds

Jon Schulman JBR Environmental Consultants, Inc. 8160 So. Highland Dr. Ste A-4 Sandy, UT 84093 TEL: (801) 943-4144 RE: American Oil Sands

463 West 3600 South	Dear Jon Schulman:	Lab Set ID:	1209452				
Salt Lake City, UT 84115	American West Analytical Laboratories received 8 sample(s) on 9/26/2012 for the analyses presented in the following report.						
Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687	American West Analytical Laboratories (AWAL) Environmental Laboratory Association Conference and is state accredited in Colorado, Idaho, New M AWAL is also accredited by the American Analytic	ce (NELAC) Institute in Mexico, and Missouri. I	Utah and Texas; n addition,				
e-mail: awal@awal-labs.com	ISO IEC 17025:2005, Department of Defense (D	•	· · · ·				
web: www.awal-labs.com	the National Lead Laboratory Accreditation Progr performed in accordance to The NELAC Institute otherwise. Accreditation documents are available questions or concerns regarding this report please	ram (NLLAP). All anale and/or A2LA protocol e upon request. If you h	yses were s unless noted				
Kyle F. Gross	The abbreviation "Surr" found in organic reports	indicates a surrogate co	mound that is				
Laboratory Director	intentionally added by the laboratory to determine purging efficiency. The "Reporting Limit" found	e sample injection, extra	action, and/or				
Jose Rocha	practical quantitation limit (PQL). This is the min						
QA Officer	reported by the method referenced and the sample confused with any regulatory limit. Analytical re- figures for quality control and calculation purpose	e matrix. The reporting sults are reported to three	limit must not be				
	This is an addendum to a report originally issued	on 10/12/2012.					
	Thank You,						

Approved by:

Laboratory Director or designee

Contact: Jon Schulman

Client:JBR Environmental Consultants, Inc.Project:American Oil SandsLab Sample ID:1209452-008Client Sample ID:U-004BCollection Date:9/25/2012Received Date:9/26/20121100h

Analytical Results

463 West 3600 South Salt Lake City, UT 84115

1	Compound	Units	Date Prepared	Date Analyzee	d	Method Used	Reporting Limit	Analytical Result	Qual
5	Oil & Grease	mg/kg-dry		11/1/2012 12	221h]	E1664AMod.	602	34,900	зН
	Total Recoverable Petroleum Hydrocarbons	mg/kg-dry		11/2/2012 15	515h]	E1664A-SGT	602	13,400	Н

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

³ - Matrix spike recoveries and/or high RPDs indicate suspected sample non-homogeneity. The method is in control as indicated by the LCS. *H* - Analysis requested by the client after the holding time expired.

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

> > Report Date: 11/5/2012 Page 2 of 6

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. This report is provided for the exclusive use of the addresses of the rules of the rules of the rules of the rules and of science.

463 West 3600 South

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

Kyle F. Gross Laboratory Director

e-mail: awal@awal-labs.com, web: www.awal-labs.com

QC SUMMARY REPORT

Client:JBR Environmental Consultants, Inc.Contact:Jon SchulmanLab Set ID:1209452Dept:WCProject:American Oil SandsQC Type:LCS

Jose Rocha QA Officer

Sample ID	Analyte	Units	Method	Result	Amount Spiked	Original Amount	%REC	Limits	%RPD	RPD Limit	Qual	Date Analyzed
LCS-R46948	Oil & Grease	mg/kg	E1664AMod.	1,690	2,000	0	84.7	78-114				11/1/2012 1221h
LCS-R47002	Total Recoverable Petroleum Hydrocarbons	mg/kg	E1664A-SGT	690	1,000	0	69.0	64-132				11/2/2012 1515h

Report Date: 11/5/2012 Page 3 of 6

463 West 3600 South

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

QC SUMMARY REPORT

Contact:

Dept:

Jon Schulman

WC

QC Type: MBLK

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

Client:JBR Environmental Consultants, Inc.Lab Set ID:1209452Project:American Oil Sands

Sample ID	Analyte	Units	Method	Result	Amount Spiked	Original Amount	%REC	Limits	%RPD	RPD Limit	Qual	Date Analyzed
MB-R46948	Oil & Grease	mg/kg	E1664AMod.	< 150				-				11/1/2012 1221h
MB-R47002	Total Recoverable Petroleum Hydrocarbons	mg/kg	E1664A-SGT	< 150				-				11/2/2012 1515h

Report Date: 11/5/2012 Page 4 of 6

463 West 3600 South

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

Kyle F. Gross Laboratory Director

e-mail: awal@awal-labs.com, web: www.awal-labs.com

QC SUMMARY REPORT

Client:	JBR Environmental Consultants, Inc.	Contact:	Jon Schulman
Lab Set ID:	1209452	Dept:	WC
Project:	American Oil Sands	QC Type:	MS

Jose	Rocha
QA (Officer

Sample ID	Analyte	Units Meth	od Result	Amount Spiked	Original Amount	%REC	Limits	%RPD	RPD Limit	Qual	Date Analyzed
1209452-008AMS	Oil & Grease	mg/kg-dry E1664	AMod. 50,300	8,031	34,900	192	78-114			3	11/1/2012 1221h
1209452-008AMS	Total Recoverable Petroleum Hydrocarbons	mg/kg-dry E1664	A-SGT 16,400	4,016	13,430	74.0	64-132				11/2/2012 1515h

Analysis performed on an SPLP extract by method 1312.

³ - Matrix spike recoveries and/or high RPDs indicate suspected sample non-homogeneity. The method is in control as indicated by the LCS.

Report Date: 11/5/2012 Page 5 of 6

463 West 3600 South

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

Kyle F. Gross Laboratory Director

e-mail: awal@awal-labs.com, web: www.awal-labs.com

QC SUMMARY REPORT

Client:	JBR Environmental Consultants, Inc.	Contact:	Jon Schulman
Lab Set ID:	1209452	Dept:	WC
Project:	American Oil Sands	QC Type:	MSD

Jose	Rocha
QA	Officer

Sample ID	Analyte	Units M	lethod	Result	Amount Spiked	Original Amount	%REC	Limits	%RPD	RPD Limit	Qual	Date Analyzed
1209452-008AMSD	Oil & Grease	mg/kg-dry ^{E1}	1664AMod.	53,800	8,031	34,900	236	78-114	6.71	18	3	11/1/2012 1221h
1209452-008AMSD	Total Recoverable Petroleum Hydrocarbons	mg/kg-dry ^{E1}	1664A-SGT	17,600	4,016	13,430	105	64-132	7.31	34		11/2/2012 1515h

Analysis performed on an SPLP extract by method 1312.

³ - Matrix spike recoveries and/or high RPDs indicate suspected sample non-homogeneity. The method is in control as indicated by the LCS.

Report Date: 11/5/2012 Page 6 of 6

Americal	n West Analytical La	boratories		DB 10	BILZ			UL
WORK O	RDER Summary			to Samp	PH added	Work Orde		1209452
Client:	JBR Environmental Consultants,	Inc.				Page 1 of 4		10/31/2012
Client ID:	JBR400			n Schulman				
roject:	American Oil Sands		-	EVEL II		WO Type:		Standard
omments:	All analysis to be performed on t of hold. Email 3 people: John S of hold).;	he SPLP extract, for samples # chulman, Linda Matthews, and	41, #3, #5, #7. For sar 1 Will Gibbs. OGB &	nples #2, #4, #6, OGF added per	#8 run on a 1:1. Jon Schulman on	Footnote report, pF 10-31-12 (client is a	I rece aware	ived outside sample is out eh
ample ID	Client Sample ID	Collected Date	Received Date	Date Due	Matrix	Test Code	Sel	Storage
09452-001A	U-001A	9/25/2012 0945h	9/26/2012 1100h	11/7/2012	Leachate	1312LM-PR		SPLP 1
						1312ZHE-PR		SPLP
						3005A-SPLP-PR		SPLP
			· · · · · · · · · · · · · · · · · · ·			3510-TPH-PR		SPLP
				enere e constante e		6010C-SPLP	\checkmark	SPLP
	SEL Analytes: B CA CR FE LI M	G MO K NA SR SN V						
	SEL Analytes: SB AS BA BE CD	CUDD MN NI SE A C TL 7N				6020-SPLP	\checkmark	SPLP
	SEL Analytes: 5D A5 DA BE CD	CUTD MIN NI SE AG IL ZN	**** · · · · · · · · · · · · · · · · ·	·····		8015-W-TPH(1L)	\checkmark	SPLP
		······	· · · · · · · · · · · · · · · · · · ·			8260-W-SPLP		SPLP
						ALK-W-2320B		SPLP
	SEL Analytes: ALK							
						CL-W-4500CLE		SPLP
				· · · · · · · · · · · · · · · · · · ·		HG-SPLP-7470A		SPLP
						HG-SPLP-PR		SPLP
						OGB-W-1664A		SPLP
						OGF-W-1664SGT		SPLP
						PH-9040C		SPLP
	· · · · · · · · · · · · · · · · · · ·					SO4-W-4500SO4E		SPLP
						TDS-W-2540C		SPLP
						TOC-W-5310B		SPLP
)9452-002A	U-001B	·			Solid	COND-S-9050A		df / wc
		anna an				PH-9045D		df / wc
						SAR-S		df / wc
						SOIL-PR		df / wc
09452-003A	U-002A	9/25/2012 1055h			Leachate	1312LM-PR		SPLP
	· · · · · · · · · · · · · · · · · · ·					1312ZHE-PR		SPLP
				-		3005A-SPLP-PR		SPLP

WORK O Client:	RDER Summary JBR Environmental Consultants	s, Inc.				Work Order Page 2 of 4	r:	1209452 10/31/2012
Sample ID	Client Sample ID	Collected Date	Received Date	Date Due	Matrix	Test Code	Sel	Storage
1209452-003A	U-002A SEL Analytes: B CA CR FE LI 1	9/25/2012 1055h MG MO K NA SR SN V	9/26/2012 1100h	11/7/2012	Leachate	6010C-SPLP		SPLP
	SEL Analytes: SB AS BA BE CI	O CU PB MN NI SE AG TL ZN				6020-SPLP	\checkmark	SPLP
						8015-W-TPH(1L)	✓	SPLP
						8260-W-SPLP	\checkmark	SPLP
	SEL Analytes: ALK					ALK-W-2320B	✓	SPLP
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				CL-W-4500CLE		SPLP
						HG-SPLP-7470A		SPLP
	,					HG-SPLP-PR		SPLP
, (#1	· · · · · · · · · · · · · · · · · · ·					OGB-W-1664A		SPLP
		· · · · · · · · · · · · · · · · · · ·				OGF-W-1664SGT	$\overline{\Box}$	SPLP
	,	· · · · · · · · · · · · · · · · · · ·			,	PH-9040C	\Box	SPLP
						SO4-W-4500SO4E		SPLP
· ·· ·	· · · · · · · · · · · · · · · · · · ·					TDS-W-2540C		SPLP
						TOC-W-5310B		SPLP
1209452-004A	U-002B			· · · · · · · · · · · · · · · · · · ·	Solid	COND-S-9050A		df/wc
						PH-9045D		df / wc
						SAR-S		df/wc
	·····					SOIL-PR		df/wc
1209452-005A	U-003A	9/25/2012 1240h	· · ·		Leachate	1312LM-PR		SPLP
			· · · ·			1312ZHE-PR		SPLP
		······································				3005A-SPLP-PR		SPLP
						3510-TPH-PR		SPLP
	SEL Analytes: B CA CR FE LI	MG MO K NA SR SN V				6010C-SPLP	\checkmark	SPLP
	SEL Analytes: SB AS BA BE CI					6020-SPLP		SPLP
	· · · · · · · · · · · · · · · · · · ·				· ·	8015-W-TPH(1L)	✓	SPLP
- 100-01						8260-W-SPLP	\checkmark	SPLP
	SEL Analytes: ALK				· · · · · · · · · · · · · · · · · · ·	ALK-W-2320B	✓	SPLP
						CL-W-4500CLE		SPLP
						HG-SPLP-7470A		SPLP
					· · · · · · · · · · · · · · · · · · ·	HG-SPLP-PR		SPLP

Client:	RDER Summary JBR Environmental Consultants, Inc.					Work Order: Page 3 of 4	1209452 10/31/2012
Sample ID	Client Sample ID	Collected Date	Received Date	Date Due	Matrix		el Storage
209452-005A	U-003A	9/25/2012 1240h	9/26/2012 1100h	11/7/2012	Leachate	OGB-W-1664A	SPLP
		And the second				OGF-W-1664SGT	SPLP
						PH-9040C	SPLP
		· · ··································				SO4-W-4500SO4E	SPLP
		· · · · · · · · · · · · · · · · · · ·				TDS-W-2540C	SPLP
			· · · · · · · · · · · · · · · · · · ·			TOC-W-5310B	SPLP
.09452-006A	U-003B				Solid	COND-S-9050A	df/wc
						PH-9045D	df/wc
	······································	····				SAR-S	df/wc
				· · · · · · · · · · · · · · · · · · ·		SOIL-PR	df/wc
09452-007A	U-004A	9/25/2012			Leachate	1312LM-PR	SPLP
						1312ZHE-PR	SPLP
						3005A-SPLP-PR	SPLP
						3510-TPH-PR	SPLP
	м. на при на				,	6010C-SPLP	
	SEL Analytes: B CA CR FE LI MG MO K	NA SR SN V					1
	SEL Analytes: SB AS BA BE CD CU PB M	IN NI SE AG TL ZN				6020-SPLP	SPLP
						8015-W-TPH(1L)	SPLP
						8260-W-SPLP	SPLP
						ALK-W-2320B	SPLP
	SEL Analytes: ALK					CL-W-4500CLE	SPLP
						HG-SPLP-7470A	SPLP
						HG-SPLP-PR	SPLP
					······	OGB-W-1664A	SPLP
						OGF-W-1664SGT	SPLP
						PH-9040C	SPLP
						SO4-W-4500SO4E	SPLP
						TDS-W-2540C	SPLP
		· · · · · · · · · · · · · · · · · · ·				TOC-W-5310B	SPLP
09452-008A	U-004B				Solid	COND-S-9050A	df/wc
						OGB-S-1664A	df / wc
						OGF-S-1664SGT	df/wc
						PH-9045D	df / wc

WORK O	RDER Summary					Work Ore	der: 1209452
Client:	JBR Environmental Consultants, Inc.					Page 4 of	4 10/31/2012
Sample ID	Client Sample ID	Collected Date	Received Date	Date Due	Matrix	Test Code	Sel Storage
1209452-008A	U-004B	9/25/2012	9/26/2012 1100h	11/7/2012	Solid	PMOIST	df / wc
				· · · · · · · · · · · · · · · · · · ·		SAR-S	df / wc
						SOIL-PR	df / wc

НОК____ НОК___

HOK____

Client Am and (2:)	CI				112											
Client <u>American</u> Oil Address <u>City State</u> Phone <u>801-277-7888</u> Fax Contact <u>Will Gibbs</u> E-mail <u>Wgibbsa Ameri</u>	Jon Jon Schol	p Schul	han			4	A LAB 63 We	NALY ORA' est 36 ake Ci	841 TES	T LL S th Ah Fao 15 Em TS R	CU (801) (888) x (801)	LAIN JSTO 263-86 263-86 al@aw: RED	DY 86 86 87		Lab Sample Set # _ Page <i>Turn Around Time</i> 1 day 2 day 3 day QC LEVEL	of (Circle One)
Project Name Project Number/P.O.# Sampler Name K-G. m-G (A) K-G. m-G (A) K-G (A) K		-147-149-149-149-149-149-149-149-149-149-149	Date/ Coile		Matrix	Number of Containers (Total)	See attudued		AHAN 201201	€= Historian					1 2 * 2+ 3 3+ 4 COMMENTS	SAMPLES WERE: 1 Shipped or hand delin Notes: Fee(X 2 Ambient or Chilled Notes: 3 Temperature <u>2.9</u> 4 Received Broken/Lea
*1 U-001A?)		Septes	9:45	Ι	\square	1			\square			\mathbf{t}			(Improperly Sealed).
2 U-001B	1		۴	9:45		Π		T								Notes:
3 U-002A)			Le	10:55			T						\uparrow		an a	5 Preperty Preserved
4 U-002B5	1		L.	12.55		Π	T									Checked at Bench
5 U-003A7	- Voneseren er	•	~	12:40	Ι	\square		T					\mathbf{T}			- Notes:
6 U-003B5	1		×	12:40												
7 U-004Al			Sept 2:	5	Ι	\square										6 Received Within
8 U-004B)	г		Sept25		Ι	Π			X	\square			\mathbf{t}	$\neg \uparrow$		Holding Times Y Notes:
																pH rec. outside
																COC Tape Was: :
																1 Present on Outer
Relinquished By Signature	Date Feat 25	Received B	y: Signature		******		Date	*	Spe	cial I	nstruc	tions:				Package Y N (
PRINT NAME K.G. MEGinnis	Time 2:30,0	PRINT NAM	ИE		>	$ \leq$	Time		-	me	ta [j	113	ŦĤ	wa	providus sch:	2 Unbroken on Outer
Relinquished By: Signature	Date	-	y. Signature	$ \prec$			Date				45 , k	3. Be	i,Be	<u>, </u>	d, Cr, Cu, Fe,	Package Y N (
PRINT NAME	Time	PRINT NAL				*****				51	i.	<u>pb r</u>		$\frac{m}{2n}$	0, Ni, 56, 5e,	Y N 3 Present on Sample
			*****		•		Time			tills	1	<u>, , v</u>	1	-1_	along with	Y N
Relinquished By: Signature	Date	Received B	y: Signature				Date			. رو نی منبینه	.el					4 Unbroken on Sample
PRINT NAME	Time	PRINTNAM	<i>N</i> E	-	· · · ·		Time					\	·····			
Relinquished By: Signature	Date	Received	y; Signature/	$\neq =$						Per	- Jon	<u>) Sel</u>	<u>hulr</u>	na	2. 10/5/12 Mt	Discrepancies Between Sample Labels and COC
PRINT NAME		CEC	hu of	1 2,		×	9- 2	26-1	F	<u>clî</u>	ou l	.ie		~ `	CA . NOA >	Record? Y (N
· · ······	Time	PRINTINA	ne +	and-	1	6	Time 1/0	NI.		<u>الا الا</u>	ICNY	517	alla	ava	3 ID3112	Notes:

Parameters for Tailings Analyses

These are the analyses required for the tailings samples:

1) Use the Synthetic Precipitation Leachate Procedure (SPLP) extraction (EPA Method SW-846 1312)

The leachate must be analyzed for the following:

- Residual solvents used in the bitumen extraction process (the actual, proprietary solvent that you will use or the closest available proxy),
- Benzene, toluene, ethylbenzene, xylenes, naphthalene (BTEXN),----
- Volatile organic compounds (VOCs),
- Hazardous air pollutants (HAPs),
- Oil and grease,
- Total petroleum hydrocarbon-diesel range (TPH-DRO),
- Total petroleum hydrocarbon-gasoline range (TPH-GRO), ✓
- Total recoverable petroleum hydrocarbon (TRPH),
- Total organic carbon (TOC),
- Total dissolved solids (TDS),
- pH,
- Metals, and from previous set (1201439)
- Major ions (Na, Ca, K, Mg, Cl, SO₄, alkalinity).

2) Use either a saturated paste extract or a 1:1 (liquid:solid) extract: the extract should be analyzed for pH, conductivity and SAR.

Laboratory minimum detection limits must be equal to or less than Utah ground water standards or other applicable standards to enable meaningful comparisons with the laboratory analytical results. Some of these are for groundwater permitting, others are for air quality permitting, and others are for the engineers.

3) In addition to these chemical characteristics, Mine Engineers need to have physical tests performed. Eldon has a lab he uses in Cheyenne that he uses for these, so please send a five-gallon bucket or two of tailings sample to him. Those tests include the following:

Relative Density (ASTM D253 & D4254) Direct Shear (ASTM D3080) Sieve Analysis (ASTM C136 & C117) Proctored Density

William Gibbs American Sands Energy Corp.

TEL: (801) 277-7888

RE: Green River Resources

Dear William Gibbs

Lab Set ID: 1201439

463 West 3600 South Salt Lake City, UT 84115

American West Analytical Laboratories received 3 sample(s) on 1/31/2012 for the analyses presented in the following report.

All analyses were performed in accordance to The NELAC Institute protocols unless noted otherwise. American West Analytical Laboratories is accredited by The NELAC

Institute in Utah and Texas; and is state accredited in Colorado, Idaho, and Missouri.

The abbreviation "Surr" found in organic reports indicates a surrogate compound that is intentionally added by the laboratory to determine sample injection, extraction, and/or

Accreditation documents are available upon request. If you have any questions or

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha Thank You, **OA** Officer

purging efficiency. The "Reporting Limit" found on the report is equivalent to the practical quantitation limit (PQL). This is the minimum concentration that can be reported by the method referenced and the sample matrix. The reporting limit must not be confused with any regulatory limit. Analytical results are reported to three significant figures for quality control and calculation purposes.

concerns regarding this report please feel free to call.

Laboratory Director or designee

Report Date: 2/13/2012 Page 1 of 34

Client:American Sands Energy Corp.Project:Green River ResourcesLab Sample ID:1201439-001Client Sample ID:1A,B+CCollection Date:1/30/20121400hReceived Date:1/31/20121010h

Contact: William Gibbs

Analytical Results

SPLP METALS Method 1312

	SPLP Prep Date:	2/1/2012 1840h	Dat	ta	Dat		Method	Reporting	Analytical	
463 West 3600 South	Compound	Units	Prepa		Analy		Used	Limit	Result	Qual
Salt Lake City, UT 84115	Antimony	mg/L	2/7/2012	230h	2/8/2012	1804h	SW6020A	0.00100	< 0.00100	
	Arsenic	mg/L	2/7/2012	230h	2/8/2012	1804h	SW6020A	0.000600	0.00106	
	Barium	ıng/L	2/7/2012	230h	2/8/2012	1804h	SW6020A	0.000400	0.0120	
Phone: (801) 263-8686	Beryllium	mg/L	2/7/2012	230h	2/8/2012	1804h	SW6020A	0.000600	< 0.000600	
Toll Free: (888) 263-8686	Boron	mg/L	2/7/2012	230h	2/9/2012	1554h	SW6010C	0.500	< 0.500	
Fax: (801) 263-8687	Cadmium	mg/L	2/7/2012	230h	2/8/2012	1804h	SW6020A	0.000180	< 0.000180	
e-mail: awal@awal-labs.com	Calcium	mg/L	2/7/2012	230h	2/9/2012	1554h	SW6010C	1.00	1.27	
	Chromium	mg/L	2/7/2012	230h	2/9/2012	1554h	SW6010C	0.0100	< 0.0100	
web: www.awal-labs.com	Copper	mg/L	2/7/2012	230h	2/8/2012	1804h	SW6020A	0.000800	0.00161	
	Iron	mg/L	2/7/2012	230h	2/9/2012	1554h	SW6010C	0.100	0.782	
Kyle F. Gross	Lead	mg/L	2/7/2012	230h	2/8/2012	1804h	SW6020A	0.000400	0.000710	
Laboratory Director	Lithium	mg/L	2/7/2012	230h	2/9/2012	1559h	SW6010C	0.100	< 0.100	2
Laboratory Director	Magnesium	mg/L	2/7/2012	230h	2/9/2012	1554h	SW6010C	1.00	< 1.00	
Jose Rocha	Manganese	mg/L	2/7/2012	230h	2/8/2012	1804h	SW6020A	0.00120	0.216	
QA Officer	Mercury	mg/L	2/6/2012	1530h	2/7/2012	845b	SW7470A	0.0100	< 0.0100	*
	Molybdenum	mg/L	2/7/2012	230h	2/9/2012	1554h	SW6010C	0.0200	< 0.0200	
	Nickel	mg/L	2/7/2012	230h	2/8/2012	1804h	SW6020A	0.000800	0.00336	
	Potassium	mg/L	2/7/2012	230h	2/9/2012	1554h	SW6010C	1.00	< 1.00	
	Selenium	mg/L	2/7/2012	230h	2/8/2012	1804h	SW6020A	0.000800	< 0.000800	
	Silver	mg/L	2/7/2012	230h	2/8/2012	1804h	SW6020A	0.000400	< 0.000400	
	Sodium	mg/L	2/7/2012	230h	2/9/2012	l554h	SW6010C	1.00	1.07	
	Strontium	ing/L	2/7/2012	230h	2/9/2012	1554h	SW6010C	0.0500	< 0.0500	
	Thallium	mg/L	2/7/2012	230h	2/8/2012	1804h	SW6020A	0.000400	< 0.000400	
	Tin	mg/L	2/7/2012	230h	2/9/2012	1554h	SW6010C	0.500	< 0.500	
	Vanadium	mg/L	2/7/2012	230h	2/9/2012	1554h	SW6010C	0.0500	< 0.0500	
	Zinc	mg/L	2/7/2012	230h	2/8/2012	1804h	SW6020A	0.00500	0.0245	

* - The reporting limits were raised due to sample matrix interferences.

~ - The above result was not performed in accordance with NELAP requirements.

Report Date: 2/13/2012 Page 2 of 34

American Sands Energy Corp. **Project:** Green River Resources 1201439-002 Lab Sample ID: Client Sample ID: 2A,B+C **Collection Date:** 1/30/2012 1400h **Received Date:** 1/31/2012 1010h

Contact: William Gibbs

Analytical Results

Client:

SPLP METALS Method 1312

	SPLP Prep Date:		Date	Date		Method	Reporting	Analytical	0
463 West 3600 South	Compound	Units	Prepared	Analyz	ed	Used	Limit	Result	Qual
Salt Lake City, UT 84115	Antimony	mg/L	2/7/2012 230h	2/8/2012	1838h	SW6020A	0.00100	< 0.00100	
	Arsenic	mg/L	2/7/2012 230h	2/8/2012	1838h	SW6020A	0.000600	0.00146	
	Barium	mg/L	2/7/2012 230h	2/8/2012	1838h	SW6020A	0.000400	0.0124	
Phone: (801) 263-8686	Beryllium	mg/L	2/7/2012 230h	2/8/2012	1838h	SW6020A	0.000600	< 0.000600	
Toll Free: (888) 263-8686	Boron	mg/L	2/7/2012 230h	2/9/2012	1611h	SW6010C	0.500	< 0.500	
Fax: (801) 263-8687	Cadmium	mg/L	2/7/2012 230h	2/8/2012	1838h	SW6020A	0.000180	< 0.000180	
e-mail: awal@awal-labs.com	Calcium	mg/L	2/7/2012 230h	2/9/2012	1611h	SW6010C	1.00	1.31	
	Chromium	mg/L	2/7/2012 230h	2/9/2012	1611h	SW6010C	0.0100	< 0.0100	
web: www.awal-labs.com	Copper	mg/L	2/7/2012 230h	2/8/2012	1838h	SW6020A	0.000800	0.00130	
	Iron	mg/L	2/7/2012 230h	2/9/2012	1611h	SW6010C	0.100	1.20	
Kyle F. Gross	Lead	mg/L	2/7/2012 230h	2/8/2012	1838h	SW6020A	0.000400	0.000846	
Laboratory Director	Lithium	mg/L	2/7/2012 230h	2/9/2012	1601h	SW6010C	0.100	< 0.100	22
Laboratory Director	Magnesium	mg/L	2/7/2012 230h	2/9/2012	1611h	SW6010C	1.00	< 1.00	
Jose Rocha	Manganese	mg/L	2/7/2012 230h	2/8/2012	1838h	SW6020A	0.00120	0.243	
QA Officer	Mercury	mg/L	2/6/2012 1530h	2/7/2012	853h	SW7470A	0.0100	< 0.0100	*
	Molybdenum	mg/L	2/7/2012 230h	2/9/2012	1611h	SW6010C	0.0200	< 0.0200	
	Nickel	mg/L	2/7/2012 230h	2/8/2012	1838h	SW6020A	0.000800	0.00364	
	Potassium	mg/L	2/7/2012 230h	2/9/2012	1611h	SW6010C	1.00	< 1.00	
	Selenium	mg/L	2/7/2012 230h	2/8/2012	1838h	SW6020A	0.000800	0.00105	
	Silver	mg/L	2/7/2012 230h	2/8/2012	1838h	SW6020A	0.000400	< 0.000400	
	Sodium	ing/L	2/7/2012 230h	2/9/2012	1611h	SW6010C	1.00	< 1.00	
	Strontium	mg/L	2/7/2012 230h	2/9/2012	1611h	SW6010C	0.0500	< 0.0500	
	Thallium	mg/L	2/7/2012 230h	2/8/2012	1838h	SW6020A	0.000400	0.000692	
	Tin	mg/L	2/7/2012 230h	2/9/2012	1611h	SW6010C	0.500	< 0.500	
	Vanadium	mg/L	2/7/2012 230h	2/9/2012	1611h	SW6010C	0.0500	< 0.0500	
	Zinc	ıng/L	2/7/2012 230h	2/8/2012	1838h	SW6020A	0.00500	0.0210	

* - The reporting limits were raised due to sample matrix interferences.

~ - The above result was not performed in accordance with NELAP requirements.

Report Date: 2/13/2012 Page 3 of 34

Client:American Sands Energy Corp.Project:Green River ResourcesLab Sample ID:1201439-003Client Sample ID:3A,B+CCollection Date:1/30/20121400hReceived Date:1/31/20121010h

Contact: William Gibbs

Analytical Results SPLP Prep Date: SPLP METALS Method 1312

463 West 3600 South	SPLP Prep Date: Compound	2/1/2012 1840h Units	Date Prepareo	Da I Anal		Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84115	Antimony	mg/L	2/7/2012 230	h 2/8/2012	1845h	SW6020A	0.00100	< 0.00100	
	Arsenic	ing/L	2/7/2012 230	h 2/8/2012	1845h	SW6020A	0.000600	0.00135	
	Barium	ıng/L	2/7/2012 230	h 2/8/2012	1845h	SW6020A	0.000400	0.0142	
Phone: (801) 263-8686	Beryllium	mg/L	2/7/2012 230	h 2/8/2012	1845h	SW6020A	0.000600	< 0.000600	
Toll Free: (888) 263-8686	Boron	mg/L	2/7/2012 230	h 2/9/2012	1615h	SW6010C	0.500	< 0.500	
Fax: (801) 263-8687	Cadmium	mg/L	2/7/2012 230	h 2/8/2012	1845h	SW6020A	0.000180	< 0.000180	
e-mail: awal@awal-labs.com	Calcium	mg/L	2/7/2012 230	h 2/9/2012	1615h	SW6010C	1.00	1.86	
	Chromium	mg/L	2/7/2012 230	h 2/9/2012	1615h	SW6010C	0.0100	< 0.0100	
web: www.awal-labs.com	Copper	ing/L	2/7/2012 230	h 2/8/2012	1845h	SW6020A	0.000800	0.00134	
	Iron	mg/L	2/7/2012 230	h 2/9/2012	1615h	SW6010C	0.100	1.10	
Kyle F. Gross	Lead	mg/L	2/7/2012 230	n 2/8/2012	1845h	SW6020A	0.000400	0.000676	
Laboratory Director	Lithium	mg/L	2/7/2012 230	1 2/9/2012	1604h	SW6010C	0.100	< 0.100	1
Laboratory Director	Magnesium	mg/L	2/7/2012 230	n 2/9/2012	1615h	SW6010C	1.00	< 1.00	
Jose Rocha	Manganese	mg/L	2/7/2012 230	n 2/8/2012	1845h	SW6020A	0.00120	0.366	
QA Officer	Mercury	mg/L	2/6/2012 1530	h 2/7/2012	854h	SW7470A	0.0100	< 0.0100	*
	Molybdenum	mg/L	2/7/2012 230	n 2/9/2012	1615h	SW6010C	0.0200	< 0.0200	
	Nickel	mg/L	2/7/2012 230	n 2/8/2012	1845h	SW6020A	0.000800	0.00449	
	Potassium	mg/L	2/7/2012 230	n 2/9/2012	1615h	SW6010C	1.00	< 1.00	
	Selenium	ing/L	2/7/2012 230	2/8/2012	1845h	SW6020A	0.000800	< 0.000800	
	Silver	mg/L	2/7/2012 230	2/8/2012	1845h	SW6020A	0.000400	< 0.000400	
	Sodium	mg/L	2/7/2012 230	2/9/2012	1615h	SW6010C	1.00	< 1.00	
	Strontium	mg/L	2/7/2012 230	n 2/9/2012	1615h	SW6010C	0.0500	< 0.0500	
	Thallium	mg/L	2/7/2012 230	2/8/2012	1845h	SW6020A	0.000400	< 0.000400	
	Tin	mg/L	2/7/2012 230	2/9/2012	1615h	SW6010C	0.500	< 0.500	
	Vanadium	mg/L	2/7/2012 230	2/9/2012	1615h	SW6010C	0.0500	< 0.0500	
	Zinc	mg/L	2/7/2012 230	2/8/2012	1845h	SW6020A	0.00500	0.0156	

* - The reporting limits were raised due to sample matrix interferences.

~ - The above result was not performed in accordance with NELAP requirements.

Report Date: 2/13/2012 Page 4 of 34

American Sands Energy Corp. Green River Resources Lab Sample ID: 1201439-001 Client Sample ID: 1A,B+C **Collection Date:** 1/30/2012 1400h **Received Date:** 1/31/2012 1010h

Contact: William Gibbs

Qual

Analytical Results

Client:

Project:

463 West 3600 South	Compound	Units	Date Prepared	Date Analy	-	Method Used	Reporting Limit	Analytical Result	(
Salt Lake City, UT 84115	Alkalinity (as CaCO3)	mg/L		2/3/2012	1100h	SM2320B	10.0	14.6	
	Chloride	mg/L		2/10/2012	1143h	E300.0	0.100	< 0.100	
	Fluoride	mg/L		2/10/2012	1143h	E300.0	0.100	< 0.100	
Phone: (801) 263-8686	Nitrate/Nitrite (as N)	mg/L		2/2/2012	1703h	E353.2	0.0100	0.0419	
Toll Free: (888) 263-8686	Oil & Grease	mg/L		2/6/2012	1425h	E1664A	3.00	3.07	
Fax: (801) 263-8687	рН @ 25° С	pH Units		2/2/2012	1600h	SM4500-H+B	1.00	9.42	
e-mail: awal@awal-labs.com	Sulfate	mg/L		2/10/2012	1143h	E300.0	0.750	2.63	
	Total Dissolved Solids	mg/L		2/3/2012	1330h	SM2540C	20.0	< 20.0	
web: www.awal-labs.com	Total Organic Carbon	mg/L		2/5/2012	2048h	SM5310B	1.00	3.96	

Analysis performed on an SPLP extract.

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

> > Report Date: 2/13/2012 Page 5 of 34

Date

Analyzed

1100h

1207h

1207h

1704h

1425h

1207h

1330h

2110h

2/3/2012

2/10/2012

2/10/2012

2/2/2012

2/6/2012

2/2/2012

2/10/2012

2/3/2012

2/5/2012

Method

Used

SM2320B

E300.0

E300.0

E353.2

E1664A

E300,0

SM2540C

SM5310B

1600h SM4500-H+B

American Sands Energy Corp. **Project:** Green River Resources Lab Sample ID: 1201439-002 Client Sample ID: 2A,B+C **Collection Date:** 1/30/2012 1400h **Received Date:** 1/31/2012 1010h

Units

mg/L

ıng/L

ing/L

mg/L

mg/L

pH Units

mg/L

mg/L

mg/L

Date

Prepared

Contact: William Gibbs

Reporting

Limit

10.0

0.100

0.100

0.0100

3.00

1.00

0.750

20.0

1.00

Analytical

Result

13.7

< 0.100

< 0.100

0.0407

4.39

9.42

2.68

< 20.0

4.58

Qual

Analytical Results

Alkalinity (as CaCO3)

Nitrate/Nitrite (as N)

Total Dissolved Solids

Total Organic Carbon

Compound

Chloride

Fluoride

Oil & Grease

pH @ 25° C

Sulfate

Client:

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Analysis performed on an SPLP extract.

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

> > Report Date: 2/13/2012 Page 6 of 34

Client: American Sands Energy Corp. Green River Resources **Project:** 1201439-003 Lab Sample ID: Client Sample ID: 3A,B+C **Collection Date:** 1/30/2012 1400h **Received Date:** 1/31/2012 1010h

Contact: William Gibbs

Analytical Results

463 West 3600 South	Compound	Units	Date Prepared	Dat Analy		Method Used	Reporting Limit	Analytical Result	Qual
Salt Lake City, UT 84115	Alkalinity (as CaCO3)	mg/L		2/3/2012	1100h	SM2320B	10.0	10.9	
	Chloride	mg/L		2/10/2012	1229h	E300.0	0.100	< 0.100	
	Fluoride	mg/L		2/10/2012	1229h	E300.0	0.100	< 0.100	
Phone: (801) 263-8686	Nitrate/Nitrite (as N)	mg/L		2/2/2012	1706h	E353.2	0.0100	0.0422	
Toll Free: (888) 263-8686	Oil & Grease	mg/L		2/6/2012	1425h	E1664A	3.00	3.69	
Fax: (801) 263-8687	рН @ 25° С	pH Units		2/2/2012	1600h	SM4500-H+B	1.00	9.35	
e-mail: awal@awal-labs.com	Sulfate	mg/L		2/10/2012	1229h	E300.0	0.750	3.13	
	Total Dissolved Solids	mg/L		2/3/2012	1330h	SM2540C	20.0	< 20.0	
web: www.awal-labs.com	Total Organic Carbon	mg/L		2/5/2012	2131h	SM5310B	1.00	4.51	

Analysis performed on an SPLP extract.

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

2/3/2012 1025h

Extracted:

Client: American Sands Energy Corp. **Project:** Green River Resources 1201439-001B Lab Sample ID: Client Sample ID: 1A,B+C **Collection Date:** 1/30/2012 1400h **Received Date:** 1/31/2012 1010h

Contact: William Gibbs

Method: SW8270D

SPLP Prep Date:

Analytical Results

Analyzed: 2/7/2012 1351h

SVOA SPLP by GC/MS Method 8270D/1312/3510C

2/1/2012 1840h

463 West 3600 Salt Lake City, UT

Phone: (801) 26 Toll Free: (888) 26 Fax: (801) 26 e-mail: awal@awal-la

web: www.awal-la

Kyle F Laboratory D

> Jose QA

Units: mg/L	Dilution Factor: 1			
Compound	CAS Number	Reporting Limit	Analytical Result	Qua
1,1'-Biphenyl	92-52-4	0.0100	< 0.0100	
1,2,4,5-Tetrachlorobenzene	95-94-3	0.0100	< 0.0100	
1,2,4-Trichlorobenzene	120-82-1	0.0100	< 0.0100	
1,2-Dichlorobenzene	95-50-1	0.0100	< 0.0100	
1,3,5-Trinitrobenzene	99-35-4	0.0100	< 0.0100	
1,4-Naphthoquinone	130-15-4	0.0100	< 0.0100	
1,3-Dichlorobenzene	541-73-1	0.0100	< 0.0100	
1,3-Dinitrobenzene	99-65-0	0.0100	< 0.0100	
1,4-Dichlorobenzene	106-46-7	0.0100	< 0.0100	
1,4-Phenylenediamine	106-50-3	0.0100	< 0.0100	
1-Chloronaphthalene	90-13-1	0.0100	< 0.0100	
1-Methylnaphthalene	90-12-0	0.0100	< 0.0100	
1-Naphthylamine	134-32-7	0.0100	< 0.0100	
2,3,4,6-Tetrachlorophenol	58-90-2	0.0100	< 0.0100	
2,4,5-Trichlorophenol	95-95-4	0.0100	< 0.0100	
2,4,6-Trichlorophenol	88-06-2	0.0100	< 0.0100	
2,4-Dichlorophenol	120-83-2	0.0100	< 0.0100	
2,4-Dimethylphenol	105-67-9	0.0100	< 0.0100	
2,4-Dinitrophenol	51-28-5	0.0100	< 0.0100	
2,4-Dinitrotoluene	121-14-2	0.0100	< 0.0100	
2,6-Dichlorophenol	87-65-0	0.0100	< 0.0100	
2,6-Dinitrotoluene	606-20-2	0.0100	< 0.0100	
2-Acetylaminofluorene	53-96-3	0.0100	< 0.0100	
2-Chloronaphthalene	91-58-7	0.0100	< 0.0100	
2-Chlorophenol	95-57-8	0.0100	< 0.0100	
2-Methylnaphthalene	91-57-6	0.0100	< 0.0100	
2-Methylphenol	95-48-7	0.0100	< 0.0100	
2-Naphthylamine	91-59-8	0.0100	< 0.0100	
2-Nitroaniline	88-74-4	0.0100	< 0.0100	

Report Date: 2/13/2012 Page 8 of 34

Lab Sample ID: 1201439-001B Client Sample ID: 1A,B+C

Analyzed: 2/7/2012 1351h

Units: mg/L

Extracted: 2/3/2012 1025h **Dilution Factor:** 1

2/1/2012 1840h

SPLP Prep Date:

100	Units: mg/L Dilution	Factor: 1		
American West	Compound	CAS Number	Reporting Limit	Analytical Result Qual
	2-Nitrophenol	88-75-5	0.0100	< 0.0100
	2-Picoline	109-06-8	0.0100	< 0.0100
	3&4-Methylphenol		0.0100	< 0.0100
	3,3'-Dichlorobenzidine	91-94-1	0.0100	< 0.0100
463 West 3600 South	3,3'-Dimethylbenzidine	119-93-7	0.0100	< 0.0100
Salt Lake City, UT 84115	3-Methylcholanthrene	56-49-5	0.0100	< 0.0100
	3-Nitroaniline	99-09-2	0.0100	< 0.0100
	4,6-Dinitro-2-methylphenol	534-52-1	0.0100	< 0.0100
Phone: (801) 263-8686	4-Aminobiphenyl	92-67-1	0.0100	< 0.0100
Toll Free: (888) 263-8686	4-Bromophenyl phenyl ether	101-55-3	0.0100	< 0.0100
Fax: (801) 263-8687	4-Chloro-3-methylphenol	59-50-7	0.0100	< 0.0100
-mail: awal@awal-labs.com	4-Chloroaniline	106-47-8	0.0100	< 0.0100
	4-Chlorophenyl phenyl ether	7005-72-3	0.0100	< 0.0100
web: www.awal-labs.com	4-Nitroaniline	100-01-6	0.0100	< 0.0100
	4-Nitrophenol	100-02-7	0.0100	< 0.0100
	5-Nitro-o-toluidine	99-55-8	0.0100	< 0.0100
Kyle F. Gross	7,12-Dimethylbenz(a)anthracene	57-97-6	0.0100	< 0.0100
Laboratory Director	a,a-Dimethylphenethylamine	122-09-8	0.0100	< 0.0100
	Acenaphthene	83-32-9	0.0100	< 0.0100
Jose Rocha	Acenaphthylene	208-96-8	0.0100	< 0.0100
QA Officer	Acetophenone	98-86-2	0.0100	< 0.0100
	alpha-Terpineol	98-55-5	0.0100	< 0.0100
	Aniline	62-53-3	0.0100	< 0.0100
	Anthracene	120-12-7	0.0100	< 0.0100
	Aramite	140-57-8	0.0100	< 0.0100
	Azobenzene	103-33-3	0.0100	< 0.0100
	Benz(a)anthracene	56-55-3	0.0100	< 0.0100
	Benzidine	92-87-5	0.0100	< 0.0100
	Benzo(a)pyrene	50-32-8	0.0100	< 0.0100
	Benzo(b)fluoranthene	205-99-2	0.0100	< 0.0100
	Benzo(g,h,i)perylene	191-24-2	0.0100	< 0.0100
	Benzo(k)fluoranthene	207-08-9	0.0100	< 0.0100
	Benzoic acid	65-85-0	0.0200	< 0.0200
	Benzyl alcohol	100-51-6	0.0100	< 0.0100
	Bis(2-chloroethoxy)methane	111-91-1	0.0100	< 0.0100

Lab Sample ID: 1201439-001B

Client Sample ID: 1A,B+C

	Client Sample ID: TA,B+C				-
	Analyzed:2/7/2012 1351hExtracUnits:mg/LDilution	ted: 2/3/2012 1025h n Factor: 1	SPLP Prep Date:	2/1/2012	1840h
American West	Compound	CAS Number	Reporting Limit	Analytical Result	Qual
	Bis(2-chloroethyl) ether	111-44-4	0.0100	< 0.0100	
	Bis(2-chloroisopropyl) ether	108-60-1	0.0100	< 0.0100	
	Bis(2-ethylhexyl) phthalate	117-81-7	0.0100	< 0.0100	
	bis(2-ethylhexyl)adipate	103-23-1	0.0100	< 0.0100	
463 West 3600 South	Butyl benzyl phthalate	85-68-7	0.0100	< 0.0100	
Salt Lake City, UT 84115	Carbazole	86-74-8	0.0100	< 0.0100	
	Chlorobenzilate	510-15-6	0.0100	< 0.0100	
	Chrysene	218-01-9	0.0100	< 0.0100	
Phone: (801) 263-8686	Di-n-butyl phthalate	84-74-2	0.0100	< 0.0100	
Toll Free: (888) 263-8686	Di-n-octyl phthalate	117-84-0	0.0100	< 0.0100	
Fax: (801) 263-8687	Diallate (cis or trans)	2303-16-4	0.0100	< 0.0100	
e-mail: awal@awal-labs.com	Dibenz(a,h)anthracene	53-70-3	0.0100	< 0.0100	
0	Dibenzofuran	132-64-9	0.0100	< 0.0100	
web: www.awal-labs.com	Diethyl phthalate	84-66-2	0.0100	< 0.0100	
	Dimethoate	60-51-5	0.0100	< 0.0100	
	Dimethyl phthalate	131-11-3	0.0100	< 0.0100	
Kyle F. Gross	Dimethylaminoazobenzene	60-11-7	0.0100	< 0.0100	
Laboratory Director	Dinoseb	88-85-7	0.0100	< 0.0100	
	Diphenylamine	122-39-4	0.0100	< 0.0100	
Jose Rocha	Disulfoton	298-04-4	0.0100	< 0.0100	
QA Officer	Ethyl methanesulfonate	62-50-0	0.0100	< 0.0100	
	Famphur	52-85-7	0.0100	< 0.0100	
	Fluoranthene	206-44-0	0.0100	< 0.0100	
	Fluorene	86-73-7	0.0100	< 0.0100	
	Hexachlorobenzene	118-74-1	0.0100	< 0.0100	
	Hexachlorobutadiene	87-68-3	0.0100	< 0.0100	
	Hexachlorocyclopentadiene	77-47-4	0.0100	< 0.0100	
	Hexachloroethane	67-72-1	0.0100	< 0.0100	
	Hexachlorophene	70-30-4	0.0100	< 0.0100	
	Hexachloropropene	1888-71-7	0.0100	< 0.0100	
	Indene	95-13-6	0.0100	< 0.0100	
	Indeno(1,2,3-cd)pyrene	193-39-5	0.0100	< 0.0100	
	Isodrin	465-73-6	0.0100	< 0.0100	
	Isophorone	78-59-1	0.0100	< 0.0100	
	Isosafrole	120-58-1	0.0100	< 0.0100	

Report Date: 2/13/2012 Page 10 of 34

Lab Sample ID: 1201439-001B

Client Sample ID: 1A,B+C

Analyzed: 2/7/2012 1351h **Units:** mg/L Extracted: 2/3/2012 1025h Dilution Factor: 1 2/1/2012 1840h

SPLP Prep Date:

	Units: mg/L Dilution	i Factor: 1			
American West	Compound	CAS Number	Reporting Limit	Analytical Result	Qual
	Kepone	143-50-0	0.0100	< 0.0100	
	Methapyrilene	91-80-5	0.0100	< 0.0100	
	Methyl methanesulfonate	66-27-3	0.0100	< 0.0100	
	n-Decane	124-18-5	0.0100	< 0.0100	
463 West 3600 South	N-Nitrosodi-n-butylamine	924-16-3	0.0100	< 0.0100	
Salt Lake City, UT 84115	N-Nitrosodiethylamine	55-18-5	0.0100	< 0.0100	
	N-Nitrosodimethylamine	62-75-9	0.0100	< 0.0100	
	N-Nitrosodiphenylamine	86-30-6	0.0100	< 0.0100	
Phone: (801) 263-8686	N-Nitrosodi-n-propylamine	621-64-7	0.0100	< 0.0100	
Toll Free: (888) 263-8686	N-Nitrosomethylethylamine	10595-95-6	0.0100	< 0.0100	
Fax: (801) 263-8687	N-Nitrosomorpholine	59-89-2	0.0100	< 0.0100	
e-mail: awal@awal-labs.com	N-Nitrosopiperidine	100-75-4	0.0100	< 0.0100	
	N-Nitrosopyrrolidine	930-55-2	0.0100	< 0.0100	
web: www.awal-labs.com	n-Octadecane	593-45-3	0.0100	< 0.0100	
	Naphthalene	91-20-3	0.0100	< 0.0100	0100 0100 0100 0100 0100 0100
	Nitrobenzene	98-95-3	0.0100	< 0.0100	
Kyle F. Gross	Nitroquinoline-1-oxide	56-57-5	0.0100	< 0.0100	
Laboratory Director	O,O,O-Triethyl phosphorothioate	126-68-1	0.0100	< 0.0100	
	o-Toluidine	95-53-4	0.0100	< 0.0100	
Jose Rocha	Parathion	56-38-2	0.0100	< 0.0100	
QA Officer	Methyl parathion	298-00-0	0.0100	< 0.0100	
	Pentachlorobenzene	608-93-5	0.0100	< 0.0100	
	Pentachloronitrobenzene	82-68-8	0.0100	< 0.0100	
	Pentachlorophenol	87-86-5	0.0100	< 0.0100	
	Phenacetin	62-44-2	0.0100	< 0.0100	
	Phenanthrene	85-01-8	0.0100	< 0.0100	
	Phenol	108-95-2	0.0100	< 0.0100	
	Phorate	298-02-2	0.0100	< 0.0100	
	Pronamide	23950-58-5	0.0100	< 0.0100	
	Pyrene	129-00-0	0.0100	< 0.0100	
	Pyridine	110-86-1	0.0100	< 0.0100	
	Quinoline	91-22-5	0.0100	< 0.0100	
	Safrole	94-59-7	0.0100	< 0.0100	
	Tetraethyl dithiopyrophosphate	3689-24-5	0.0100	< 0.0100	
	Thionazin	297-97-2	0.0100	< 0.0100	

Lab Sample ID: 1201439-001B Client Sample ID: 1A,B+C

Analyzed: 2/7/2012 1351h Units: mg/L	Extracted: Dilution Fac	Extracted: 2/3/2012 1025h SPLP Prep Date: Dilution Factor: 1				
Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: Terphenyl-d14	1718-51-0	0.0419	0.04000	105	10-199	
Surr: Phenol-d6	13127-88-3	0.0201	0.08000	25.2	10-122	
Surr: Nitrobenzene-d5	4165-60-0	0.0218	0.04000	54.4	10-180	
Surr: 2-Fluorophenol	367-12-4	0.0273	0.08000	34.1	14-106	
Surr: 2-Fluorobiphenyl	321-60-8	0.0233	0.04000	58.2	10-124	
Surr: 2,4,6-Tribromophenol	118-79-6	0.0660	0.08000	82.6	10-159	

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Report Date: 2/13/2012 Page 12 of 34

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report is provided in the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report is provided for the exclusive use of the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

ORGANIC ANALYTICAL REPORT

2/3/2012 1025h

American Sands Energy Corp. **Project:** Green River Resources Lab Sample ID: 1201439-002B Client Sample ID: 2A,B+C Collection Date: 1/30/2012 1400h **Received Date:** 1/31/2012 1010h

Contact: William Gibbs

Method: SW8270D

SPLP Prep Date:

Analytical Results

Units: mg/L

Analyzed: 2/7/2012 1507h

Client:

SVOA SPLP by GC/MS Method 8270D/1312/3510C

2/1/2012 1840h

463 West 3600 South S

463 West 3600 South Salt Lake City, UT 84115	Compound	CAS Number	Reporting Limit	Analytical Result	Qual
	1,1'-Biphenyl	92-52-4	0.0100	< 0.0100	
	1,2,4,5-Tetrachlorobenzene	95-94-3	0.0100	< 0.0100	
A63 West 3600 South Salt Lake City, UT 84115 Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com web: www.awal-labs.com Kyle F. Gross Laboratory Director Jose Rocha QA Officer	1,2,4-Trichlorobenzene	120-82-1	0.0100	< 0.0100	
	1,2-Dichlorobenzene	95-50-1	0.0100	< 0.0100	
	1,3,5-Trinitrobenzene	99-35-4	0.0100	< 0.0100	
e-mail: awal@awal-labs.com	1,4-Naphthoquinone	130-15-4	0.0100	< 0.0100	
web way over labs com	1,3-Dichlorobenzene	541-73-1	0.0100	< 0.0100	
Salt Lake City, UT 84115 Phone: (801) 263-8686 Foll Free: (888) 263-8686 Fax: (801) 263-8687 E-mail: awal@awal-labs.com web: www.awal-labs.com Kyle F. Gross Laboratory Director Jose Rocha	1,3-Dinitrobenzene	99-65-0	0.0100	< 0.0100	
	1,4-Dichlorobenzene	106-46-7	0.0100	< 0.0100	
Kyle F. Gross	1,4-Phenylenediamine	106-50-3	0.0100	< 0.0100	
Laboratory Director	1-Chloronaphthalene	90-13-1	0.0100	< 0.0100	
	1-Methylnaphthalene	90-12-0	0.0100	< 0.0100	
Jose Rocha	1-Naphthylamine	134-32-7	0.0100	< 0.0100	
QA Officer	2,3,4,6-Tetrachlorophenol	58-90-2	0.0100	< 0.0100	
	2,4,5-Trichlorophenol	95-95-4	0.0100	< 0.0100	
	2,4,6-Trichlorophenol	88-06-2	0.0100	< 0.0100	
	2,4-Dichlorophenol	120-83-2	0.0100	< 0.0100	
	2,4-Dimethylphenol	105-67-9	0.0100	< 0.0100	
	2,4-Dinitrophenol	51-28-5	0.0100	< 0.0100	
	2,4-Dinitrotoluene	121-14-2	0.0100	< 0.0100	
	2,6-Dichlorophenol	87-65-0	0.0100	< 0.0100	
	2,6-Dinitrotoluene	606-20-2	0.0100	< 0.0100	
	2-Acetylaminofluorene	53-96-3	0.0100	< 0.0100	
	2-Chloronaphthalene	91-58-7	0.0100	< 0.0100	
	2-Chlorophenol	95-57-8	0.0100	< 0.0100	
	2-Methylnaphthalene	91-57-6	0.0100	< 0.0100	
	2-Methylphenol	95-48-7	0.0100	< 0.0100	
	2-Naphthylamine	91-59-8	0.0100	< 0.0100	
	2-Nitroaniline	88-74-4	0.0100	< 0.0100	

Extracted:

Dilution Factor: 1

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the te-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the trade and of science.

Lab Sample ID: 1201439-002B

Extracted:

2/3/2012 1025h

SPLP Prep Date:

2/1/2012 1840h

Client Sample ID: 2A,B+C Analyzed: 2/7/2012 1507h

-	Units: mg/L Dilution Factor: 1						
rican West	Compound	CAS Number	Reporting Limit	Analytical Result	Qual		
2012 (2012 2017 W 1217 12	2-Nitrophenol	88-75-5	0.0100	< 0.0100			
	2-Picoline	109-06-8	0.0100	< 0.0100			
	3&4-Methylphenol		0.0100	< 0.0100			
	3,3'-Dichlorobenzidine	91-94-1	0.0100	< 0.0100			
West 3600 South	3,3'-Dimethylbenzidine	119-93-7	0.0100	< 0.0100			
City, UT 84115	3-Methylcholanthrene	56-49-5	0.0100	< 0.0100			
	3-Nitroaniline	99-09-2	0.0100	< 0.0100			
	4,6-Dinitro-2-methylphenol	534-52-1	0.0100	< 0.0100			
: (801) 263-8686	4-Aminobiphenyl	92-67-1	0.0100	< 0.0100			
: (888) 263-8686	4-Bromophenyl phenyl ether	101-55-3	0.0100	< 0.0100			
(801) 263-8687	4-Chloro-3-methylphenol	59-50-7	0.0100	< 0.0100			
al@awal-labs.com	4-Chloroaniline	106-47-8	0.0100	< 0.0100			
allouwal-labs.com	4-Chlorophenyl phenyl ether	7005-72-3	0.0100	< 0.0100			
.awal-labs.com	4-Nitroaniline	100-01-6	0.0100	< 0.0100			
	4-Nitrophenol	100-02-7	0.0100	< 0.0100			
	5-Nitro-o-toluidine	99-55-8	0.0100	< 0.0100			
Kyle F. Gross	7,12-Dimethylbenz(a)anthracene	57-97-6	0.0100	< 0.0100			
ratory Director	a,a-Dimethylphenethylamine	122-09-8	0.0100	< 0.0100			
	Acenaphthene	83-32-9	0.0100	< 0.0100			
Jose Rocha	Acenaphthylene	208-96-8	0.0100	< 0.0100			
QA Officer	Acetophenone	98-86-2	0.0100	< 0.0100			
	alpha-Terpineol	98-55-5	0.0100	< 0.0100			
	Aniline	62-53-3	0.0100	< 0.0100			
	Anthracene	120-12-7	0.0100	< 0.0100			
	Aramite	140-57-8	0.0100	< 0.0100			
	Azobenzene	103-33-3	0.0100	< 0.0100			
	Benz(a)anthracene	56-55-3	0.0100	< 0.0100			
	Benzidine	92-87-5	0.0100	< 0.0100			
	Benzo(a)pyrene	50-32-8	0.0100	< 0.0100			
	Benzo(b)fluoranthene	205-99-2	0.0100	< 0.0100			
	Benzo(g,h,i)perylene	191-24-2	0.0100	< 0.0100			
	Benzo(k)fluoranthene	207-08-9	0.0100	< 0.0100			
	Benzoic acid	65-85-0	0.0200	< 0.0200			
	Benzyl alcohol	100-51-6	0.0100	< 0.0100			
	Bis(2-chloroethoxy)methane	111-91-1	0.0100	< 0.0100			

Report Date: 2/13/2012 Page 14 of 34

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attuched COC. This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report is provided in the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

Lab Sample ID: 1201439-002B Client Sample ID: 2A,B+C

Analyzed: 2/7/2012 1507h Units: mg/L

Extracted: 2/3/2012 1025h Dilution Factor: 1 2/1/2012 1840h

SPLP Prep Date:

	Units: mg/L Dilu	ition Factor: 1		
American West	Compound	CAS Number	Reporting Limit	Analytical Result Qual
	Bis(2-chloroethyl) ether	111-44-4	0.0100	< 0.0100
	Bis(2-chloroisopropyl) ether	108-60-1	0.0100	< 0.0100
	Bis(2-ethylhexyl) phthalate	117-81-7	0.0100	< 0.0100
	bis(2-ethylhexyl)adipate	103-23-1	0.0100	< 0.0100
463 West 3600 South	Butyl benzyl phthalate	85-68-7	0.0100	< 0.0100
lt Lake City, UT 84115	Carbazole	86-74-8	0.0100	< 0.0100
	Chlorobenzilate	510-15-6	0.0100	< 0.0100
	Chrysene	218-01-9	0.0100	< 0.0100
Phone: (801) 263-8686	Di-n-butyl phthalate	84-74-2	0.0100	< 0.0100
oll Free: (888) 263-8686	Di-n-octyl phthalate	117-84-0	0.0100	< 0.0100
Fax: (801) 263-8687	Diallate (cis or trans)	2303-16-4	0.0100	< 0.0100
	Dibenz(a,h)anthracene	53-70-3	0.0100	< 0.0100
nail: awal@awal-labs.com	Dibenzofuran	132-64-9	0.0100	< 0.0100
b: www.awal-labs.com	Diethyl phthalate	84-66-2	0.0100	< 0.0100
	Dimethoate	60-51-5	0.0100	< 0.0100
	Dimethyl phthalate	131-11-3	0.0100	< 0.0100
Kyle F. Gross	Dimethylaminoazobenzene	60-11-7	0.0100	< 0.0100
Laboratory Director	Dinoseb	88-85-7	0.0100	< 0.0100
	Diphenylamine	122-39-4	0.0100	< 0.0100
Jose Rocha	Disulfoton	298-04-4	0.0100	< 0.0100
QA Officer	Ethyl methanesulfonate	62-50-0	0.0100	< 0.0100
	Famphur	52-85-7	0.0100	< 0.0100
	Fluoranthene	206-44-0	0.0100	< 0.0100
	Fluorene	86-73-7	0.0100	< 0.0100
	Hexachlorobenzene	118-74-1	0.0100	< 0.0100
	Hexachlorobutadiene	87-68-3	0.0100	< 0.0100
	Hexachlorocyclopentadiene	77-47-4	0.0100	< 0.0100
	Hexachloroethane	67-72-1	0.0100	< 0.0100
	Hexachlorophene	70-30-4	0.0100	< 0.0100
	Hexachloropropene	1888-71-7	0.0100	< 0.0100
	Indene	95-13-6	0.0100	< 0.0100
	Indeno(1,2,3-cd)pyrene	193-39-5	0.0100	< 0.0100
	Isodrin	465-73-6	0.0100	< 0.0100
	Isophorone	78-59-1	0.0100	< 0.0100
	Isosafrole	120-58-1	0.0100	< 0.0100

Report Date: 2/13/2012 Page 15 of 34

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

Lab Sample ID: 1201439-002B

Client Sample ID: 2A,B+C

	Analyzada 2/7/2012 15071	Ester de la	2/2/2012 10251		2/1/2010	10.401																																																																																																																																																																														
	Analyzed: 2/7/2012 1507h Units: mg/L	Extracted: Dilution Fact	2/3/2012 1025h for: 1	SPLP Prep Date:	2/1/2012	tical Qual 100																																																																																																																																																																														
American West	Compound		CAS Number	Reporting Limit	Analytical Result	Qual																																																																																																																																																																														
	Kepone		143-50-0	0.0100	< 0.0100																																																																																																																																																																															
	Methapyrilene		91-80-5	0.0100	< 0.0100																																																																																																																																																																															
	Methyl methanesulfonate		66-27-3	0.0100	< 0.0100																																																																																																																																																																															
	n-Decane		124-18-5	0.0100	< 0.0100																																																																																																																																																																															
463 West 3600 South	N-Nitrosodi-n-butylamine		924-16-3	0.0100	< 0.0100																																																																																																																																																																															
Salt Lake City, UT 84115	N-Nitrosodiethylamine		55-18-5	0.0100	< 0.0100	0100 100 100 100 100																																																																																																																																																																														
	N-Nitrosodimethylamine		62-75-9	0.0100	< 0.0100																																																																																																																																																																															
	N-Nitrosodiphenylamine		86-30-6	0.0100	Result Qual < 0.0100	Phone: (801) 263-8686	N-Nitrosodi-n-propylamine		621-64-7	0.0100	< 0.0100		Toll Free: (888) 263-8686	686 N-Nitrosodi-n-propylamine 621-64-7 0.0100 < 0.0100	Fax: (801) 263-8687	N-Nitrosomorpholine		59-89-2	0.0100	< 0.0100		e-mail: awal@awal-labs.com	N-Nitrosopiperidine		100-75-4	0.0100	< 0.0100			N-Nitrosopyrrolidine		930-55-2	0.0100	< 0.0100		web: www.awal-labs.com	n-Octadecane		593-45-3	0.0100	< 0.0100	D100 D100		Naphthalene		91-20-3	0.0100	< 0.0100		Nitrobenzene		98-95-3	0.0100	< 0.0100	Kyle F. Gross	Nitroquinoline-1-oxide	98-95-30.0100< 0.010056-57-50.0100< 0.0100	Laboratory Director	O,O,O-Triethyl phosphorothioate		98-95-30.0100< 0.010056-57-50.0100< 0.0100		o-Toluidine		95-53-4	0.0100	< 0.0100		– — Jose Rocha	Parathion		56-38-2	0.0100	< 0.0100		QA Officer	Methyl parathion		298-00-0	0.0100	< 0.0100			Pentachlorobenzene		608-93-5	0.0100	< 0.0100			Pentachloronitrobenzene		82-68-8	0.0100	< 0.0100			Pentachlorophenol		87-86-5	0.0100	< 0.0100			Phenacetin		62-44-2	0.0100	< 0.0100			Phenanthrene		85-01-8	0.0100	< 0.0100			Phenol		108-95-2	0.0100	< 0.0100			Phorate		298-02-2	0.0100	< 0.0100			Pronamide		23950-58-5	0.0100	< 0.0100			Pyrene		129-00-0	0.0100	< 0.0100			Pyridine		110-86-1	0.0100	< 0.0100			Quinoline		91-22-5	0.0100	< 0.0100			Safrole		94-59-7	0.0100	< 0.0100			Tetraethyl dithiopyrophosphate		3689-24-5	0.0100	< 0.0100	Result Qual 0.0100 0.0100		Thionazin		297-97-2	0.0100	< 0.0100	
Phone: (801) 263-8686	N-Nitrosodi-n-propylamine		621-64-7	0.0100	< 0.0100																																																																																																																																																																															
Toll Free: (888) 263-8686	686 N-Nitrosodi-n-propylamine 621-64-7 0.0100 < 0.0100																																																																																																																																																																																			
Fax: (801) 263-8687	N-Nitrosomorpholine		59-89-2	0.0100	< 0.0100																																																																																																																																																																															
e-mail: awal@awal-labs.com	N-Nitrosopiperidine		100-75-4	0.0100	< 0.0100																																																																																																																																																																															
	N-Nitrosopyrrolidine		930-55-2	0.0100	< 0.0100																																																																																																																																																																															
web: www.awal-labs.com	n-Octadecane		593-45-3	0.0100	< 0.0100	D100																																																																																																																																																																														
	Naphthalene		91-20-3	0.0100	< 0.0100																																																																																																																																																																															
	Nitrobenzene		98-95-3	0.0100	< 0.0100																																																																																																																																																																															
Kyle F. Gross	Nitroquinoline-1-oxide	98-95-30.0100< 0.010056-57-50.0100< 0.0100																																																																																																																																																																																		
Laboratory Director	O,O,O-Triethyl phosphorothioate		98-95-30.0100< 0.010056-57-50.0100< 0.0100																																																																																																																																																																																	
	o-Toluidine		95-53-4	0.0100	< 0.0100																																																																																																																																																																															
– — Jose Rocha	Parathion		56-38-2	0.0100	< 0.0100																																																																																																																																																																															
QA Officer	Methyl parathion		298-00-0	0.0100	< 0.0100																																																																																																																																																																															
	Pentachlorobenzene		608-93-5	0.0100	< 0.0100																																																																																																																																																																															
	Pentachloronitrobenzene		82-68-8	0.0100	< 0.0100																																																																																																																																																																															
	Pentachlorophenol		87-86-5	0.0100	< 0.0100																																																																																																																																																																															
	Phenacetin		62-44-2	0.0100	< 0.0100																																																																																																																																																																															
	Phenanthrene		85-01-8	0.0100	< 0.0100																																																																																																																																																																															
	Phenol		108-95-2	0.0100	< 0.0100																																																																																																																																																																															
	Phorate		298-02-2	0.0100	< 0.0100																																																																																																																																																																															
	Pronamide		23950-58-5	0.0100	< 0.0100																																																																																																																																																																															
	Pyrene		129-00-0	0.0100	< 0.0100																																																																																																																																																																															
	Pyridine		110-86-1	0.0100	< 0.0100																																																																																																																																																																															
	Quinoline		91-22-5	0.0100	< 0.0100																																																																																																																																																																															
	Safrole		94-59-7	0.0100	< 0.0100																																																																																																																																																																															
	Tetraethyl dithiopyrophosphate		3689-24-5	0.0100	< 0.0100	Result Qual 0.0100 0.0100																																																																																																																																																																														
	Thionazin		297-97-2	0.0100	< 0.0100																																																																																																																																																																															

Report Date: 2/13/2012 Page 16 of 34 All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

Lab Sample ID: 1201439-002B Client Sample ID: 2A,B+C

Extracted:					
Extracted:	2/3/2012	1025h SPLP	Prep Date:	2/1/2012	2 1840h
Dilution Fac	Dilution Factor: 1				
CAS	Result	Amount Spiked	% REC	Limits	Qual
1718-51-0	0.0368	0.04000	92.0	10-199	
13127-88-3	0.0202	0.08000	25.2	10-122	
4165-60-0	0.0150	0.04000	37.4	10-180	
367-12-4	0.0262	0.08000	32.8	14-106	
321-60-8	0.0149	0.04000	37.3	10-124	
118-79-6	0.0702	0.08000	87.8	10-159	
	CAS 1718-51-0 13127-88-3 4165-60-0 367-12-4 321-60-8	CAS Result 1718-51-0 0.0368 13127-88-3 0.0202 4165-60-0 0.0150 367-12-4 0.0262 321-60-8 0.0149	CAS Result Amount Spiked 1718-51-0 0.0368 0.04000 13127-88-3 0.0202 0.08000 4165-60-0 0.0150 0.04000 367-12-4 0.0262 0.08000 321-60-8 0.0149 0.04000	CAS Result Amount Spiked % REC 1718-51-0 0.0368 0.04000 92.0 13127-88-3 0.0202 0.08000 25.2 4165-60-0 0.0150 0.04000 37.4 367-12-4 0.0262 0.08000 32.8 321-60-8 0.0149 0.04000 37.3	CAS Result Amount Spiked % REC Limits 1718-51-0 0.0368 0.04000 92.0 10-199 13127-88-3 0.0202 0.08000 25.2 10-122 4165-60-0 0.0150 0.04000 37.4 10-180 367-12-4 0.0262 0.08000 32.8 14-106 321-60-8 0.0149 0.04000 37.3 10-124

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Perinent sampling information is located on the attached COC: This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

ORGANIC ANALYTICAL REPORT

Client: American Sands Energy Corp. **Project:** Green River Resources Lab Sample ID: 1201439-003B Client Sample ID: 3A,B+C **Collection Date:** 1/30/2012 1400h **Received Date:** 1/31/2012 1010h

Method: SW8270D

Contact: William Gibbs

	Analytical Results		SVOA SPLP by	GC/MS Method	8270D/1312	2/3510C
	Analyzed: 2/7/2012 1533h	Extracted:	2/3/2012 1025h	SPLP Prep Date:	2/1/2012	1840h
162 West 2600 South	Units: mg/L	Dilution Fa	ctor: 1			
Phone: (801) 263-8686	Compound		CAS Number	Reporting Limit	Analytical Result	Qual
	1,1'-Biphenyl		92-52-4	0.0100	< 0.0100	
Phone: (801) 263-8686	1,2,4,5-Tetrachlorobenzene		95 - 94-3	0.0100	< 0.0100	
Salt Lake City, UT 84115 Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com web: www.awal-labs.com Kyle F. Gross Laboratory Director Jose Rocha	1,2,4-Trichlorobenzene		120-82-1	0.0100	< 0.0100	
Analyzed:2/7/2012 1533hExtracted:2/3/463 West 3600 SouthUnits:mg/LDilution Factor:Salt Lake City, UT 84115CompoundPhone:(801) 263-8686Toll Free:(888) 263-8686Fax:(801) 263-8687c-mail:awa@awal-labs.comweb:uww.awal-labs.comKyle F. Gross1,4-NaphthoquinoneLaboratory Director1,4-PhenylenediamineJose Rocha1-Naphthylamine	1,2-Dichlorobenzene		95-50-1	0.0100	< 0.0100	
	99-35-4	0.0100	< 0.0100			
e-mail: awai@awai-labs.com	1,4-Naphthoquinone		130-15-4	0.0100	< 0.0100	012 1840h al Qual 0
web: www.awal-labs.com	1,3-Dichlorobenzene		541-73-1	0.0100	< 0.0100	2/1/2012 1840h nalytical Result Qual < 0.0100
	1,3-Dinitrobenzene		99-65-0	0.0100	Analytical ResultQual< 0.0100 <	
	1,4-Dichlorobenzene		106-46-7	0.0100	< 0.0100	0100 0100 0100 0100 0100
Kyle F. Gross	1,4-Phenylenediamine		106-50-3	0.0100	< 0.0100	
Laboratory Director	1-Chloronaphthalene		90-13-1	0.0100	< 0.0100	D100
·	1-Methylnaphthalene		90-12-0	0.0100	< 0.0100	
Jose Rocha	1-Methylnaphthalene 90-12-0 0.0100 < 0.0100					
QA Officer	Laboratory Director 1-Chloronaphthalene 90-13-1 0.0100 < 0.0100 1-Methylnaphthalene 90-12-0 0.0100 < 0.0100					
	2,4,5-Trichlorophenol		95-95-4	0.0100	< 0.0100	0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100
	2,4,6-Trichlorophenol		88-06-2	0.0100	< 0.0100	
	2,4-Dichlorophenol		120-83-2	0.0100	< 0.0100	
	2,4-Dimethylphenol		105-67-9	0.0100	< 0.0100	
	2,4-Dinitrophenol		51-28-5	0.0100	< 0.0100	
	2,4-Dinitrotoluene		121-14-2	0.0100	< 0.0100	
	2,6-Dichlorophenol		87-65-0	0.0100	< 0.0100	
	2,6-Dinitrotoluene		606-20-2	0.0100	< 0.0100	
	2-Acetylaminofluorene		53-96-3	0.0100	< 0.0100	
	2-Chloronaphthalene		91-58-7	0.0100	< 0.0100	
	2-Chlorophenol		95-57-8	0.0100	< 0.0100	
	2-Methylnaphthalene		91-57-6	0.0100	< 0.0100	
	2-Methylphenol		95-48-7	0.0100	< 0.0100	
	2-Naphthylamine		91-59-8	0.0100	< 0.0100	
	A 3 11 11					

Report Date: 2/13/2012 Page 18 of 34

< 0.0100

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Perinent sampling information is located on the attached COC. This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

88-74-4

0.0100

2-Nitroaniline

Lab Sample ID: 1201439-003B Client Sample ID: 3A,B+C

Analyzed: 2/7/2012 1533h

Units: mg/L

Dilution Factor: 1

2/3/2012 1025h

SPLP Prep Date:

Extracted:

2/1/2012 1840h

10 A	Units: mg/L Dilution Factor:	; 1		
nerican West	Compound	CAS Number	Reporting Limit	Analytical Result Qua
	2-Nitrophenol	88-75-5	0.0100	< 0.0100
	2-Picoline	109-06-8	0.0100	< 0.0100
	3&4-Methylphenol		0.0100	< 0.0100
	3,3'-Dichlorobenzidine	91-94-1	0.0100	< 0.0100
63 West 3600 South	3,3'-Dimethylbenzidine	119-93-7	0.0100	< 0.0100
ake City, UT 84115	3-Methylcholanthrene	56-49-5	0.0100	< 0.0100
	3-Nitroaniline	99-09-2	0.0100	< 0.0100
	4,6-Dinitro-2-methylphenol	534-52-1	0.0100	< 0.0100
one: (801) 263-8686	4-Aminobiphenyl	92-67-1	0.0100	< 0.0100
ree: (888) 263-8686	4-Bromophenyl phenyl ether	101-55-3	0.0100	< 0.0100
Fax: (801) 263-8687	4-Chloro-3-methylphenol	59-50-7	0.0100	< 0.0100
awal@awal-labs.com	4-Chloroaniline	106-47-8	0.0100	< 0.0100
awai@awai-labs.com	4-Chlorophenyl phenyl ether	7005-72-3	0.0100	< 0.0100
www.awal-labs.com	4-Nitroaniline	100-01-6	0.0100	< 0.0100
	4-Nitrophenol	100-02-7	0.0100	< 0.0100
	5-Nitro-o-toluidine	99-55-8	0.0100	< 0.0100
Kyle F. Gross	7,12-Dimethylbenz(a)anthracene	57-97-6	0.0100	< 0.0100
Laboratory Director	a,a-Dimethylphenethylamine	122-09-8	0.0100	< 0.0100
	Acenaphthene	83-32-9	0.0100	< 0.0100
Jose Rocha	Acenaphthylene	208-96-8	0.0100	< 0.0100
QA Officer	Acetophenone	98-86-2	0.0100	< 0.0100
	alpha-Terpineol	98-55-5	0.0100	< 0.0100
	Aniline	62-53-3	0.0100	< 0.0100
	Anthracene	120-12-7	0.0100	< 0.0100
	Aramite	140-57-8	0.0100	< 0.0100
	Azobenzene	103-33-3	0.0100	< 0.0100
	Benz(a)anthracene	56-55-3	0.0100	< 0.0100
	Benzidine	92-87-5	0.0100	< 0.0100
	Benzo(a)pyrene	50-32-8	0.0100	< 0.0100
	Benzo(b)fluoranthene	205-99-2	0.0100	< 0.0100
	Benzo(g,h,i)perylene	191-24-2	0.0100	< 0.0100
	Benzo(k)fluoranthene	207-08-9	0.0100	< 0.0100
	Benzoic acid	65-85-0	0.0200	< 0.0200
	Benzyl alcohol	100-51-6	0.0100	< 0.0100
	Bis(2-chloroethoxy)methane	111-91-1	0.0100	< 0.0100

Report Date: 2/13/2012 Page 19 of 34

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC: This report is provided for the exclusive use of the addresses. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any putpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

Lab Sample ID: 1201439-003B

Client Sample ID: 3A,B+C

	Cheffe Dample ID. 5A,D+C					
	Analyzed: 2/7/2012 1533h Units: mg/L	Extracted: Dilution Fac	2/3/2012 1025h tor: 1	SPLP Prep Date:	2/1/2012	1840h
American West	Compound		CAS Number	Reporting Limit	Analytical Result	Qual
	Bis(2-chloroethyl) ether		111-44-4	0.0100	< 0.0100	
	Bis(2-chloroisopropyl) ether		108-60-1	0.0100	< 0.0100	
	Bis(2-ethylhexyl) phthalate		117-81-7	0.0100	< 0.0100	
	bis(2-ethylhexyl)adipate		103-23-1	0.0100	< 0.0100	
463 West 3600 South	Butyl benzyl phthalate		85-68-7	0.0100	< 0.0100	
t Lake City, UT 84115	Carbazole		86-74-8	0.0100	< 0.0100	
	Chlorobenzilate		510-15-6	0.0100	< 0.0100	
	Chrysene		218-01-9	0.0100	< 0.0100	
Phone: (801) 263-8686	Di-n-butyl phthalate		84-74-2	0.0100	< 0.0100	
Il Free: (888) 263-8686	Di-n-octyl phthalate		117-84-0	0.0100	< 0.0100	
Fax: (801) 263-8687	Diallate (cis or trans)		2303-16-4	0.0100	< 0.0100	
rax. (801) 203-8087	Dibenz(a,h)anthracene		53-70-3	0.0100	< 0.0100	
ian. awai@awai-iaos.com	Dibenzofuran		132-64-9	0.0100	< 0.0100	
b: www.awal-labs.com	Diethyl phthalate		84-66-2	0.0100	< 0.0100	
	Dimethoate		60-51-5	0.0100	< 0.0100	
	Dimethyl phthalate		131-11-3	0.0100	< 0.0100	
Kyle F. Gross	Dimethylaminoazobenzene		60-11-7	0.0100	< 0.0100	
Laboratory Director	Dinoseb		88-85-7	0.0100	< 0.0100	
	Diphenylamine		122-39-4	0.0100	< 0.0100	
Jose Rocha	Disulfoton		298-04-4	0.0100	< 0.0100	
QA Officer	Ethyl methanesulfonate		62-50-0	0.0100	< 0.0100	
	Famphur					
	Fluoranthene		52-85-7 206-44-0	0.0100	< 0.0100	
	Fluorene		200-44-0 86-73-7	0.0100	< 0.0100	
	Hexachlorobenzene		80-73-7 118-74-1	0.0100	< 0.0100	
	Hexachlorobutadiene		87-68-3	0.0100	< 0.0100	
	Hexachlorocyclopentadiene			0.0100	< 0.0100	
	Hexachloroethane		77-47-4	0.0100	< 0.0100	
			67-72-1	0.0100	< 0.0100	
	Hexachlorophene		70-30-4	0.0100	< 0.0100	
	Hexachloropropene		1888-71-7	0.0100	< 0.0100	
	Indene		95-13-6	0.0100	< 0.0100	
	Indeno(1,2,3-cd)pyrene		193-39-5	0.0100	< 0.0100	
	Isodrin		465-73-6	0.0100	< 0.0100	
	Isophorone		78-59-1	0.0100	< 0.0100	
	Isosafrole		120-58-1	0.0100	< 0.0100	

Report Date: 2/13/2012 Page 20 of 34

Lab Sample ID: 1201439-003B Client Sample ID: 3A,B+C

Analyzed: 2/7/2012 1533h **Units:** mg/L Extracted: 2/3/2012 1025h Dilution Factor: 1 **SPLP Prep Date:** 2/1/2012 1840h

	Units: mg/L Dilutio	n Factor: 1		
American West	Compound	CAS Number	Reporting Limit	Analytical Result Qual
	Kepone	143-50-0	0.0100	< 0.0100
	Methapyrilene	91-80-5	0.0100	< 0.0100
	Methyl methanesulfonate	66-27-3	0.0100	< 0.0100
	n-Decane	124-18-5	0.0100	< 0.0100
463 West 3600 South	N-Nitrosodi-n-butylamine	924-16-3	0.0100	< 0.0100
Salt Lake City, UT 84115	N-Nitrosodiethylamine	55-18-5	0.0100	< 0.0100
	N-Nitrosodimethylamine	62-75-9	0.0100	< 0.0100
	N-Nitrosodiphenylamine	86-30-6	0.0100	< 0.0100
Phone: (801) 263-8686	N-Nitrosodi-n-propylamine	621-64-7	0.0100	< 0.0100
Toll Free: (888) 263-8686	N-Nitrosomethylethylamine	10595-95-6	0.0100	< 0.0100
Fax: (801) 263-8687	N-Nitrosomorpholine	59-89-2	0.0100	< 0.0100
-mail: awal@awal-labs.com	N-Nitrosopiperidine	100-75-4	0.0100	< 0.0100
	N-Nitrosopyrrolidine	930-55-2	0.0100	< 0.0100
web: www.awal-labs.com	n-Octadecane	593-45-3	0.0100	< 0.0100
	Naphthalene	91-20-3	0.0100	< 0.0100
	Nitrobenzene	98-95-3	0.0100	< 0.0100
Kyle F. Gross	Nitroquinoline-1-oxide	56-57-5	0.0100	< 0.0100
Laboratory Director	O,O,O-Triethyl phosphorothioate	126-68-1	0.0100	< 0.0100
	o-Toluidine	95-53-4	0.0100	< 0.0100
Jose Rocha	Parathion	56-38-2	0.0100	< 0.0100
QA Officer	Methyl parathion	298-00-0	0.0100	< 0.0100
	Pentachlorobenzene	608-93-5	0.0100	< 0.0100
	Pentachloronitrobenzene	82-68-8	0.0100	< 0.0100
	Pentachlorophenol	87-86-5	0.0100	< 0.0100
	Phenacetin	62-44-2	0.0100	< 0.0100
	Phenanthrene	85-01-8	0.0100	< 0.0100
	Phenol	108-95-2	0.0100	< 0.0100
	Phorate	298-02-2	0.0100	< 0.0100
	Pronamide	23950-58-5	0.0100	< 0.0100
	Pyrene	129-00-0	0.0100	< 0.0100
	Pyridine	110-86-1	0.0100	< 0.0100
	Quinoline	91-22-5	0.0100	< 0.0100
	Safrole	94-59-7	0.0100	< 0.0100
	Tetraethyl dithiopyrophosphate	3689-24-5	0.0100	< 0.0100
	Thionazin	297-97-2	0.0100	< 0.0100

Report Date: 2/13/2012 Page 21 of 34

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

Lab Sample ID: 1201439-003B Client Sample ID: 3A,B+C

Analyzed: 2/7/2012 1533h Extracted: 2/3/2012 1025h SPLP Prep Date: Units: mg/L Dilution Factor: 1						2 1840h
Surrogate	CAS	Result	Amount Spiked	% REC	Limits	Qual
Surr: Terphenyl-d14	1718-51-0	0.0389	0.04000	97.3	10-199	
Surr: Phenol-d6	13127-88-3	0.0181	0.08000	22.6	10-122	
Surr: Nitrobenzene-d5	4165-60-0	0.0138	0.04000	34.6	10-180	
Surr: 2-Fluorophenol	367-12-4	0.0238	0.08000	29.8	14-106	
Surr: 2-Fluorobiphenyl	321-60-8	0.0134	0.04000	33.6	10-124	
Surr: 2,4,6-Tribromophenol	118-79-6	0.0580	0.08000	72.5	10-159	

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Report Date: 2/13/2012 Page 22 of 34

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the r-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

Client:

Project:

Analytical Results

Units: mg/L

Analyzed: 2/5/2012 153h

ORGANIC ANALYTICAL REPORT

Dilution Factor: 1

American Sands Energy Corp. Green River Resources Lab Sample ID: 1201439-001A Client Sample ID: 1A,B+C 1/30/2012 1400h **Collection Date: Received Date:** 1/31/2012 1010h

Contact: William Gibbs

Method: SW8260C

VOAs SPLP 1312 List by GC/MS Method 8260C/5030C

SPLP Prep Date:

2/1/2012 1945h

463 West 3600 South S

463 West 3600 South		C + C	D		
Salt Lake City, UT 84115	Compound	CAS Number	Reporting Limit	Analytical Result	Qual
	1,1,1,2-Tetrachloroethane	630-20-6	0.00200	< 0.00200	
	1,1,1-Trichloroethane	71-55-6	0.00200	< 0.00200	
Phone: (801) 263-8686	1,1,2,2-Tetrachloroethane	79-34-5	0.00200	< 0.00200	
Toll Free: (888) 263-8686	1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	0.00200	< 0.00200	
Fax: (801) 263-8687	1,1,2-Trichloroethane	79-00-5	0.00200	< 0.00200	
e-mail: awal@awal-labs.com	1,1-Dichloropropene	563-58-6	0.00200	< 0.00200	
11.1	1,1-Dichloroethane	75-34-3	0.00200	< 0.00200	
web: www.awal-labs.com	1,1-Dichloroethene	75-35-4	0.00200	< 0.00200	
	1,2,3-Trichlorobenzene	87-61-6	0.00200	< 0.00200	
Kyle F. Gross	1,2,3-Trichloropropane	96-18-4	0.00200	< 0.00200	
Laboratory Director	1,2,3-Trimethylbenzene	526-73-8	0.00200	< 0.00200	
Euconatory Entertor	1,2,4-Trichlorobenzene	120-82-1	0.00200	< 0.00200	
Jose Rocha	1,2,4-Trimethylbenzene	95-63-6	0.00200	< 0.00200	
QA Officer	1,2-Dibromo-3-chloropropane	96-12-8	0.00500	< 0.00500	
	1,2-Dibromoethane	106-93-4	0.00200	< 0.00200	
	1,2-Dichlorobenzene	95-50-1	0.00200	< 0.00200	
	1,2-Dichloroethane	107-06-2	0.00200	< 0.00200	
	1,2-Dichloropropane	78-87-5	0.00200	< 0.00200	
	1,3,5-Trimethylbenzene	108-67-8	0.00200	< 0.00200	
	1,3-Dichlorobenzene	541-73-1	0.00200	< 0.00200	
	1,3-Dichloropropane	142-28-9	0.00200	< 0.00200	
	1,4-Dichlorobenzene	106-46-7	0.00200	< 0.00200	
	1,4-Dioxane	123-91-1	0.0500	< 0.0500	
	2,2-Dichloropropane	594-20-7	0.00200	< 0.00200	
	2-Butanone	78-93-3	0.0100	0.0722	
	2-Chloroethyl vinyl ether	110-75-8	0.00500	< 0.00500	
	2-Chlorotoluene	95-49-8	0.00200	< 0.00200	
	2-Hexanone	591-78-6	0.00500	< 0.00500	
	2-Nitropropane	79-46-9	0.00500	< 0.00500	

Report Date: 2/13/2012 Page 23 of 34

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the trade and of science.

Lab Sample ID: 1201439-001A

Client Sample ID: 1A,B+C

SPLP Prep Date: Analyzed: 2/5/2012 153h 2/1/2012 1945h Units: mg/L **Dilution Factor:** 1 CAS Reporting Analytical Compound Number Limit Result Qual 4-Chlorotoluene 106-43-4 0.00200 < 0.00200 4-Isopropyltoluene 99-87-6 0.00200 < 0.00200 4-Methyl-2-pentanone 108-10-1 0.00500 < 0.00500 Acetone 67-64-1 0.0100 < 0.0100 463 West 3600 South Acetonitrile 75-05-8 0.00500 < 0.00500 Salt Lake City, UT 84115 Acrolein 107-02-8 0.00500 < 0.00500 Acrylonitrile 107-13-1 0.0100 < 0.0100 Allyl chloride 107-05-1 0.00500 < 0.00500 Benzene 71-43-2 0.00100 Phone: (801) 263-8686 < 0.00100 Benzyl chloride 100-44-7 0.00500 < 0.00500 Toll Free: (888) 263-8686 Bis(2-chloroisopropyl) ether 108-60-1 0.00500 < 0.00500 Fax: (801) 263-8687 Bromobenzene 108-86-1 0.00200 < 0.00200 e-mail: awal@awal-labs.com Bromochloromethane 74-97-5 0.00200 < 0.00200 web: www.awal-labs.com Bromodichloromethane 75-27-4 0.00200 < 0.00200 Bromoform 75-25-2 0.00200 < 0.00200 Bromomethane 74-83-9 0.00500 < 0.00500 Kyle F. Gross Butyl acetate 123-86-4 0.00500 < 0.00500 Laboratory Director Carbon disulfide 75-15-0 0.00200 < 0.00200 Carbon tetrachloride 56-23-5 0.00200 < 0.00200 Jose Rocha Chlorobenzene 108-90-7 0.00200 < 0.00200 QA Officer Chloroethane 75-00-3 0.00200 < 0.00200 Chloroform 67-66-3 0.00200 < 0.00200 Chloromethane 74-87-3 0.00300 < 0.00300 Chloroprene 126-99-8 0.00200 < 0.00200 cis-1,2-Dichloroethene 156-59-2 0.00200 < 0.00200 cis-1,3-Dichloropropene 10061-01-5 0.00200 < 0.00200 Cyclohexane 110-82-7 0.00200 < 0.00200 Cyclohexanone 108-94-1 0.0500 < 0.0500 Dibromochloromethane 124-48-1 0.00200 < 0.00200 Dibromomethane 74-95-3 0.00200 < 0.00200 Dichlorodifluoromethane 75-71-8 0.00200 < 0.00200 Ethyl acetate 141-78-6 0.0100 < 0.0100 Ethyl ether 60-29-7 0.0100 < 0.0100 Ethyl methacrylate 97-63-2 0.00200 < 0.00200 Ethylbenzene 100-41-4 0.00200 < 0.00200

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the trade and of science.

Lab Sample ID: 1201439-001A

Client Sample ID: 1A,B+C

Analyzed: 2/5/2012 153h

Trichloroethene

Units: mg/L Dilu

Dilution Factor: 1

CAS Analytical Reporting Number Limit Result Qual Compound Hexachlorobutadiene 87-68-3 0.00200 < 0.00200 74-88-4 0.00500 < 0.00500 Iodomethane 78-83-1 0.100 < 0.100 Isobutyl alcohol 108-21-4 0.0200 < 0.0200 Isopropyl acetate 463 West 3600 South Isopropyl alcohol 67-63-0 0.0250 < 0.0250 Salt Lake City, UT 84115 < 0.00200 Isopropylbenzene 98-82-8 0.00200 m,p-Xylene 179601-23-1 0.00200 < 0.00200 126-98-7 0.00500 < 0.00500 Methacrylonitrile Methyl Acetate 79-20-9 0.00500 < 0.00500 Phone: (801) 263-8686 < 0.00500 80-62-6 0.00500 Methyl methacrylate Toll Free: (888) 263-8686 1634-04-4 Methyl tert-butyl ether 0.00200 < 0.00200 Fax: (801) 263-8687 Methylcyclohexane 108-87-2 0.00200 < 0.00200 e-mail: awal@awal-labs.com 75-09-2 0.00200 < 0.00200 Methylene chloride 628-63-7 0.00200 < 0.00200 n-Amyl acetate web: www.awal-labs.com n-Butyl alcohol 71-36-3 0.0500 < 0.0500 104-51-8 0.00200 < 0.00200 n-Butylbenzene Kyle F. Gross n-Hexane 110-54-3 0.00200 < 0.00200 Laboratory Director 111-65-9 0.00200 < 0.00200 n-Octane n-Propylbenzene 103-65-1 0.00200 < 0.00200 Jose Rocha 91-20-3 Naphthalene 0.00200 < 0.00200 QA Officer 95-47-6 o-Xylene 0.00200 < 0.00200 76-01-7 Pentachloroethane 0.00500 < 0.00500 107-12-0 0.0250 < 0.0250 Propionitrile 109-60-4 < 0.00200 0.00200 Propyl acetate 135-98-8 0.00200 < 0.00200 sec-Butylbenzene 100-42-5 0.00200 < 0.00200 Styrene 76-65-0 0.0200 < 0.0200 tert-Butyl alcohol 98-06-6 0.00200 < 0.00200 tert-Butylbenzene Tetrachloroethene 127-18-4 0.00200 < 0.00200 109-99-9 Tetrahydrofuran 0.00200 < 0.00200 108-88-3 < 0.00200 Toluene 0.00200 156-60-5 0.00200 < 0.00200 trans-1,2-Dichloroethene trans-1,3-Dichloropropene 10061-02-6 0.00200 < 0.00200 trans-1,4-Dichloro-2-butene 110-57-6 0.00200 < 0.00200

< 0.00200

2/1/2012 1945h

SPLP Prep Date:

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the trade and of science.

79-01-6

0.00200

Lab Sample ID: 1201439-001A

Client Sample ID: 1A,B+C

	Analyzed: 2/5/2012 153h Units: mg/L	Dilution Factor	r: 1	SI	PLP Prep Date:	2/1/2012	. 1945h
American West	Compound		N	CAS lumber	Reporting Limit	Analytical Result	Qual
	Trichlorofluoromethane		7	5-69-4	0.00200	< 0.00200	
	Vinyl acetate		1(08-05-4	0.0100	< 0.0100	
	Vinyl chloride		7	5-01-4	0.00100	< 0.00100	
	Xylenes, Total		13	30-20-7	0.00200	< 0.00200	
463 West 3600 South	TPH C11-C15 (DRO)				0.0200	0.0308	
lt Lake City, UT 84115	TPH C6-C10 (GRO)				0.0200	< 0.0200	
	Surrogate	CAS	Result	Amount Spi	ked % REC	Limits	Qual
	Surr: Toluene-d8	2037-26-5	0.0509	0.05000	102	77-129	
Phone: (801) 263-8686	Surr: Dibromofluoromethane	1868-53-7	0.0495	0.05000	99.0	80-124	
oll Free: (888) 263-8686	Surr: 4-Bromofluorobenzene	460-00-4	0.0511	0.05000	102	80-128	
JII 1100. (000) 200-0000	Surr: 1,2-Dichloroethane-d4	17060-07-0	0.0466	0.05000	93.2	72-151	

Phone: (801) 2 Toll Free: (888) 20 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

> > Report Date: 2/13/2012 Page 26 of 34

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Perinent sampling information is located on the attached COC. This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

Client:

Analytical Results

ORGANIC ANALYTICAL REPORT

American Sands Energy Corp. **Project:** Green River Resources Lab Sample ID: 1201439-002A Client Sample ID: 2A,B+C **Collection Date:** 1/30/2012 1400h **Received Date:** 1/31/2012 1010h

Contact: William Gibbs

Method: SW8260C

VOAs SPLP 1312 List by GC/MS Method 8260C/5030C

463 West Salt Lake City

Phone: (801) 263-8686
Toll Free: (888) 263-8686
Fax: (801) 263-8687
e-mail: awal@awal-labs.com
web: www.awal-labs.com

Κ Laborat

Analyzed: 2/5/2012 215h Units: mg/L D	ilution Factor: 1	SPLP Prep Date:	2/1/2012	2 1945
Compound	CAS Number	Reporting Limit	Analytical Result	Qua
1,1,1,2-Tetrachloroethane	630-20-6	0.00200	< 0.00200	
1,1,1-Trichloroethane	71-55-6	0.00200	< 0.00200	
1,1,2,2-Tetrachloroethane	79-34-5	0.00200	< 0.00200	
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	0.00200	< 0.00200	
1,1,2-Trichloroethane	79-00-5	0.00200	< 0.00200	
1,1-Dichloropropene	563-58-6	0.00200	< 0.00200	
1,1-Dichloroethane	75-34-3	0.00200	< 0.00200	
1,1-Dichloroethene	75-35-4	0.00200	< 0.00200	
1,2,3-Trichlorobenzene	87-61-6	0.00200	< 0.00200	
1,2,3-Trichloropropane	96-18-4	0.00200	< 0.00200	
1,2,3-Trimethylbenzene	526-73-8	0.00200	< 0.00200	
1,2,4-Trichlorobenzene	120-82-1	0.00200	< 0.00200	
1,2,4-Trimethylbenzene	95-63-6	0.00200	< 0.00200	
1,2-Dibromo-3-chloropropane	96-12-8	0.00500	< 0.00500	
1,2-Dibromoethane	106-93-4	0.00200	< 0.00200	
1,2-Dichlorobenzene	95-50-1	0.00200	< 0.00200	
1,2-Dichloroethane	107-06-2	0.00200	< 0.00200	
1,2-Dichloropropane	78-87-5	0.00200	< 0.00200	
1,3,5-Trimethylbenzene	108-67-8	0.00200	< 0.00200	
1,3-Dichlorobenzene	541-73-1	0.00200	< 0.00200	
1,3-Dichloropropane	142-28-9	0.00200	< 0.00200	
1,4-Dichlorobenzene	106-46-7	0.00200	< 0.00200	
1,4-Dioxane	123-91-1	0.0500	< 0.0500	
2,2-Dichloropropane	594-20-7	0.00200	< 0.00200	
2-Butanone	78-93-3	0.0100	0.0648	
2-Chloroethyl vinyl ether	110-75-8	0.00500	< 0.00500	
2-Chlorotoluene	95-49-8	0.00200	< 0.00200	
2-Hexanone	591-78-6	0.00500	< 0.00500	
2-Nitropropane	79-46-9	0.00500	< 0.00500	

Report Date: 2/13/2012 Page 27 of 34

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

Lab Sample ID: 1201439-002A

Client Sample ID: 2A,B+C

Analyzed: 2/5/2012 215h

Units: mg/L **Dilution Factor:** 1 CAS Reporting Analytical Compound Number Limit Result Qual 4-Chlorotoluene 106-43-4 0.00200 < 0.00200 4-Isopropyltoluene 99-87-6 0.00200 < 0.00200 108-10-1 4-Methyl-2-pentanone 0.00500 < 0.00500 Acetone 67-64-1 0.0100 < 0.0100 463 West 3600 South Acetonitrile 75-05-8 0.00500 < 0.00500 Salt Lake City, UT 84115 Acrolein 107-02-8 0.00500 < 0.00500 Acrylonitrile 107-13-1 0.0100 < 0.0100 Allyl chloride 107-05-1 0.00500 < 0.00500 Benzene 71-43-2 0.00100 < 0.00100 Phone: (801) 263-8686 Benzyl chloride 100-44-7 0.00500 < 0.00500 Toll Free: (888) 263-8686 Bis(2-chloroisopropyl) ether 108-60-1 0.00500 < 0.00500 Fax: (801) 263-8687 Bromobenzene 108-86-1 0.00200 < 0.00200 e-mail: awal@awal-labs.com Bromochloromethane 74-97-5 0.00200 < 0.00200 web: www.awal-labs.com Bromodichloromethane 75-27-4 0.00200 < 0.00200 Bromoform 75-25-2 0.00200 < 0.00200 Bromomethane 74-83-9 0.00500 < 0.00500 Kyle F. Gross Butyl acetate 123-86-4 0.00500 < 0.00500 Laboratory Director Carbon disulfide 75-15-0 0.00200 < 0.00200 Carbon tetrachloride 56-23-5 0.00200 < 0.00200 Jose Rocha Chlorobenzene 108-90-7 0.00200 < 0.00200 QA Officer Chloroethane 75-00-3 0.00200 < 0.00200 Chloroform 67-66-3 0.00200 < 0.00200 Chloromethane 74-87-3 0.00300 < 0.00300 Chloroprene 126-99-8 0.00200 < 0.00200 cis-1,2-Dichloroethene 156-59-2 0.00200 < 0.00200 cis-1,3-Dichloropropene 10061-01-5 0.00200 < 0.00200 Cyclohexane 110-82-7 0.00200 < 0.00200 Cyclohexanone 108-94-1 0.0500 < 0.0500 Dibromochloromethane 124-48-1 0.00200 < 0.00200 Dibromomethane 74-95-3 0.00200 < 0.00200 Dichlorodifluoromethane 75-71-8 0.00200 < 0.00200 Ethyl acetate 141-78-6 0.0100 < 0.0100 Ethyl ether 60-29-7 0.0100 < 0.0100 Ethyl methacrylate 97-63-2 0.00200 < 0.00200 Ethylbenzene 100-41-4 0.00200 < 0.00200

SPLP Prep Date:

2/1/2012 1945h

Report Date: 2/13/2012 Page 28 of 34

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the trade and of science.

Lab Sample ID: 1201439-002A Client Sample ID: 2A,B+C

Analyzed: 2/5/2012 215h

SPLP Prep Date: 2/1/2012 1945h Units: mg/L **Dilution Factor:** 1 CAS Reporting Analytical Compound Number Limit Result Qual 0.00200 < 0.00200 Hexachlorobutadiene 87-68-3 0.00500 < 0.00500 Iodomethane 74-88-4 Isobutyl alcohol 78-83-1 0.100 < 0.100 Isopropyl acetate 108-21-4 0.0200 < 0.0200 463 West 3600 South 67-63-0 0.0250 < 0.0250 Isopropyl alcohol Salt Lake City, UT 84115 Isopropylbenzene 98-82-8 0.00200 < 0.00200 m,p-Xylene 179601-23-1 0.00200 0.00501 126-98-7 < 0.00500 Methacrylonitrile 0.00500 79-20-9 < 0.00500 Methyl Acetate 0.00500 Phone: (801) 263-8686 Methyl methacrylate 80-62-6 0.00500 < 0.00500 Toll Free: (888) 263-8686 Methyl tert-butyl ether 1634-04-4 0.00200 < 0.00200 Fax: (801) 263-8687 Methylcyclohexane 108-87-2 0.00200 < 0.00200 e-mail: awal@awal-labs.com Methylene chloride 75-09-2 0.00200 < 0.00200 web: www.awal-labs.com n-Amyl acetate 628-63-7 0.00200 < 0.00200 n-Butyl alcohol 71-36-3 0.0500 < 0.0500 n-Butylbenzene 104-51-8 0.00200 < 0.00200 Kyle F. Gross 110-54-3 < 0.00200 n-Hexane 0.00200 Laboratory Director n-Octane 111-65-9 0.00200 < 0.00200 n-Propylbenzene 103-65-1 0.00200 < 0.00200 Jose Rocha Naphthalene 91-20-3 0.00200 < 0.00200 QA Officer o-Xylene 95-47-6 0.00200 < 0.00200 76-01-7 < 0.00500 Pentachloroethane 0.00500 Propionitrile 107-12-0 0.0250 < 0.0250 Propyl acetate 109-60-4 0.00200 < 0.00200 sec-Butylbenzene 135-98-8 0.00200 < 0.00200 Styrene 100-42-5 0.00200 < 0.00200 76-65-0 tert-Butyl alcohol 0.0200 < 0.0200 tert-Butylbenzene 98-06-6 0.00200 < 0.00200 Tetrachloroethene 127-18-4 0.00200 < 0.00200 Tetrahydrofuran 109-99-9 0.00200 < 0.00200 Toluene 108-88-3 0.00200 < 0.00200 156-60-5 trans-1,2-Dichloroethene 0.00200 < 0.00200 trans-1,3-Dichloropropene 10061-02-6 < 0.00200 0.00200 trans-1,4-Dichloro-2-butene 110-57-6 0.00200 < 0.00200 79-01-6 Trichloroethene 0.00200 < 0.00200

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. This report is provided for the exclusive use of the addresses. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

Lab Sample ID: 1201439-002A

Client Sample ID: 2A,B+C

	Analyzed: 2/5/2012 215h			S	PLP Prep Date:	2/1/2012	1945h
1-2	Units: mg/L	Dilution Factor	: 1				
American West	Compound		N	CAS lumber	Reporting Limit	Analytical Result	Qual
	Trichlorofluoromethane		7	5-69-4	0.00200	< 0.00200	
	Vinyl acetate		10	08-05-4	0.0100	< 0.0100	
	Vinyl chloride		7	5-01-4	0.00100	< 0.00100	
	Xylenes, Total		13	30-20-7	0.00200	0.00663	
463 West 3600 South	TPH C11-C15 (DRO)				0.0200	0.0363	
Salt Lake City, UT 84115	TPH C6-C10 (GRO)				0.0200	0.0223	
	Surrogate	CAS	Result	Amount Sp	iked % REC	Limits	Qual
	Surr: Toluene-d8	2037-26-5	0.0524	0.05000) 105	77-129	
Phone: (801) 263-8686	Surr: Dibromofluoromethane	1868-53-7	0.0510	0.05000	102	80-124	
Toll Free: (888) 263-8686	Surr: 4-Bromofluorobenzene	460-00-4	0.0524	0.05000	105	80-128	
1011100. (000) 200-0000	Surr: 1,2-Dichloroethane-d4	17060-07-0	0.0483	0.05000	96.6	72-151	

Phone: (8 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

> > Report Date: 2/13/2012 Page 30 of 34

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or is in connection of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

Client:

Analytical Results

ORGANIC ANALYTICAL REPORT

American Sands Energy Corp. **Project:** Green River Resources Lab Sample ID: 1201439-003A Client Sample ID: 3A,B+C **Collection Date:** 1/30/2012 1400h **Received Date:** 1/31/2012 1010h

Contact: William Gibbs

Method: SW8260C

463 We Salt Lake C

Phone: (801) 263-8686
Toll Free: (888) 263-8686
Fax: (801) 263-8687
e-mail: awal@awal-labs.com
web: www.awal-labs.com

Labor

Analyzed: 2/5/2012 237h Units: mg/L Dilution Factor	r: 1	SPLP Prep Date:	2/1/2012	2 1945
Compound	CAS Number	Reporting Limit	Analytical Result	Qua
1,1,1,2-Tetrachloroethane	630-20-6	0.00200	< 0.00200	
1,1,1-Trichloroethane	71-55-6	0.00200	0.00364	
1,1,2,2-Tetrachloroethane	79-34-5	0.00200	< 0.00200	
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	0.00200	< 0.00200	
1,1,2-Trichloroethane	79-00-5	0.00200	< 0.00200	
1,1-Dichloropropene	563-58-6	0.00200	< 0.00200	
1,1-Dichloroethane	75-34-3	0.00200	< 0.00200	
1,1-Dichloroethene	75-35-4	0.00200	< 0.00200	
1,2,3-Trichlorobenzene	87-61-6	0.00200	< 0.00200	
1,2,3-Trichloropropane	96-18-4	0.00200	< 0.00200	
1,2,3-Trimethylbenzene	526-73-8	0.00200	< 0.00200	
1,2,4-Trichlorobenzene	120-82-1	0.00200	< 0.00200	
1,2,4-Trimethylbenzene	95-63-6	0.00200	0.00460	
1,2-Dibromo-3-chloropropane	96-12-8	0.00500	< 0.00500	
1,2-Dibromoethane	106-93-4	0.00200	< 0.00200	
1,2-Dichlorobenzene	95-50-1	0.00200	< 0.00200	
1,2-Dichloroethane	107-06-2	0.00200	< 0.00200	
1,2-Dichloropropane	78-87-5	0.00200	< 0.00200	
1,3,5-Trimethylbenzene	108-67-8	0.00200	< 0.00200	
1,3-Dichlorobenzene	541-73-1	0.00200	< 0.00200	
1,3-Dichloropropane	142-28-9	0.00200	< 0.00200	
1,4-Dichlorobenzene	106-46-7	0.00200	< 0.00200	
1,4-Dioxane	123-91-1	0.0500	< 0.0500	
2,2-Dichloropropane	594-20-7	0.00200	< 0.00200	
2-Butanone	78-93-3	0.0100	0.0426	
2-Chloroethyl vinyl ether	110-75-8	0.00500	< 0.00500	
2-Chlorotoluene	95-49-8	0.00200	< 0.00200	
2-Hexanone	591-78-6	0.00500	< 0.00500	
2-Nitropropane	79-46-9	0.00500	< 0.00500	

Report Date: 2/13/2012 Page 31 of 34

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. This report is provided for the exclusive use of the addresses. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

Lab Sample ID: 1201439-003A

Client Sample ID: 3A,B+C Analyzed: 2/5/2012 237h

463 West 3600 South

Salt Lake City, UT 84115

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

	Analyzed: 2/5/2012 237h			SPLP Prep Date:	2/1/2012	. 1945h
	Units: mg/L	Dilution Factor:	1			
60	Compound		CAS Number	Reporting Limit	Analytical Result	Qual
	4-Chlorotoluene		106-43-4	0.00200	< 0.00200	
	4-Isopropyltoluene		99-87-6	0.00200	< 0.00200	
	4-Methyl-2-pentanone		108-10-1	0.00500	< 0.00500	
	Acetone		67-64-1	0.0100	0.0104	
l	Acetonitrile		75-05-8	0.00500	< 0.00500	
	Acrolein		107-02-8	0.00500	< 0.00500	
	Acrylonitrile		107-13-1	0.0100	< 0.0100	
	Allyl chloride		107-05-1	0.00500	< 0.00500	
	Benzene		71-43-2	0.00100	0.00516	
	Benzyl chloride		100-44-7	0.00500	< 0.00500	
	Bis(2-chloroisopropyl) ether		108-60-1	0.00500	< 0.00500	
	Bromobenzene		108-86-1	0.00200	< 0.00200	
	Bromochloromethane		74-97-5	0.00200	< 0.00200	
	Bromodichloromethane		75-27-4	0.00200	< 0.00200	
	Bromoform		75-25-2	0.00200	< 0.00200	
	Bromomethane		74-83-9	0.00500	< 0.00500	
	Butyl acetate		123-86-4	0.00500	< 0.00500	
	Carbon disulfide		75-15-0	0.00200	< 0.00200	
	Carbon tetrachloride		56-23-5	0.00200	< 0.00200	
	Chlorobenzene		108-90-7	0.00200	< 0.00200	
	Chloroethane		75-00-3	0.00200	< 0.00200	
	Chloroform		67-66-3	0.00200	< 0.00200	
	Chloromethane		74-87-3	0.00300	< 0.00300	
	Chloroprene		126-99-8	0.00200	< 0.00200	
	cis-1,2-Dichloroethene		156-59-2	0.00200	< 0.00200	
	cis-1,3-Dichloropropene		10061-01-5	0.00200	< 0.00200	
	Cyclohexane		110-82-7	0.00200	< 0.00200	
	Cyclohexanone		108-94-1	0.0500	< 0.0500	
	Dibromochloromethane		124-48-1	0.00200	< 0.00200	
	Dibromomethane		74-95-3	0.00200	< 0.00200	
	Dichlorodifluoromethane		75-71-8	0.00200	< 0.00200	
	Ethyl acetate		141-78-6	0.0100	< 0.0100	
	Ethyl ether		60-29-7	0.0100	< 0.0100	
	Ethyl methacrylate		97-63-2	0.00200	< 0.00200	
	Ethylbenzene		100-41-4	0.00200	0.00761	

Report Date: 2/13/2012 Page 32 of 34

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report is provided in the attached coc. This report is provided on the attached of the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report is provided on the attached coc. This report is provided on the attached of the republication of this report is no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trude and of science.

Lab Sample ID: 1201439-003A Client Sample ID: 3A,B+C

Analyzed: 2/5/2012 237h

Dilution Factor: 1 Units: mg/L CAS Reporting Analytical West Compound Number Limit Result Oual Hexachlorobutadiene 87-68-3 0.00200 < 0.00200 Iodomethane 74-88-4 0.00500 < 0.00500 Isobutyl alcohol 78-83-1 0.100 < 0.100 < 0.0200 Isopropyl acetate 108-21-4 0.0200 463 West 3600 South Isopropyl alcohol 67-63-0 0.0250 < 0.0250 Salt Lake City, UT 84115 Isopropylbenzene 98-82-8 0.00200 < 0.00200 179601-23-1 0.00200 0.0383 m,p-Xylene Methacrylonitrile 126-98-7 0.00500 < 0.00500 Methyl Acetate 79-20-9 0.00500 < 0.00500 Phone: (801) 263-8686 Methyl methacrylate 80-62-6 0.00500 < 0.00500 Toll Free: (888) 263-8686 Methyl tert-butyl ether 1634-04-4 0.00200 < 0.00200 Fax: (801) 263-8687 Methylcyclohexane 108-87-2 0.00200 < 0.00200 e-mail: awal@awal-labs.com Methylene chloride 75-09-2 0.00200 < 0.00200 < 0.00200 web: www.awal-labs.com n-Amyl acetate 628-63-7 0.00200 n-Butyl alcohol 71-36-3 0.0500 < 0.0500 n-Butylbenzene 104-51-8 0.00200 < 0.00200 Kyle F. Gross n-Hexane 110-54-3 0.00200 < 0.00200 Laboratory Director 111-65-9 < 0.00200 n-Octane 0.00200 103-65-1 0.00200 < 0.00200 n-Propylbenzene Jose Rocha 91-20-3 0.00200 < 0.00200 Naphthalene OA Officer o-Xylene 95-47-6 0.00200 0.0146 Pentachloroethane 76-01-7 0.00500 < 0.00500 Propionitrile 107-12-0 0.0250 < 0.0250 < 0.00200 Propyl acetate 109-60-4 0.00200 135-98-8 < 0.00200 sec-Butylbenzene 0.00200 Styrene 100-42-5 0.00200 < 0.00200 tert-Butyl alcohol 76-65-0 0.0200 < 0.0200 tert-Butylbenzene 98-06-6 0.00200 < 0.00200 Tetrachloroethene 127-18-4 0.00200 0.00312 109-99-9 Tetrahydrofuran 0.00200 < 0.00200 Toluene 108-88-3 0.00200 0.0511 156-60-5 < 0.00200 trans-1,2-Dichloroethene 0.00200 trans-1,3-Dichloropropene 10061-02-6 0.00200 < 0.00200 110-57-6 trans-1,4-Dichloro-2-butene 0.00200 < 0.00200 Trichloroethene 79-01-6 0.00200 < 0.00200

SPLP Prep Date:

2/1/2012 1945h

Report Date: 2/13/2012 Page 33 of 34

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the harme of this company or any member of its staff, or reproduction of this report is dealy concerned in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. This report is provided for the exclusive use of the addressee of the addresse or in connection with the republication of this report for any purpose other than for the addressee will good faith and according to need to the rade and of science.

Lab Sample ID: 1201439-003A

Client Sample ID: 3A,B+C

Analyzed: 2/5/2012 237h Units: mg/L	Dilution Fact	tor: 1	S	PLP Prep Date:	2/1/2012	1945h
Compound		N	CAS Number	Reporting Limit	Analytical Result	Qual
Trichlorofluoromethane		7	75-69-4	0.00200	< 0.00200	
Vinyl acetate		10	08-05-4	0.0100	< 0.0100	
Vinyl chloride		7	5-01-4	0.00100	< 0.00100	
Xylenes, Total		13	30-20-7	0.00200	0.0528	
TPH C11-C15 (DRO)				0.0200	0.0429	
TPH C6-C10 (GRO)				0.0200	0.134	
Surrogate	CAS	Result	Amount Spi	iked % REC	Limits	Qual
Sun: Toluene-d8	2037-26-5	0.0489	0.05000	97.8	77-129	
Surr: Dibromofluoromethane	1868-53-7	0.0462	0.05000	92.5	80-124	
Surr: 4-Bromofluorobenzene Surr: 1,2-Dichloroethane-d4	460-00-4 17060-07-0	0.0495 0.0459			80-128 72-151	
	Units: mg/L Compound Trichlorofluoromethane Vinyl acetate Vinyl chloride Xylenes, Total TPH C11-C15 (DRO) TPH C6-C10 (GRO) Surrogate Surr: Toluene-d8 Surr: Dibromofluoromethane Surr: 4-Bromofluorobenzene	Units:mg/LDilution FactCompoundTrichlorofluoromethaneVinyl acetateVinyl chlorideXylenes, TotalTPH C11-C15 (DRO)TPH C6-C10 (GRO)SurrogateCASSurr: Toluene-d82037-26-5Surr: Dibromofluoromethane1868-53-7Surr: 4-Bromofluorobenzene460-00-4	Units:mg/LDilution Factor:1CompoundNTrichlorofluoromethane7Vinyl acetate1Vinyl chloride7Xylenes, Total13TPH C11-C15 (DRO)TPH C6-C10 (GRO)SurrogateCASResultSurr: Toluene-d82037-26-5Surr: Dibromofluoromethane1868-53-70.0489Surr: 4-Bromofluorobenzene460-00-40.0495	Units: mg/L Dilution Factor: 1 Compound CAS Number Trichlorofluoromethane 75-69-4 Vinyl acetate 108-05-4 Vinyl chloride 75-01-4 Xylenes, Total 1330-20-7 TPH C11-C15 (DRO) TPH C6-C10 (GRO) Surrogate CAS Result Amount Sp Surr: Toluene-d8 2037-26-5 0.0489 0.05000 Surr: Toluene-d8 2037-26-5 0.0489 0.05000 Surr: Toluene-d8 2037-26-5 0.0489 0.05000 Surr: Toluene-d8 2037-26-5 0.0489 0.05000	Units: mg/L Dilution Factor: 1 Compound CAS Number Reporting Limit Trichlorofluoromethane 75-69-4 0.00200 Vinyl acetate 108-05-4 0.0100 Vinyl chloride 75-01-4 0.00100 Xylenes, Total 1330-20-7 0.00200 TPH C11-C15 (DRO) 0.0200 0.0200 Surrogate CAS Result Amount Spiked % REC Surr: Toluene-d8 2037-26-5 0.0489 0.05000 97.8 Surr: Dibromofluoromethane 1868-53-7 0.0462 0.05000 92.5 Sur: 4-Bromofluorobenzene 460-00-4 0.0495 0.05000 99.0	Units: mg/L Dilution Factor: 1 Compound CAS Number Reporting Limit Analytical Result Trichlorofluoromethane 75-69-4 0.00200 < 0.00200

Phone: (Toll Free: (8 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

> > Report Date: 2/13/2012 Page 34 of 34

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. This report is provided for the excusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

VORK O	WORK ORDER Summary					Work Order		1201420
×1+								KC+1
Client:	American Sands Energy Corp.					Page 1 of 3	2/1/2012	12
Client ID:	WALKIN		Contact:	William Gibbs				
Project:	Green River Resources		QC Level:	LEVEL I		WO Type:	Standard	rd
Comments:	Do not release w/o Financial Arrangements! / email to Karla Knoop @ JBR and Larry777@roadrunner.com; Run All analysis on leachate created from SPLP; pH received out of hold; Use Fluid #3 (DI Water) for SPLP;	!! / email to Karla Kı Water) for SPLP;	noop @ JBR and L	arry777@roadrunn	ler.com; Run All an	alysis on leachate o	created from	SPLP;
Sample ID	Client Sample ID	Collected Date	Received Date	Date Due	Matrix	Test Code	Sel Storage	-
1201439-001A	1A,B+C	1/30/2012 1400h	1/31/2012 1010h	2/14/2012	Miscellaneous	1312ZHE-PR	SPLP - voc	VOC
						8260-W-SPLP	SPLP - voc	VOC
1201439-001B						1312LM-PR	SPLP - svoc	SVOC
						1312LO-PR	SPLP - svoc	SVOC
						3005A-SPLP-PR	SPLP - svoc	SVOC
						3510-SVOA- SPLP-PR	SPLP - svoc	SVOC
	SEL Analytes: B CA CR FE LI MG MO K NA SR SN V	A SR SN V				6010C-SPLP	SPLP - svoc	svoc
	SEL Analytes: SB AS BA BE CD CU PB MN NI SE	NI SE AG TL ZN				6020-SPLP	SPLP - svoc	SVOC
						8270-W-SPLP	SPLP - svoc	SVOC
						HG-SPLP-7470A	SPLP - svoc	SVOC
						HG-SPLP-PR	SPLP - svoc	SVOC
1201439-001C						1312LM-PR	SPLP - WC	WC
	SEL Analytes: CL F SO4					300.0-W	SPLP - wc	wc
	SEL Analytes: ALK					ALK-W-2320B	V SPLP -	- WC
						NO2/NO3-W- 353.2	SPLP - wc	WC
						OGB-W-1664A	SPLP - WC	WC
						PH-4500H+B	SPLP - wc	WC
						TDS-W-2540C	SPLP - WC	WC
						TOC-W-5310B	SPLP - wc	WC
1201439-002A	2A,B+C					1312ZHE-PR	SPLP - VOC	VOC
				1		8260-W-SPLP	SPLP - voc	VOC
1201439-002B						1312LM-PR	SPLP - svoc	SVOC
						1312LO-PR	SPLP - svoc	SVOC
						3005A_SPI P_PR	C SPI P - SUNC	SVOC

	Client: American Sands Energy Corp.				Page 2 of 3	2/1/2012
Sample ID	Client Sample ID Collected Date	te Received Date	Date Due	Matrix	Test Code	Sel Storage
1201439-002B	2A,B+C 1400h	0h 1/31/2012 1010h	2/14/2012	Miscellaneous	3510-SVOA- SPLP-PR	SPLP - svoc
	SEL Analytes: B CA CR FE LI MG MO K NA SR SN V				6010C-SPLP	SPLP - svoc
	SEL Analytes: SB AS BA BE CD CU PB MN NI SE AG TL ZN	7	2		6020-SPLP	SPLP - SVOC
					8270-W-SPLP	SPLP - svoc
					HG-SPLP-7470A	SPLP - svoc
100102000000000000000000000000000000000					HG-SPLP-PR	SPLP - svoc
7700-AC+TO					1312LM-PR	SPLP - wc
	SEL Analytes: CL F SO4	-			300.0-W	V SPLP - wc
	SEL Analytes: ALK				ALK-W-2320B	SPLP - wc
		c.			NO2/NO3-W- 353.2	SPLP - wc
					OGB-W-1664A	SPLP - wc
					PH-4500H+B	SPLP - wc
					TDS-W-2540C	SPLP - wc
1 400 000 1					TOC-W-5310B	SPLP - wc
1201439-003A	3A,B+C				1312ZHE-PR	SPLP - voc
1000 0001					8260-W-SPLP	V SPLP - VOC
14014541071					1312LM-PR	SPLP - SVOC
					1312LO-PR	SPLP - svoc
					3005A-SPLP-PR	SPLP - SVOC
					3510-SVOA- SPLP-PR	SPLP - svoc
	SEL Analytes: B CA CR FE LI MG MO K NA SR SN V				6010C-SPLP	V SPLP - svoc
	SEL Analytes: SB AS BA BE CD CU PB MN NI SE AG TL ZN				6020-SPLP	SPLP - svoc
					8270-W-SPLP	SPLP - svoc
					HG-SPLP-7470A	SPLP - SVOC
					HG-SPLP-PR	SPLP - svoc
1201439-003C					1312LM-PR	🔲 SPLP - wc
	SEL Analytes: CL F SO4				300.0-W	SPLP - wc

Collected Date Reteived Date Date Due Matrix Test Code Set 1/30/2012 1400h 1/31/2012 1010h 2/14/2012 Missedianeous ALX-W2320B Imagedianeous Imagedianeous <th>WORK O Client:</th> <th>WORK ORDER Summary Client: American Sands Energy Corp.</th> <th></th> <th></th> <th></th> <th></th> <th>Work Order: Page 3 of 3</th> <th>ET: 1201439</th>	WORK O Client:	WORK ORDER Summary Client: American Sands Energy Corp.					Work Order: Page 3 of 3	ET: 1201439
JAB-C IJAD-C IJAD-C <th>Sample ID</th> <th>Client Sample ID</th> <th>Collected Date</th> <th>Received Date</th> <th>Date Due</th> <th>Matrix</th> <th>Test Code</th> <th>Sel Storage</th>	Sample ID	Client Sample ID	Collected Date	Received Date	Date Due	Matrix	Test Code	Sel Storage
N02A03-W- SM23-W- 02B-W-1664A PH-4900H-1664A PH-490	1201439-003C	3A,B+C SEL Analytes: ALK	1/30/2012 1400h	1/31/2012 1010h	2/14/2012	Miscellaneous	ALK-W-2320B	1
							NO2/NO3-W- 353.2	0.00
							OGB-W-1664A	
							PH-4500H+B	
							TDS-W-2540C	SPLP - wc
							TOC-W-5310B	

Client Amerrican Sands Evergy (orp.) Address Address Address Address CUSTODY Page CUSTODY Page CUSTODY Page CUSTODY Page CUSTODY Page CUSTODY Page CUSTODY Page CUSTODY Page CUSTODY Page CUSTODY Page CUSTODY Page CUSTODY Page CUSTODY Page CUSTODY Page CUSTODY Page CUSTODY Page CUSTODY Page Currie Core) Core Core) Core Core) Core Core) Core Core) Core Core) Core Core) Core Core) Core Core) Core Core Core Core) Core Core Core Core) Core Co	/2.01439 of 2 (Circle One) 4 day 5 tai Standard
E-mail Waybbs Pareenriverresource Dinet OC LEVEL	LABORATORY USE ONLY
Project Name Green River Resources	SAMPLES-WERE: 1 Shipped or hang delivered
Collected 33+	2 Ambient of Chilled
Sample ID [130]12, 14:00 20 20 20 20 20 20 20 20 20 20 20 20 2	
Processed Sands, Run 1 / BtC mm/dd/44 hh:mm 53 X / 1 / 150 SPLP	
d Sards Run 22A Bt C moldd by himm 58 X F F F F F F F F F F F F F F F F F F	
> 2 H BT (mm/ad 42 Minm 3 S X (DT Water) (DT Water)	(Y) Grecked at Benc
Dibove-listed are example 105 only. Spulling	-
descriptive 1D	
	B Received Within Holding Times
	Notesc
	- PH ant of Hold
150	T
	COC Tape Was:
	1 Present on Duter
MAL Date Received By: Signature Coate Special Instructions:	AN (N) NA
1 PRINT NAME Leachate from SpLP shoold be analzed 2	
y Signature Date Received BerSignature Date metals listed on the attached list.	*
1 21 21 21 21 22 Present	ю
37: Signature Date Received By: Signature Date Date And to Karla Knop JBR Environmental	
Kknopp brenv. com . 19	Discrepancies Between
1 The Sevior Copy to HRRY 7770	Sample Labels and COC Record? Y Notes:
inst block. If a different person is associate for	Shipping that
complete blocks 2+3 .	

fill out completely: Client is

mplete

SAMPLES 1A, 1B, 1C ZA, 2B, 2C ZA, 3B, 3C

American Sands Energy Corp. Processed Tar Sands analysis Additional Information attached to Chain-of-Custody Date:

Three sample sets composed of G containers each should be subjected to SPLP, EPA Method 1312. Note that nitrate+nitrite is included in list below; do not use nitric acid in the leaching Use SPLP. fluid # 3 (DI water) as previously discussed with John Wallier + Bab Bayer fluid for this component of the analysis.

Pb,

Mn,

Mo,

Ni,

Sb,

Se,

Sn

T1 V

Zn

Analyze leachate for the following:

General:

pH total dissolved solids major ions (including Ca, Cl, K, Mg, Na, SO⁴, alkalinity)

Three

Organics:

Total organic carbon Oil and grease VOCs using complete list SVOCs using complete list

Metals:

Ag, As, Β, Ba Be, Cd. Cr, Cu. Fe, Hg, Li,

Other:

Nitrate+nitrite Fluoride Strontium

(end)

Jon Schulman JBR Environmental Consultants, Inc. 8160 So. Highland Dr. Ste A-4 Sandy, UT 84093 TEL: (801) 943-4144 RE: American Oil Sands

463 West 3600 South Salt Lake City, UT 84115	Dear Jon Schulman: American West Analytical Laboratories received 8 st analyses presented in the following report.	Lab Set ID: ample(s) on 9/26/20	
Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com web: www.awal-labs.com	American West Analytical Laboratories (AWAL) is Environmental Laboratory Association Conference (and is state accredited in Colorado, Idaho, New Mex AWAL is also accredited by the American Analytica ISO IEC 17025:2005, Department of Defense (DOD the National Lead Laboratory Accreditation Program performed in accordance to The NELAC Institute an otherwise. Accreditation documents are available up questions or concerns regarding this report please fee	NELAC) Institute in ico, and Missouri. I I Laboratory Associ), UST for the State (NLLAP). All ana d/or A2LA protocol on request. If you h	n Utah and Texas; in addition, ation (A2LA) on of Wyoming, and lyses were s unless noted
Kyle F. Gross Laboratory Director Jose Rocha QA Officer	The abbreviation "Surr" found in organic reports ind intentionally added by the laboratory to determine sa purging efficiency. The "Reporting Limit" found on practical quantitation limit (PQL). This is the minim reported by the method referenced and the sample m confused with any regulatory limit. Analytical result figures for quality control and calculation purposes.	mple injection, extra the report is equiva um concentration th atrix. The reporting	action, and/or lent to the nat can be limit must not be

Thank You,

Approved by:

Laboratory Director or designee

INORGANIC ANALYTICAL REPORT

ultants, Inc. 9/26/2012 1100h

Contact: Jon Schulman

46

Salt Lak

Phor Toll Fre Fa e-mail: a

web: w

Client:	JBR Enviro	nmental Consu
Project:	American C	il Sands
Lab Sample ID:	1209452-00)1
Client Sample ID:	U-001A	
Collection Date:	9/25/2012	945h
Received Date:	9/26/2012	1100h

Analytical Results

SPLP METALS Method 1312

	SPLP Prep Date:		Date	Date	Method	Reporting	Analytical	
63 West 3600 South	Compound	Units	Prepared	Analyzed	Used	Limit	Result	Qua
ake City, UT 84115	Antimony	mg/L	10/2/2012 1125h	10/4/2012 1803h	SW6020A	0.00200	< 0.00200	
-	Arsenic	mg/L	10/2/2012 1125h	10/4/2012 1803h	SW6020A	0.00200	< 0.00200	
	Barium	mg/L	10/2/2012 1125h	10/4/2012 1803h	SW6020A	0.0100	0.0413	
one: (801) 263-8686	Beryllium	mg/L	10/2/2012 1125h	10/4/2012 1803h	SW6020A	0.00200	< 0.00200	
ree: (888) 263-8686	Boron	mg/L	10/9/2012 1050h	10/10/2012 1442h	SW6010C	0.500	< 0.500	
Fax: (801) 263-8687	Cadmium	mg/L	10/2/2012 1125h	10/4/2012 1803h	SW6020A	0.000500	< 0.000500	
awal@awal-labs.com	Calcium	mg/L	10/11/2012 920h	10/11/2012 1405h	SW6010C	1.00	2.81	
	Chromium	mg/L	10/9/2012 1050h	10/10/2012 1442h	SW6010C	0.0100	< 0.0100	
www.awal-labs.com	Copper	mg/L	10/2/2012 1125h	10/4/2012 1803h	SW6020A	0.00200	< 0.00200	
	Iron	mg/L	10/9/2012 1050h	10/10/2012 1442h	SW6010C	0.100	1.17	
	Lead	mg/L	10/2/2012 1125h	10/4/2012 1803h	SW6020A	0.0100	< 0.0100	
Kyle F. Gross	Lithium	mg/L	10/9/2012 1050h	10/10/2012 1448h	SW6010C	0.100	< 0.100	~
Laboratory Director	Magnesium	mg/L	10/9/2012 1050h	10/10/2012 1442h	SW6010C	1.00	< 1.00	
Jose Rocha	Manganese	mg/L	10/2/2012 1125h	10/4/2012 1803h	SW6020A	0.00200	0.684	
QA Officer	Mercury	mg/L	10/1/2012 1455h	10/2/2012 1110h	SW7470A	0.00100	< 0.00100	
	Molybdenum	mg/L	10/9/2012 1050h	10/10/2012 1442h	SW6010C	0.0200	< 0.0200	
	Nickel	mg/L	10/2/2012 1125h	10/4/2012 1803h	SW6020A	0.00200	0.0277	
	Potassium	mg/L	10/9/2012 1050h	10/10/2012 1442h	SW6010C	1.00	< 1.00	
	Selenium	mg/L	10/2/2012 1125h	10/4/2012 1803h	SW6020A	0.00200	< 0.00200	
	Silver	mg/L	10/2/2012 1125h	10/4/2012 1803h	SW6020A	0.00200	< 0.00200	
	Sodium	mg/L	10/11/2012 920h	10/11/2012 1405h	SW6010C	1.00	< 1.00	
	Strontium	mg/L	10/9/2012 1050h	10/10/2012 1442h	SW6010C	0.0500	< 0.0500	
	Thallium	mg/L	10/2/2012 1125h	10/4/2012 1803h	SW6020A	0.00200	< 0.00200	
	Tin	mg/L	10/9/2012 1050h	10/10/2012 1442h	SW6010C	0.500	< 0.500	
	Vanadium	mg/L	10/9/2012 1050h	10/10/2012 1442h	SW6010C	0.0500	< 0.0500	
	Zinc	mg/L	10/2/2012 1125h	10/4/2012 1803h	SW6020A	0.100	< 0.100	

~ - The above result was not performed in accordance with NELAP requirements.

Report Date: 10/12/2012 Page 2 of 66

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the

INORGANIC ANALYTICAL REPORT

ltants, Inc. Jate:

Contact: Jon Schulman

463

Salt Lake

Phon Toll Fre Fax e-mail: av

web: ww

La

Client:	JBR Enviror	nmental Consul
Project:	American O	il Sands
Lab Sample ID:	1209452-00	3
Client Sample ID:	U-002A	
Collection Date:	9/25/2012	1055h
Received Date:	9/26/2012	1100h

Analytical Results

SPLP METALS Method 1312

	SPLP Prep Date:		Date	Date	Method	Reporting	Analytical	
3 West 3600 South	Compound	Units	Prepared	Analyzed	Used	Limit	Result	Qua
ke City, UT 84115	Antimony	mg/L	10/2/2012 1125h	10/4/2012 1849h	SW6020A	0.00200	< 0.00200	
	Arsenic	mg/L	10/2/2012 1125h	10/4/2012 1849h	SW6020A	0.00200	< 0.00200	
	Barium	mg/L	10/2/2012 1125h	10/4/2012 1849h	SW6020A	0.0100	0.0401	
ne: (801) 263-8686	Beryllium	mg/L	10/2/2012 1125h	10/4/2012 1849h	SW6020A	0.00200	< 0.00200	
ree: (888) 263-8686	Boron	mg/L	10/9/2012 1050h	10/10/2012 1450h	SW6010C	0.500	< 0.500	
ax: (801) 263-8687	Cadmium	mg/L	10/2/2012 1125h	10/4/2012 1849h	SW6020A	0.000500	< 0.000500	
awal@awal-labs.com	Calcium	mg/L	10/11/2012 920h	10/11/2012 1421h	SW6010C	1.00	2.62	
	Chromium	mg/L	10/9/2012 1050h	10/10/2012 1450h	SW6010C	0.0100	< 0.0100	
www.awal-labs.com	Copper	mg/L	10/2/2012 1125h	10/4/2012 1849h	SW6020A	0.00200	0.00302	
	Iron	mg/L	10/9/2012 1050h	10/10/2012 1450h	SW6010C	0.100	1.18	
Kala E. Crass	Lead	mg/L	10/2/2012 1125h	10/4/2012 1849h	SW6020A	0.0100	< 0.0100	
Kyle F. Gross	Lithium	mg/L	10/9/2012 1050h	10/10/2012 1451h	SW6010C	0.100	< 0.100	~
Laboratory Director	Magnesium	mg/L	10/9/2012 1050h	10/10/2012 1450h	SW6010C	1.00	< 1.00	
Jose Rocha	Manganese	mg/L	10/2/2012 1125h	10/4/2012 1849h	SW6020A	0.00200	0.614	
QA Officer	Mercury	mg/L	10/1/2012 1455h	10/2/2012 1117h	SW7470A	0.00100	< 0.00100	
	Molybdenum	mg/L	10/9/2012 1050h	10/10/2012 1450h	SW6010C	0.0200	< 0.0200	
	Nickel	mg/L	10/2/2012 1125h	10/4/2012 1849h	SW6020A	0.00200	0.0283	
	Potassium	mg/L	10/9/2012 1050h	10/10/2012 1450h	SW6010C	1.00	< 1.00	
	Selenium	mg/L	10/2/2012 1125h	10/4/2012 1849h	SW6020A	0.00200	< 0.00200	
	Silver	mg/L	10/2/2012 1125h	10/4/2012 1849h	SW6020A	0.00200	< 0.00200	
	Sodium	mg/L	10/11/2012 920h	10/11/2012 1421h	SW6010C	1.00	1.24	
	Strontium	mg/L	10/9/2012 1050h	10/10/2012 1450h	SW6010C	0.0500	< 0.0500	
	Thallium	mg/L	10/2/2012 1125h	10/4/2012 1849h	SW6020A	0.00200	< 0.00200	
	Tin	mg/L	10/9/2012 1050h	10/10/2012 1450h	SW6010C	0.500	< 0.500	
	Vanadium	mg/L	10/9/2012 1050h	10/10/2012 1450h	SW6010C	0.0500	< 0.0500	
	Zinc	mg/L	10/2/2012 1125h	10/4/2012 1849h	SW6020A	0.100	< 0.100	

~ - The above result was not performed in accordance with NELAP requirements.

Report Date: 10/12/2012 Page 3 of 66

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the rules and of science.

INORGANIC ANALYTICAL REPORT

ultants, Inc. 9/26/2012 1100h

Contact: Jon Schulman

463

Salt Lak

Phon Toll Fre Fax e-mail: av

web: ww

La

Client:	JBR Enviror	nmental Consu
Project:	American O	il Sands
Lab Sample ID:	1209452-00	5
Client Sample ID:	U-003A	
Collection Date:	9/25/2012	1240h
Received Date:	9/26/2012	1100h

Analytical Results

SPLP METALS Method 1312

	SPLP Prep Date:		Date	Date	Method	Reporting	Analytical	
3 West 3600 South	Compound	Units	Prepared	Analyzed	Used	Limit	Result	Qua
ke City, UT 84115	Antimony	mg/L	10/2/2012 1125h	10/4/2012 1925h	SW6020A	0.00200	< 0.00200	
	Arsenic	mg/L	10/2/2012 1125h	10/4/2012 1925h	SW6020A	0.00200	< 0.00200	
	Barium	mg/L	10/2/2012 1125h	10/4/2012 1925h	SW6020A	0.0100	0.0353	
ne: (801) 263-8686	Beryllium	mg/L	10/2/2012 1125h	10/4/2012 1925h	SW6020A	0.00200	< 0.00200	
ee: (888) 263-8686	Boron	mg/L	10/9/2012 1050h	10/10/2012 1519h	SW6010C	0.500	< 0.500	
ax: (801) 263-8687	Cadmium	mg/L	10/2/2012 1125h	10/4/2012 1925h	SW6020A	0.000500	< 0.000500	
awal@awal-labs.com	Calcium	mg/L	10/11/2012 920h	10/11/2012 1425h	SW6010C	1.00	2.24	
	Chromium	mg/L	10/9/2012 1050h	10/10/2012 1519h	SW6010C	0.0100	< 0.0100	
ww.awal-labs.com	Copper	mg/L	10/2/2012 1125h	10/4/2012 1925h	SW6020A	0.00200	0.00252	
	Iron	mg/L	10/9/2012 1050h	10/10/2012 1519h	SW6010C	0.100	1.17	
	Lead	mg/L	10/2/2012 1125h	10/4/2012 1925h	SW6020A	0.0100	< 0.0100	
Kyle F. Gross	Lithium	mg/L	10/9/2012 1050h	10/10/2012 1453h	SW6010C	0.100	< 0.100	~
aboratory Director	Magnesium	mg/L	10/9/2012 1050h	10/10/2012 1519h	SW6010C	1.00	< 1.00	
Jose Rocha	Manganese	mg/L	10/2/2012 1125h	10/4/2012 1925h	SW6020A	0.00200	0.457	
QA Officer	Mercury	mg/L	10/1/2012 1455h	10/2/2012 1123h	SW7470A	0.00100	< 0.00100	
	Molybdenum	mg/L	10/9/2012 1050h	10/10/2012 1519h	SW6010C	0.0200	< 0.0200	
	Nickel	mg/L	10/2/2012 1125h	10/4/2012 1925h	SW6020A	0.00200	0.0243	
	Potassium	mg/L	10/9/2012 1050h	10/10/2012 1519h	SW6010C	1.00	< 1.00	
	Selenium	mg/L	10/2/2012 1125h	10/4/2012 1925h	SW6020A	0.00200	< 0.00200	
	Silver	mg/L	10/2/2012 1125h	10/4/2012 1925h	SW6020A	0.00200	< 0.00200	
	Sodium	mg/L	10/11/2012 920h	10/11/2012 1425h	SW6010C	1.00	1.50	
	Strontium	mg/L	10/9/2012 1050h	10/10/2012 1519h	SW6010C	0.0500	< 0.0500	
	Thallium	mg/L	10/2/2012 1125h	10/4/2012 1925h	SW6020A	0.00200	< 0.00200	
	Tin	mg/L	10/9/2012 1050h	10/10/2012 1519h	SW6010C	0.500	< 0.500	
	Vanadium	mg/L	10/9/2012 1050h	10/10/2012 1519h	SW6010C	0.0500	< 0.0500	
	Zinc	mg/L	10/2/2012 1125h	10/4/2012 1925h	SW6020A	0.100	< 0.100	

~ - The above result was not performed in accordance with NELAP requirements.

Report Date: 10/12/2012 Page 4 of 66

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the rules and of science.

Client:

Analytical Results

INORGANIC ANALYTICAL REPORT

JBR Environmental Consultants, Inc. **Project:** American Oil Sands 1209452-007 Lab Sample ID: Client Sample ID: U-004A **Collection Date:** 9/25/2012 **Received Date:** 9/26/2012 1100h

Contact: Jon Schulman

46

Salt Lal

Pho Toll Fre Fa e-mail: a

web: w

SPLP METALS Method 1312

	SPLP Prep Date:		Date	Date	Method	Reporting	Analytical	
63 West 3600 South	Compound	Units	Prepared	Analyzed	Used	Limit	Result	Qua
ake City, UT 84115	Antimony	mg/L	10/2/2012 1125h	10/4/2012 1935h	SW6020A	0.00200	< 0.00200	
-	Arsenic	mg/L	10/2/2012 1125h	10/4/2012 1935h	SW6020A	0.00200	< 0.00200	
	Barium	mg/L	10/2/2012 1125h	10/4/2012 1935h	SW6020A	0.0100	0.0266	
one: (801) 263-8686	Beryllium	mg/L	10/2/2012 1125h	10/4/2012 1935h	SW6020A	0.00200	< 0.00200	
Free: (888) 263-8686	Boron	mg/L	10/9/2012 1050h	10/10/2012 1604h	SW6010C	0.500	< 0.500	
Fax: (801) 263-8687	Cadmium	mg/L	10/2/2012 1125h	10/4/2012 1935h	SW6020A	0.000500	0.000924	
awal@awal-labs.com	Calcium	mg/L	10/11/2012 920h	10/11/2012 1443h	SW6010C	1.00	5.42	
	Chromium	mg/L	10/9/2012 1050h	10/10/2012 1604h	SW6010C	0.0100	< 0.0100	
www.awal-labs.com	Copper	mg/L	10/2/2012 1125h	10/4/2012 1935h	SW6020A	0.00200	0.0176	
	Iron	mg/L	10/9/2012 1050h	10/10/2012 1604h	SW6010C	0.100	0.300	
Kula E. Cross	Lead	mg/L	10/2/2012 1125h	10/4/2012 1935h	SW6020A	0.0100	< 0.0100	
Kyle F. Gross	Lithium	mg/L	10/9/2012 1050h	10/10/2012 1456h	SW6010C	0.100	< 0.100	~
Laboratory Director	Magnesium	mg/L	10/9/2012 1050h	10/10/2012 1604h	SW6010C	1.00	< 1.00	
Jose Rocha	Manganese	mg/L	10/2/2012 1125h	10/4/2012 1935h	SW6020A	0.00200	0.0669	
QA Officer	Mercury	mg/L	10/1/2012 1455h	10/2/2012 1124h	SW7470A	0.00100	< 0.00100	
	Molybdenum	mg/L	10/9/2012 1050h	10/10/2012 1604h	SW6010C	0.0200	< 0.0200	
	Nickel	mg/L	10/2/2012 1125h	10/4/2012 1935h	SW6020A	0.00200	0.0309	
	Potassium	mg/L	10/9/2012 1050h	10/10/2012 1604h	SW6010C	1.00	< 1.00	
	Selenium	mg/L	10/2/2012 1125h	10/4/2012 1935h	SW6020A	0.00200	< 0.00200	
	Silver	mg/L	10/2/2012 1125h	10/4/2012 1935h	SW6020A	0.00200	< 0.00200	
	Sodium	mg/L	10/11/2012 920h	10/11/2012 1443h	SW6010C	1.00	1.48	
	Strontium	mg/L	10/9/2012 1050h	10/10/2012 1604h	SW6010C	0.0500	< 0.0500	
	Thallium	mg/L	10/2/2012 1125h	10/4/2012 1935h	SW6020A	0.00200	< 0.00200	
	Tin	mg/L	10/9/2012 1050h	10/10/2012 1604h	SW6010C	0.500	< 0.500	
	Vanadium	mg/L	10/9/2012 1050h	10/10/2012 1604h	SW6010C	0.0500	< 0.0500	
	Zinc	mg/L	10/2/2012 1125h	10/4/2012 1935h	SW6020A	0.100	0.306	

~ - The above result was not performed in accordance with NELAP requirements.

Report Date: 10/12/2012 Page 5 of 66

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the

Contact: Jon Schulman

Client:JBR Environmental Consultants, Inc.Project:American Oil SandsLab Sample ID:1209452-001Client Sample ID:U-001ACollection Date:9/25/20129/25/20121100h

Analytical Results

Date Date Method Reporting Analytical Compound Units Used Limit Result Prepared Analyzed Qual 463 West 3600 South Alkalinity (as CaCO3) 10.0 < 10.0 mg/L 10/2/2012 952h SM2320B Salt Lake City, UT 84115 Chloride 5.00 < 5.00 mg/L 10/1/2012 1824h SM4500-Cl-E Oil & Grease 3.00 < 3.00mg/L 10/2/2012 1351h E1664A pH @ 25° C SW9040C 1.00 6.27 pH Units 10/1/2012 1630h Phone: (801) 263-8686 Sulfate 5.00 10/2/2012 600h SM4500-SO4-E 11.2 mg/L Toll Free: (888) 263-8686 10.0 Total Dissolved Solids 14.0 mg/L 10/2/2012 1215h SM2540C # Fax: (801) 263-8687 Total Organic Carbon mg/L 10/3/2012 1558h SM5310B 1.00 6.69 В e-mail: awal@awal-labs.com **Total Recoverable** mg/L 10/3/2012 1501h E1664A-SGT 3.00 < 3.00Petroleum web: www.awal-labs.com Hydrocarbons

Analysis performed on an SPLP extract by method 1312.

B - This analyte was also detected in the SPLP method blank above the PQL at 1.0056 mg/L. The batch method blank was below the PQL.

Kyle F. Gross # - High RPD due to low analyte concentration. In this range, high RPDs are expected.

Laboratory Director

Jose Rocha QA Officer

Report Date: 10/12/2012 Page 6 of 66

Contact: Jon Schulman

Client:JBR Environmental Consultants, Inc.Project:American Oil SandsLab Sample ID:1209452-002Client Sample ID:U-001BCollection Date:9/25/20129/25/20121100h

Analytical Results

463 West 3600 South Salt Lake City, UT 84115

Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Conductivity	µmhos/cm		10/1/2012 610h	SW9050A	10.0	169	&
pH @ 25° C	pH Units		9/28/2012 1720h	SW9045D	1.00	4.90	Н
Sodium Adsorption Ratio			10/10/2012	Calc.	0.0100	0.0861	&

H - Sample was received outside of the holding time.

& - Analysis is performed on a 1:1 DI water extract for soils.

Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

Phone: (801) 263-8686

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Date

Contact: Jon Schulman

Reporting

Analytical

Method

Client: JBR Environmental Consultants, Inc. **Project:** American Oil Sands 1209452-003 Lab Sample ID: Client Sample ID: U-002A **Collection Date:** 9/25/2012 1055h **Received Date:** 9/26/2012 1100h

Analytical Results

463 West 3600 South	Compound	Units	Prepared	Analyze	ed	Used	Limit	Result	Qual
Salt Lake City, UT 84115	Alkalinity (as CaCO3)	mg/L		10/2/2012	952h	SM2320B	10.0	< 10.0	
	Chloride	mg/L		10/1/2012 1	1825h	SM4500-Cl-E	5.00	< 5.00	
	Oil & Grease	mg/L		10/2/2012 1	1351h	E1664A	3.00	< 3.00	
Phone: (801) 263-8686	pH @ 25° C	pH Units		10/1/2012 1	1630h	SW9040C	1.00	5.89	
Toll Free: (888) 263-8686	Sulfate	mg/L		10/2/2012	600h S	SM4500-SO4-E	5.00	9.03	
Fax: (801) 263-8687	Total Dissolved Solids	mg/L		10/2/2012 1	1215h	SM2540C	10.0	14.0	
e-mail: awal@awal-labs.com	Total Organic Carbon	mg/L		10/3/2012 1	1708h	SM5310B	1.00	7.14	В
web: www.awal-labs.com	Total Recoverable Petroleum Hydrocarbons	mg/L		10/3/2012 1	1501h	E1664A-SGT	3.00	< 3.00	

Date

Analysis performed on an SPLP extract by method 1312.

B - This analyte was also detected in the SPLP method blank above the PQL at 1.0056 mg/L. The batch method blank was below the PQL.

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

Contact: Jon Schulman

Client:JBR Environmental Consultants, Inc.Project:American Oil SandsLab Sample ID:1209452-004Client Sample ID:U-002BCollection Date:9/25/20121055hReceived Date:9/26/20121100h

Analytical Results

463 West 3600 South Salt Lake City, UT 84115

Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Conductivity	µmhos/cm		10/1/2012 610h	SW9050A	10.0	179	&
pH @ 25° C	pH Units		9/28/2012 1720h	SW9045D	1.00	4.74	Н
Sodium Adsorption Ratio			10/10/2012	Calc.	0.0100	0.0947	&

H - Sample was received outside of the holding time.

& - Analysis is performed on a 1:1 DI water extract for soils.

Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

Phone: (801) 263-8686

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Date

Contact: Jon Schulman

Reporting

Analytical

Method

Client: JBR Environmental Consultants, Inc. **Project:** American Oil Sands 1209452-005 Lab Sample ID: Client Sample ID: U-003A **Collection Date:** 9/25/2012 1240h **Received Date:** 9/26/2012 1100h

Analytical Results

463 West 3600 South	Compound	Units	Prepared	Analyz	ed	Used	Limit	Result	Qual
Salt Lake City, UT 84115	Alkalinity (as CaCO3)	mg/L		10/2/2012	952h	SM2320B	10.0	< 10.0	
	Chloride	mg/L		10/1/2012	1826h	SM4500-Cl-E	5.00	< 5.00	
	Oil & Grease	mg/L		10/2/2012	1351h	E1664A	3.00	< 3.00	
Phone: (801) 263-8686	pH @ 25° C	pH Units		10/1/2012	1630h	SW9040C	1.00	4.51	
Toll Free: (888) 263-8686	Sulfate	mg/L		10/2/2012	600h S	SM4500-SO4-E	5.00	7.95	
Fax: (801) 263-8687	Total Dissolved Solids	mg/L		10/2/2012	1215h	SM2540C	10.0	20.0	
e-mail: awal@awal-labs.com	Total Organic Carbon	mg/L		10/3/2012	1731h	SM5310B	1.00	6.90	В
web: www.awal-labs.com	Total Recoverable Petroleum Hydrocarbons	mg/L		10/3/2012	1501h	E1664A-SGT	3.00	< 3.00	

Date

Analysis performed on an SPLP extract by method 1312.

B - This analyte was also detected in the SPLP method blank above the PQL at 1.0056 mg/L. The batch method blank was below the PQL.

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

Contact: Jon Schulman

Client:JBR Environmental Consultants, Inc.Project:American Oil SandsLab Sample ID:1209452-006Client Sample ID:U-003BCollection Date:9/25/20129/25/20121240hReceived Date:9/26/2012

Analytical Results

463 West 3600 South Salt Lake City, UT 84115

Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Conductivity	µmhos/cm		10/1/2012 610h	SW9050A	10.0	223	&
pH @ 25° C	pH Units		9/28/2012 1720h	SW9045D	1.00	4.70	Н
Sodium Adsorption Ratio			10/10/2012	Calc.	0.0100	0.104	&

H - Sample was received outside of the holding time.

& - Analysis is performed on a 1:1 DI water extract for soils.

Fax: (801) 263-8687 e-mail: awal@awal-labs.com

Toll Free: (888) 263-8686

Phone: (801) 263-8686

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

Date

Contact: Jon Schulman

Reporting

Analytical

Method

Client: JBR Environmental Consultants, Inc. **Project:** American Oil Sands 1209452-007 Lab Sample ID: Client Sample ID: U-004A **Collection Date:** 9/25/2012 **Received Date:** 9/26/2012 1100h

Analytical Results

463 West 3600 South	Compound	Units	Prepared	Analyzed	Used	Limit	Result	Qual
Salt Lake City, UT 84115	Alkalinity (as CaCO3)	mg/L		10/2/2012 952h	SM2320B	10.0	< 10.0	
	Chloride	mg/L		10/1/2012 1828h	SM4500-Cl-E	5.00	< 5.00	
	Oil & Grease	mg/L		10/2/2012 1351h	E1664A	3.00	< 3.00	
Phone: (801) 263-8686	pH @ 25° C	pH Units		10/1/2012 1630h	SW9040C	1.00	3.60	
Toll Free: (888) 263-8686	Sulfate	mg/L		10/2/2012 600h	SM4500-SO4-E	5.00	22.1	
Fax: (801) 263-8687	Total Dissolved Solids	mg/L		10/2/2012 1215h	SM2540C	10.0	46.0	
e-mail: awal@awal-labs.com	Total Organic Carbon	mg/L		10/3/2012 1753h	SM5310B	1.00	2.83	В
web: www.awal-labs.com	Total Recoverable Petroleum Hydrocarbons	mg/L		10/3/2012 1501h	E1664A-SGT	3.00	< 3.00	

Date

Analysis performed on an SPLP extract by method 1312.

B - This analyte was also detected in the SPLP method blank above the PQL at 1.0056 mg/L. The batch method blank was below the PQL.

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

Contact: Jon Schulman

Client:JBR Environmental Consultants, Inc.Project:American Oil SandsLab Sample ID:1209452-008Client Sample ID:U-004BCollection Date:9/25/2012Received Date:9/26/20121100h

Analytical Results

463 West 3600 South Salt Lake City, UT 84115

Compound	Units	Date Prepared	Date Analyzed	Method Used	Reporting Limit	Analytical Result	Qual
Conductivity	µmhos/cm		10/2/2012 710h	SW9050A	10.0	332	&
pH @ 25° C	pH Units		10/1/2012 1625h	SW9045D	1.00	4.24	Н
Sodium Adsorption Ratio			10/10/2012	Calc.	0.0100	0.222	&

H - Sample was received outside of the holding time.

& - Analysis is performed on a 1:1 DI water extract for soils.

e-mail: awal@awal-labs.com

Toll Free: (888) 263-8686

Phone: (801) 263-8686

Fax: (801) 263-8687

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

ORGANIC ANALYTICAL REPORT

Client:JBR Environmental Consultants, Inc.Project:American Oil SandsLab Sample ID:1209452-001AClient Sample ID:U-001ACollection Date:9/25/20129/25/2012945hReceived Date:9/26/2012

Extracted:

TPH-DRO (C10-C28) by GC/FID Method 8015D/3510C

Contact: Jon Schulman

463 West 3600 South Salt Lake City, UT 84115

Phone: (801) 263-8686 Toll Free: (888) 263-8686

Fax: (801) 263-8687 e-mail: awal@awal-labs.com

Dilution Fac	tor: 1		Method:	SW8015D	
			Reporting Limit	Analytical Result	Qual
C10-C28)	684	176-34-6	0.500	0.676	
CAS	Result	Amount Sp	oiked % REC	Limits	Qual
460-00-4	0.118	0.4000) 29.4	10-190	
	C10-C28)	N C10-C28) 684 CAS Result	CAS Number C10-C28) 68476-34-6 CAS Result Amount Sp	CAS NumberReporting LimitC10-C28)68476-34-60.500CASResultAmount Spiked% REC	CAS Reporting Analytical Number Limit Result C10-C28) 68476-34-6 0.500 0.676 CAS Result Amount Spiked % REC Limits

10/2/2012 939h

Analysis performed on an SPLP extract by method 1312.

Analytical Results

Analyzed: 10/2/2012 1428h

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

ORGANIC ANALYTICAL REPORT

Client:JBR Environmental Consultants, Inc.Project:American Oil SandsLab Sample ID:1209452-003AClient Sample ID:U-002ACollection Date:9/25/20129/25/20121055hReceived Date:9/26/2012

TPH-DRO (C10-C28) by GC/FID Method 8015D/3510C

Contact: Jon Schulman

	Analyzed: 10/2/2012 1526h Units: mg/L	Extracted: Dilution Fac	10/2/2012 tor: 1	2 939h	Method:	SW8015D	
463 West 3600 South Salt Lake City, UT 84115	Compound			CAS umber	Reporting Limit	Analytical Result	Qual
	Diesel Range Organics (DRO) (Cl	10-C28)	684	476-34-6	0.500	0.755	
Phone: (801) 263-8686	Surrogate	CAS	Result	Amount Spil	xed % REC	Limits	Qual
Toll Free: (888) 263-8686	Surr: 4-Bromofluorobenzene	460-00-4	0.138	0.4000	34.4	10-190	

Analysis performed on an SPLP extract by method 1312.

Analytical Results

web: www.awal-labs.com

Fax: (801) 263-8687 e-mail: awal@awal-labs.com

> Kyle F. Gross Laboratory Director

> > Jose Rocha QA Officer

ORGANIC ANALYTICAL REPORT

Client:JBR Environmental Consultants, Inc.Project:American Oil SandsLab Sample ID:1209452-005AClient Sample ID:U-003ACollection Date:9/25/20129/25/20121240hReceived Date:9/26/2012

TPH-DRO (C10-C28) by GC/FID Method 8015D/3510C

Contact: Jon Schulman

463 West 3600 South Salt Lake City, UT 84115

Units: mg/L	Dilution Fact	or: 1		Method:	SW8015D	
Compound		N	CAS Jumber	Reporting Limit	Analytical Result	Qual
Diesel Range Organics (DRO)	(C10-C28)	684	476-34-6	0.500	0.832	
Surrogate	CAS	Result	Amount Sj	piked % REC	Limits	Qual
Surr: 4-Bromofluorobenzene	460-00-4	0.136	0.4000) 33.9	10-190	

10/2/2012 939h

Extracted:

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

Analysis performed on an SPLP extract by method 1312.

Analytical Results

Analyzed: 10/2/2012 1546h

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

ORGANIC ANALYTICAL REPORT

Client:JBR Environmental Consultants, Inc.Project:American Oil SandsLab Sample ID:1209452-007AClient Sample ID:U-004ACollection Date:9/25/2012Received Date:9/26/20121100h

TPH-DRO (C10-C28) by GC/FID Method 8015D/3510C

Contact: Jon Schulman

462 W. + 2600 G - 4	Analyzed: 10/2/2012 1605h Units: mg/L	Extracted: Dilution Fac	10/2/2012 tor: 1	2 939h	Method:	SW8015D	
463 West 3600 South Salt Lake City, UT 84115	Compound			CAS F umber	Reporting Limit	Analytical Result	Qual
	Diesel Range Organics (DRO) (C1	0-C28)	684	76-34-6	0.500	1.40	
Phone: (801) 263-8686	Surrogate	CAS	Result	Amount Spike	d % REC	Limits	Qual
Toll Free: (888) 263-8686	Surr: 4-Bromofluorobenzene	460-00-4	0.134	0.4000	33.4	10-190	

Analysis performed on an SPLP extract by method 1312.

Analytical Results

web: www.awal-labs.com

Fax: (801) 263-8687 e-mail: awal@awal-labs.com

> Kyle F. Gross Laboratory Director

> > Jose Rocha QA Officer

Client:JBR Environmental Consultants, Inc.Project:American Oil SandsLab Sample ID:1209452-001AClient Sample ID:U-001ACollection Date:9/25/20129/26/20121100h

Analytical Results

VOAs SPLP 1312 List by GC/MS Method 8260C/5030C

Contact: Jon Schulman

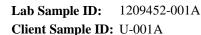
	Analyzed:10/2/2012 1110hUnits:mg/LDilution Factor:	SPLP Prep Date: Method:	9/30/2012 1645h SW8260C	
463 West 3600 South	Compound	CAS	Reporting	Analytical
t Lake City, UT 84115		Number	Limit	Result Qual
	1,1,1,2-Tetrachloroethane	630-20-6	0.00200	< 0.00200
Phone: (801) 263-8686	1,1,1-Trichloroethane	71-55-6	0.00200	< 0.00200
l Free: (888) 263-8686	1,1,2,2-Tetrachloroethane	79-34-5	0.00200	< 0.00200
Fax: (801) 263-8687	1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	0.00200	< 0.00200
ail: awal@awal-labs.com	1,1,2-Trichloroethane	79-00-5	0.00200	< 0.00200
o: www.awal-labs.com	1,1-Dichloropropene	563-58-6	0.00200	< 0.00200
	1,1-Dichloroethane	75-34-3	0.00200	< 0.00200
	1,1-Dichloroethene	75-35-4	0.00200	< 0.00200
	1,2,3-Trichlorobenzene	87-61-6	0.00200	< 0.00200
Kyle F. Gross Laboratory Director	1,2,3-Trichloropropane 1,2,3-Trimethylbenzene 1,2,4-Trichlorobenzene	96-18-4 526-73-8 120-82-1	0.00200 0.00200 0.00200 0.00200	< 0.00200 < 0.00200 < 0.00200 < 0.00200
Jose Rocha	1,2,4-Trimethylbenzene	95-63-6	0.00200	< 0.00200
QA Officer	1,2-Dibromo-3-chloropropane	96-12-8	0.00500	< 0.00500
	1,2-Dibromoethane	106-93-4	0.00200	< 0.00200
	1,2-Dichlorobenzene	95-50-1	0.00200	< 0.00200
	1,2-Dichloroethane	107-06-2	0.00200	< 0.00200
	1,2-Dichloropropane	78-87-5	0.00200	< 0.00200
	1,3,5-Trimethylbenzene	108-67-8	0.00200	< 0.00200
	1,3-Dichlorobenzene	541-73-1	0.00200	< 0.00200
	1,3-Dichloropropane 1,4-Dichlorobenzene	142-28-9 106-46-7	0.00200 0.00200	< 0.00200 < 0.00200 < 0.00200
	1,4-Dioxane	123-91-1	0.0500	< 0.0500
	2,2-Dichloropropane	594-20-7	0.00200	< 0.00200
	2-Butanone	78-93-3	0.0100	0.0101
	2-Chloroethyl vinyl ether	110-75-8	0.00500	< 0.00500
	2-Chlorotoluene	95-49-8	0.00200	< 0.00200
	2-Hexanone2-Nitropropane4-Chlorotoluene	591-78-6 79-46-9 106-43-4	0.00500 0.00500 0.00200	< 0.00500 < 0.00500 < 0.00200

Report Date: 10/12/2012 Page 18 of 66

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the

Lab Sample ID: 1209452-001A Client Sample ID: U-001A

	Analyzed: 10/2/2012 1110h			SPLP Prep Date:	9/30/2012	2 1645h
	Units: mg/L	Dilution Factor:	1	Method:	SW8260C	
American West	Compound		CAS Number	Reporting Limit	Analytical Result	Qual
	4-Isopropyltoluene		99-87-6	0.00200	< 0.00200	
	4-Methyl-2-pentanone		108-10-1	0.00500	< 0.00500	
	Acetone		67-64-1	0.0100	< 0.0100	
	Acetonitrile		75-05-8	0.00500	< 0.00500	
463 West 3600 South	Acrolein		107-02-8	0.00500	< 0.00500	
Salt Lake City, UT 84115	Acrylonitrile		107-13-1	0.0100	< 0.0100	
	Allyl chloride		107-05-1	0.00500	< 0.00500	
	Benzene		71-43-2	0.00100	< 0.00100	
Phone: (801) 263-8686	Benzyl chloride		100-44-7	0.00500	< 0.00500	
Toll Free: (888) 263-8686	Bis(2-chloroisopropyl) ether		108-60-1	0.00500	< 0.00500	
Fax: (801) 263-8687	Bromobenzene		108-86-1	0.00200	< 0.00200	
e-mail: awal@awal-labs.com	Bromochloromethane		74-97-5	0.00200	< 0.00200	
	Bromodichloromethane		75-27-4	0.00200	< 0.00200	
web: www.awal-labs.com	Bromoform		75-25-2	0.00200	< 0.00200	
	Bromomethane		74-83-9	0.00500	< 0.00500	
	Butyl acetate		123-86-4	0.00500	< 0.00500	
Kyle F. Gross	Carbon disulfide		75-15-0	0.00200	< 0.00200	
Laboratory Director	Carbon tetrachloride		56-23-5	0.00200	< 0.00200	
	Chlorobenzene		108-90-7	0.00200	< 0.00200	
Jose Rocha	Chloroethane		75-00-3	0.00200	< 0.00200	
QA Officer	Chloroform		67-66-3	0.00200	< 0.00200	
	Chloromethane		74-87-3	0.00300	< 0.00300	
	Chloroprene		126-99-8	0.00200	< 0.00200	
	cis-1,2-Dichloroethene		156-59-2	0.00200	< 0.00200	
	cis-1,3-Dichloropropene		10061-01-5	0.00200	< 0.00200	
	Cyclohexane		110-82-7	0.00200	< 0.00200	
	Cyclohexanone		108-94-1	0.0500	< 0.0500	
	Dibromochloromethane		124-48-1	0.00200	< 0.00200	
	Dibromomethane		74-95-3	0.00200	< 0.00200	
	Dichlorodifluoromethane		75-71-8	0.00200	< 0.00200	
	Ethyl acetate		141-78-6	0.0100	< 0.0100	
	Ethyl ether		60-29-7	0.0100	< 0.0100	
	Ethyl methacrylate		97-63-2	0.00200	< 0.00200	
	Ethylbenzene		100-41-4	0.00200	< 0.00200	
	Hexachlorobutadiene		87-68-3	0.00200	< 0.00200	
	Iodomethane		74-88-4	0.00500	< 0.00500	
	Isobutyl alcohol		78-83-1	0.100	< 0.100	


Report Date: 10/12/2012 Page 19 of 66

Lab Sample ID: 1209452-001A Client Sample ID: U-001A

	Analyzed: 10/2/2012 1110h			SPLP Prep Date:	9/30/2012	1645h
	Units: mg/L	Dilution Factor:	1	Method:	SW8260C	
rican West	Compound		CAS Number	Reporting Limit	Analytical Result	Qual
	Isopropyl acetate		108-21-4	0.0200	< 0.0200	
	Isopropyl alcohol		67-63-0	0.0250	< 0.0250	
	Isopropylbenzene		98-82-8	0.00200	< 0.00200	
	m,p-Xylene		179601-23-1	0.00200	< 0.00200	
t 3600 South	Methacrylonitrile		126-98-7	0.00500	< 0.00500	
UT 84115	Methyl Acetate		79-20-9	0.00500	< 0.00500	
	Methyl methacrylate		80-62-6	0.00500	< 0.00500	
	Methyl tert-butyl ether		1634-04-4	0.00200	< 0.00200	
263-8686	Methylcyclohexane		108-87-2	0.00200	< 0.00200	
53-8686	Methylene chloride		75-09-2	0.00200	0.00329	В
63-8687	n-Amyl acetate		628-63-7	0.00200	< 0.00200	
labs.com	n-Butyl alcohol		71-36-3	0.0500	< 0.0500	
105.0011	n-Butylbenzene		104-51-8	0.00200	< 0.00200	
bs.com	n-Hexane		110-54-3	0.00200	0.0129	
	n-Octane		111-65-9	0.00200	< 0.00200	
	n-Propylbenzene		103-65-1	0.00200	< 0.00200	
. Gross	Naphthalene		91-20-3	0.00200	< 0.00200	
Director	o-Xylene		95-47-6	0.00200	< 0.00200	
	Pentachloroethane		76-01-7	0.00500	< 0.00500	
e Rocha	Propionitrile		107-12-0	0.0250	< 0.0250	
Officer	Propyl acetate		109-60-4	0.00200	< 0.00200	
	sec-Butylbenzene		135-98-8	0.00200	< 0.00200	
	Styrene		100-42-5	0.00200	< 0.00200	
	tert-Butyl alcohol		76-65-0	0.0200	< 0.0200	
	tert-Butylbenzene		98-06-6	0.00200	< 0.00200	
	Tetrachloroethene		127-18-4	0.00200	< 0.00200	
	Tetrahydrofuran		109-99-9	0.00200	< 0.00200	
	Toluene		108-88-3	0.00200	< 0.00200	
	trans-1,2-Dichloroethene		156-60-5	0.00200	< 0.00200	
	trans-1,3-Dichloropropene		10061-02-6	0.00200	< 0.00200	
	trans-1,4-Dichloro-2-butene		110-57-6	0.00200	< 0.00200	
	Trichloroethene		79-01-6	0.00200	< 0.00200	
	Trichlorofluoromethane		75-69-4	0.00200	< 0.00200	
	Vinyl acetate		108-05-4	0.0100	< 0.0100	
	Vinyl chloride		75-01-4	0.00100	< 0.00100	
	Xylenes, Total		1330-20-7	0.00200	< 0.00200	
	TPH C11-C15 (DRO)			0.0200	< 0.0200	

Report Date: 10/12/2012 Page 20 of 66

9/30/2012 1645h Analyzed: 10/2/2012 1110h **SPLP Prep Date:** Units: mg/L **Dilution Factor:** 1 Method: SW8260C CAS Reporting Analytical Compound Number Limit Result Qual TPH C6-C10 (GRO) 0.0200 0.0971 CAS Result % REC Limits Qual Surrogate Amount Spiked Surr: Toluene-d8 2037-26-5 0.0491 0.05000 98.3 77-129 Surr: Dibromofluoromethane 1868-53-7 0.0572 0.05000 80-124 114 Surr: 4-Bromofluorobenzene 460-00-4 0.0537 0.05000 107 80-128 Surr: 1,2-Dichloroethane-d4 17060-07-0 0.05000 72-151 0.0627 125

463 West 3600 South Salt Lake City, UT 84115

B - This analyte was also detected in MB-SPLP-21377.

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. This report is provided for the exclusive use of the addresses of the rules of

Client: JBR Environmental Consultants, Inc. **Project:** American Oil Sands Lab Sample ID: 1209452-003A Client Sample ID: U-002A **Collection Date:** 9/25/2012 1055h **Received Date:** 9/26/2012 1100h

Analytical Results

1.4-Dioxane

2-Butanone

2-Hexanone

2-Chlorotoluene

2-Nitropropane

4-Chlorotoluene

2,2-Dichloropropane

2-Chloroethyl vinyl ether

Contact: Jon Schulman

VOAs SPLP 1312 List by GC/MS Method 8260C/5030C

SPLP Prep Date: Analyzed: 10/2/2012 1129h 9/30/2012 1645h SW8260C Units: mg/L **Dilution Factor:** 1 Method: CAS Reporting Analytical Number Limit Result Compound Qual 1,1,1,2-Tetrachloroethane 630-20-6 0.00200 < 0.00200 1.1.1-Trichloroethane 71-55-6 0.00200 < 0.00200Phone: (801) 263-8686 79-34-5 1.1.2.2-Tetrachloroethane 0.00200 < 0.00200Toll Free: (888) 263-8686 1,1,2-Trichloro-1,2,2-trifluoroethane 76-13-1 0.00200 < 0.00200 Fax: (801) 263-8687 79-00-5 1,1,2-Trichloroethane 0.00200 < 0.00200 e-mail: awal@awal-labs.com 563-58-6 1,1-Dichloropropene 0.00200 < 0.00200 1,1-Dichloroethane 75-34-3 0.00200 < 0.00200 web: www.awal-labs.com 1,1-Dichloroethene 75-35-4 0.00200 < 0.00200 1.2.3-Trichlorobenzene 87-61-6 0.00200 < 0.002001,2,3-Trichloropropane 96-18-4 0.00200 < 0.00200Kyle F. Gross 526-73-8 1,2,3-Trimethylbenzene 0.00200 < 0.00200 Laboratory Director 1,2,4-Trichlorobenzene 120-82-1 0.00200 < 0.002001,2,4-Trimethylbenzene 95-63-6 0.00200 0.0175 Jose Rocha 1,2-Dibromo-3-chloropropane 96-12-8 0.00500 < 0.00500 **QA** Officer 1,2-Dibromoethane 106-93-4 0.00200 < 0.00200 1.2-Dichlorobenzene 95-50-1 0.00200 < 0.00200 1,2-Dichloroethane 107-06-2 0.00200 < 0.00200 1,2-Dichloropropane 78-87-5 0.00200 < 0.00200 1,3,5-Trimethylbenzene 108-67-8 0.00200 0.0110 1,3-Dichlorobenzene 541-73-1 0.00200 < 0.00200 142-28-9 1,3-Dichloropropane 0.00200 < 0.00200 1,4-Dichlorobenzene 106-46-7 0.00200 < 0.00200

123-91-1

594-20-7

78-93-3

110-75-8

95-49-8

591-78-6

79-46-9

106-43-4

0.0500

0.00200

0.0100

0.00500

0.00200

0.00500

0.00500

0.00200

463 West 3600 South Salt Lake City, UT 84115

Report Date: 10/12/2012 Page 22 of 66

< 0.0500

< 0.00200

< 0.0100

< 0.00500

< 0.00200

< 0.00500

< 0.00500

< 0.00200

Lab Sample ID: 1209452-003A Client Sample ID: U-002A

	Analyzed: 10/2/2012 1129h			SPLP Prep Date:	9/30/2012	1645h
	Units: mg/L	Dilution Factor:	1	Method:	SW8260C	
American West	Compound		CAS Number	Reporting Limit	Analytical Result	Qual
	4-Isopropyltoluene		99-87-6	0.00200	< 0.00200	
	4-Methyl-2-pentanone		108-10-1	0.00500	< 0.00500	
	Acetone		67-64-1	0.0100	< 0.0100	
	Acetonitrile		75-05-8	0.00500	< 0.00500	
463 West 3600 South	Acrolein		107-02-8	0.00500	< 0.00500	
Salt Lake City, UT 84115	Acrylonitrile		107-13-1	0.0100	< 0.0100	
	Allyl chloride		107-05-1	0.00500	< 0.00500	
	Benzene		71-43-2	0.00100	< 0.00100	
Phone: (801) 263-8686	Benzyl chloride		100-44-7	0.00500	< 0.00500	
Toll Free: (888) 263-8686	Bis(2-chloroisopropyl) ether		108-60-1	0.00500	< 0.00500	
Fax: (801) 263-8687	Bromobenzene		108-86-1	0.00200	< 0.00200	
e-mail: awal@awal-labs.com	Bromochloromethane		74-97-5	0.00200	< 0.00200	
	Bromodichloromethane		75-27-4	0.00200	< 0.00200	
web: www.awal-labs.com	Bromoform		75-25-2	0.00200	< 0.00200	
	Bromomethane		74-83-9	0.00500	< 0.00500	
	Butyl acetate		123-86-4	0.00500	< 0.00500	
Kyle F. Gross	Carbon disulfide		75-15-0	0.00200	< 0.00200	
Laboratory Director	Carbon tetrachloride		56-23-5	0.00200	< 0.00200	
	Chlorobenzene		108-90-7	0.00200	< 0.00200	
Jose Rocha	Chloroethane		75-00-3	0.00200	< 0.00200	
QA Officer	Chloroform		67-66-3	0.00200	< 0.00200	
	Chloromethane		74-87-3	0.00300	< 0.00300	
	Chloroprene		126-99-8	0.00200	< 0.00200	
	cis-1,2-Dichloroethene		156-59-2	0.00200	< 0.00200	
	cis-1,3-Dichloropropene		10061-01-5	0.00200	< 0.00200	
	Cyclohexane		110-82-7	0.00200	< 0.00200	
	Cyclohexanone		108-94-1	0.0500	< 0.0500	
	Dibromochloromethane		124-48-1	0.00200	< 0.00200	
	Dibromomethane		74-95-3	0.00200	< 0.00200	
	Dichlorodifluoromethane		75-71-8	0.00200	< 0.00200	
	Ethyl acetate		141-78-6	0.0100	< 0.0100	
	Ethyl ether		60-29-7	0.0100	< 0.0100	
	Ethyl methacrylate		97-63-2	0.00200	< 0.00200	
	Ethylbenzene		100-41-4	0.00200	0.00209	
	Hexachlorobutadiene		87-68-3	0.00200	< 0.00200	
	Iodomethane		74-88-4	0.00500	< 0.00500	
	Isobutyl alcohol		78-83-1	0.100	< 0.100	

Report Date: 10/12/2012 Page 23 of 66

Lab Sample ID: 1209452-003A Client Sample ID: U-002A

Analyzed:	10/2/2012 1129h		5	SPLP Prep Date:	9/30/2012	2 1645h
Units: mg	z/L	Dilution Factor:	1	Method:	SW8260C	
West Compound			CAS Number	Reporting Limit	Analytical Result	Qual
Isopropyl a	cetate		108-21-4	0.0200	< 0.0200	
Isopropyl a	cohol		67-63-0	0.0250	< 0.0250	
Isopropylbe	nzene		98-82-8	0.00200	< 0.00200	
m,p-Xylene			179601-23-1	0.00200	0.0156	В
South Methacrylo	nitrile		126-98-7	0.00500	< 0.00500	
84115 Methyl Ace	tate		79-20-9	0.00500	< 0.00500	
Methyl met	hacrylate		80-62-6	0.00500	< 0.00500	
Methyl tert	butyl ether		1634-04-4	0.00200	< 0.00200	
-8686 Methylcycl	ohexane		108-87-2	0.00200	< 0.00200	
3-8686 Methylene	chloride		75-09-2	0.00200	0.00327	В
53-8687 n-Amyl ace	tate		628-63-7	0.00200	< 0.00200	
labs.com n-Butyl alco	ohol		71-36-3	0.0500	< 0.0500	
n-Butylben	zene		104-51-8	0.00200	< 0.00200	
bs.com n-Hexane			110-54-3	0.00200	0.0150	
n-Octane			111-65-9	0.00200	< 0.00200	
n-Propylber	nzene		103-65-1	0.00200	< 0.00200	
. Gross Naphthalen	9		91-20-3	0.00200	0.00350	
Director o-Xylene			95-47-6	0.00200	0.00569	
Pentachloro	ethane		76-01-7	0.00500	< 0.00500	
e Rocha Propionitril	e		107-12-0	0.0250	< 0.0250	
Officer Propyl acet			109-60-4	0.00200	< 0.00200	
sec-Butylbe	nzene		135-98-8	0.00200	< 0.00200	
Styrene			100-42-5	0.00200	< 0.00200	
tert-Butyl a	cohol		76-65-0	0.0200	< 0.0200	
tert-Butylbe			98-06-6	0.00200	< 0.00200	
Tetrachloro			127-18-4	0.00200	< 0.00200	
Tetrahydroi	uran		109-99-9	0.00200	< 0.00200	
Toluene			108-88-3	0.00200	0.00466	
trans-1,2-D	chloroethene		156-60-5	0.00200	< 0.00200	
	chloropropene		10061-02-6	0.00200	< 0.00200	
	ichloro-2-butene		110-57-6	0.00200	< 0.00200	
Trichloroet			79-01-6	0.00200	< 0.00200	
Trichloroflu	oromethane		75-69-4	0.00200	< 0.00200	
Vinyl aceta	te		108-05-4	0.0100	< 0.0100	
Vinyl chlor			75-01-4	0.00100	< 0.00100	
-				0.00200	0.0213	В
Xylenes, To	otal		1330-20-7	0.00200	0.0215	D

Report Date: 10/12/2012 Page 24 of 66

Lab Sample ID: 1209452-003A

Client Sample ID: U-002A

Analyzed: 10/2/2012 1129h Units: mg/L	Dilution Factor	: 1	S		Prep Date: Method:	9/30/2012 SW8260C	1645h
Compound		I	CAS Number	-	porting Limit	Analytical Result	Qual
TPH C6-C10 (GRO)				0	.0200	0.190	
Surrogate	CAS	Result	Amount Sp	piked	% REC	Limits	Qual
Surr: Dibromofluoromethane	1868-53-7	0.0581	0.0500	0	116	80-124	
Surr: 4-Bromofluorobenzene	460-00-4	0.0507	0.0500	0	101	80-128	
Surr: 1,2-Dichloroethane-d4	17060-07-0	0.0628	0.0500	0	126	72-151	
Surr: Toluene-d8	2037-26-5	0.0502	0.0500	0	100	77-129	

463 West 3600 South Salt Lake City, UT 84115

B - This analyte was also detected in MB-SPLP-21377.

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha **QA** Officer

Merican vvest

ORGANIC ANALYTICAL REPORT

Client: JBR Environmental Consultants, Inc. **Project:** American Oil Sands 1209452-005A Lab Sample ID: Client Sample ID: U-003A **Collection Date:** 9/25/2012 1240h **Received Date:** 9/26/2012 1100h

Analytical Results

VOAs SPLP 1312 List by GC/MS Method 8260C/5030C

Contact: Jon Schulman

462 W. + 2600 G - 1	Analyzed: 10/2/2012 1149h Units: mg/L Dilution Factor:	1	SPLP Prep Date: Method:	9/30/2012 SW8260C	21645h
463 West 3600 South Salt Lake City, UT 84115	Compound	CAS Number	Reporting Limit	Analytical Result	Qual
	1,1,1,2-Tetrachloroethane	630-20-6	0.00200	< 0.00200	
Phone: (801) 263-8686	1,1,1-Trichloroethane	71-55-6	0.00200	< 0.00200	
Toll Free: (888) 263-8686	1,1,2,2-Tetrachloroethane	79-34-5	0.00200	< 0.00200	
	1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	0.00200	< 0.00200	
Fax: (801) 263-8687	1,1,2-Trichloroethane	79-00-5	0.00200	< 0.00200	
e-mail: awal@awal-labs.com	1,1-Dichloropropene	563-58-6	0.00200	< 0.00200	
web: www.awal-labs.com	1,1-Dichloroethane	75-34-3	0.00200	< 0.00200	
	1,1-Dichloroethene	75-35-4	0.00200	< 0.00200	
	1,2,3-Trichlorobenzene	87-61-6	0.00200	< 0.00200	
Kyle F. Gross	1,2,3-Trichloropropane	96-18-4	0.00200	< 0.00200	
Laboratory Director	1,2,3-Trimethylbenzene	526-73-8	0.00200	0.00281	
	1,2,4-Trichlorobenzene	120-82-1	0.00200	< 0.00200	
Jose Rocha	1,2,4-Trimethylbenzene	95-63-6	0.00200	0.00425	
QA Officer	1,2-Dibromo-3-chloropropane	96-12-8	0.00500	< 0.00500	
	1,2-Dibromoethane	106-93-4	0.00200	< 0.00200	
	1,2-Dichlorobenzene	95-50-1	0.00200	< 0.00200	
	1,2-Dichloroethane	107-06-2	0.00200	< 0.00200	
	1,2-Dichloropropane	78-87-5	0.00200	< 0.00200	
	1,3,5-Trimethylbenzene	108-67-8	0.00200	0.00245	
	1,3-Dichlorobenzene	541-73-1	0.00200	< 0.00200	
	1,3-Dichloropropane	142-28-9	0.00200	< 0.00200	
	1,4-Dichlorobenzene	106-46-7	0.00200	< 0.00200	
	1,4-Dioxane	123-91-1	0.0500	< 0.0500	
	2,2-Dichloropropane	594-20-7	0.00200	< 0.00200	
	2-Butanone	78-93-3	0.0100	0.0118	
	2-Chloroethyl vinyl ether	110-75-8	0.00500	< 0.00500	
	2-Chlorotoluene	95-49-8	0.00200	< 0.00200	
	2-Hexanone	591-78-6	0.00500	< 0.00500	
	2-Nitropropane	79-46-9	0.00500	< 0.00500	
	4-Chlorotoluene	106-43-4	0.00200	< 0.00200	

Lab Sample ID: 1209452-005A Client Sample ID: U-003A

	Analyzed: 10/2/2012 1149h			SPLP Prep Date:	9/30/2012	2 1645h
	Units: mg/L	Dilution Factor:	1	Method:	SW8260C	
American West	Compound		CAS Number	Reporting Limit	Analytical Result	Qual
	4-Isopropyltoluene		99-87-6	0.00200	< 0.00200	
	4-Methyl-2-pentanone		108-10-1	0.00500	< 0.00500	
	Acetone		67-64-1	0.0100	< 0.0100	
	Acetonitrile		75-05-8	0.00500	< 0.00500	
463 West 3600 South	Acrolein		107-02-8	0.00500	< 0.00500	
Salt Lake City, UT 84115	Acrylonitrile		107-13-1	0.0100	< 0.0100	
	Allyl chloride		107-05-1	0.00500	< 0.00500	
	Benzene		71-43-2	0.00100	< 0.00100	
Phone: (801) 263-8686	Benzyl chloride		100-44-7	0.00500	< 0.00500	
Toll Free: (888) 263-8686	Bis(2-chloroisopropyl) ether		108-60-1	0.00500	< 0.00500	
Fax: (801) 263-8687	Bromobenzene		108-86-1	0.00200	< 0.00200	
e-mail: awal@awal-labs.com	Bromochloromethane		74-97-5	0.00200	< 0.00200	
	Bromodichloromethane		75-27-4	0.00200	< 0.00200	
web: www.awal-labs.com	Bromoform		75-25-2	0.00200	< 0.00200	
	Bromomethane		74-83-9	0.00500	< 0.00500	
	Butyl acetate		123-86-4	0.00500	< 0.00500	
Kyle F. Gross	Carbon disulfide		75-15-0	0.00200	< 0.00200	
Laboratory Director	Carbon tetrachloride		56-23-5	0.00200	< 0.00200	
	Chlorobenzene		108-90-7	0.00200	< 0.00200	
Jose Rocha	Chloroethane		75-00-3	0.00200	< 0.00200	
QA Officer	Chloroform		67-66-3	0.00200	< 0.00200	
	Chloromethane		74-87-3	0.00300	< 0.00300	
	Chloroprene		126-99-8	0.00200	< 0.00200	
	cis-1,2-Dichloroethene		156-59-2	0.00200	< 0.00200	
	cis-1,3-Dichloropropene		10061-01-5	0.00200	< 0.00200	
	Cyclohexane		110-82-7	0.00200	< 0.00200	
	Cyclohexanone		108-94-1	0.0500	< 0.0500	
	Dibromochloromethane		124-48-1	0.00200	< 0.00200	
	Dibromomethane		74-95-3	0.00200	< 0.00200	
	Dichlorodifluoromethane		75-71-8	0.00200	< 0.00200	
	Ethyl acetate		141-78-6	0.0100	< 0.0100	
	Ethyl ether		60-29-7	0.0100	< 0.0100	
	Ethyl methacrylate		97-63-2	0.00200	< 0.00200	
	Ethylbenzene		100-41-4	0.00200	< 0.00200	
	Hexachlorobutadiene		87-68-3	0.00200	< 0.00200	
	Iodomethane		74-88-4	0.00500	< 0.00500	
	Isobutyl alcohol		78-83-1	0.100	< 0.100	

Report Date: 10/12/2012 Page 27 of 66

Lab Sample ID: 1209452-005A Client Sample ID: U-003A

Analyzed: 10/2/2012 1149h			SPLP Prep Date:	9/30/2012	1645h
Units: mg/L	Dilution Factor:	1	Method:	SW8260C	
West Compound		CAS Number	Reporting Limit	Analytical Result	Qua
Isopropyl acetate		108-21-4	0.0200	< 0.0200	
Isopropyl alcohol		67-63-0	0.0250	< 0.0250	
Isopropylbenzene		98-82-8	0.00200	< 0.00200	
m,p-Xylene		179601-23-1	0.00200	< 0.00200	
00 South Methacrylonitrile		126-98-7	0.00500	< 0.00500	
Γ 84115 Methyl Acetate		79-20-9	0.00500	< 0.00500	
Methyl methacrylate		80-62-6	0.00500	< 0.00500	
Methyl tert-butyl ether		1634-04-4	0.00200	< 0.00200	
3-8686 Methylcyclohexane		108-87-2	0.00200	< 0.00200	
-8686 Methylene chloride		75-09-2	0.00200	0.00268	I
63-8687 n-Amyl acetate		628-63-7	0.00200	< 0.00200	
-labs.com n-Butyl alcohol		71-36-3	0.0500	< 0.0500	
n-Butylbenzene		104-51-8	0.00200	< 0.00200	
labs.com n-Hexane		110-54-3	0.00200	0.0138	
n-Octane		111-65-9	0.00200	< 0.00200	
n-Propylbenzene		103-65-1	0.00200	< 0.00200	
F. Gross Naphthalene		91-20-3	0.00200	0.00351	
Director o-Xylene		95-47-6	0.00200	< 0.00200	
Pentachloroethane		76-01-7	0.00500	< 0.00500	
Rocha Propionitrile		107-12-0	0.0250	< 0.0250	
Officer Propyl acetate		109-60-4	0.00200	< 0.00200	
sec-Butylbenzene		135-98-8	0.00200	< 0.00200	
Styrene		100-42-5	0.00200	< 0.00200	
tert-Butyl alcohol		76-65-0	0.0200	< 0.0200	
tert-Butylbenzene		98-06-6	0.00200	< 0.00200	
Tetrachloroethene		127-18-4	0.00200	< 0.00200	
Tetrahydrofuran		109-99-9	0.00200	< 0.00200	
Toluene		108-88-3	0.00200	< 0.00200	
trans-1,2-Dichloroethene		156-60-5	0.00200	< 0.00200	
trans-1,3-Dichloropropene		10061-02-6	0.00200	< 0.00200	
trans-1,4-Dichloro-2-butene		110-57-6	0.00200	< 0.00200	
Trichloroethene		79-01-6	0.00200	< 0.00200	
Trichlorofluoromethane		75-69-4	0.00200	< 0.00200	
Vinyl acetate		108-05-4	0.0100	< 0.0100	
Vinyl chloride		75-01-4	0.00100	< 0.00100	
Xylenes, Total		1330-20-7	0.00200	< 0.00200	

Report Date: 10/12/2012 Page 28 of 66

Lab Sample ID: 1209452-005A Client Sample ID: U-003A

Analyzed: 10/2/2012 1149h Units: mg/L	Dilution Fact	tor: 1	SPI	SPLP Prep Date: Method:		1645h
Compound			CAS I umber	Reporting Limit	Analytical Result	Qual
TPH C6-C10 (GRO)				0.0200	0.162	
Surrogate	CAS	Result	Amount Spike	ed % REC	Limits	Qual
Surr: Toluene-d8	2037-26-5	0.0491	0.05000	98.2	77-129	
Surr: Dibromofluoromethane	1868-53-7	0.0560	0.05000	112	80-124	
Surr: 4-Bromofluorobenzene	460-00-4	0.0502	0.05000	100	80-128	
Surr: 1,2-Dichloroethane-d4	17060-07-0	0.0608	0.05000	122	72-151	

463 West 3600 South Salt Lake City, UT 84115

B - This analyte was also detected in MB-SPLP-21377.

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the

Client: JBR Environmental Consultants, Inc. **Project:** American Oil Sands 1209452-007A Lab Sample ID: Client Sample ID: U-004A **Collection Date:** 9/25/2012 **Received Date:** 9/26/2012 1100h

Analytical Results

Analyzed: 10/2/2012 1208h

Contact: Jon Schulman

VOAs SPLP 1312 List by GC/MS Method 8260C/5030C

SPLP Prep Date:

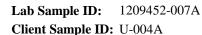
9/30/2012 1645h

	Units: mg/L Dilution Factor	: 1	Method:	SW8260C	
463 West 3600 South t Lake City, UT 84115	Compound	CAS Number	Reporting Limit	Analytical Result	Qual
	1,1,1,2-Tetrachloroethane	630-20-6	0.00200	< 0.00200	
	1,1,1-Trichloroethane	71-55-6	0.00200	< 0.00200	
Phone: (801) 263-8686	1,1,2,2-Tetrachloroethane	79-34-5	0.00200	< 0.00200	
ll Free: (888) 263-8686	1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	0.00200	< 0.00200	
Fax: (801) 263-8687	1,1,2-Trichloroethane	79-00-5	0.00200	< 0.00200	
ail: awal@awal-labs.com	1,1-Dichloropropene	563-58-6	0.00200	< 0.00200	
	1,1-Dichloroethane	75-34-3	0.00200	< 0.00200	
b: www.awal-labs.com	1,1-Dichloroethene	75-35-4	0.00200	< 0.00200	
	1,2,3-Trichlorobenzene	87-61-6	0.00200	< 0.00200	
Kyle F. Gross	1,2,3-Trichloropropane	96-18-4	0.00200	< 0.00200	
Laboratory Director	1,2,3-Trimethylbenzene	526-73-8	0.00200	< 0.00200	
Laboratory Director	1,2,4-Trichlorobenzene	120-82-1	0.00200	< 0.00200	
Jose Rocha	1,2,4-Trimethylbenzene	95-63-6	0.00200	< 0.00200	
QA Officer	1,2-Dibromo-3-chloropropane	96-12-8	0.00500	< 0.00500	
C	1,2-Dibromoethane	106-93-4	0.00200	< 0.00200	
	1,2-Dichlorobenzene	95-50-1	0.00200	< 0.00200	
	1,2-Dichloroethane	107-06-2	0.00200	< 0.00200	
	1,2-Dichloropropane	78-87-5	0.00200	< 0.00200	
	1,3,5-Trimethylbenzene	108-67-8	0.00200	< 0.00200	
	1,3-Dichlorobenzene	541-73-1	0.00200	< 0.00200	
	1,3-Dichloropropane	142-28-9	0.00200	< 0.00200	
	1,4-Dichlorobenzene	106-46-7	0.00200	< 0.00200	
	1,4-Dioxane	123-91-1	0.0500	< 0.0500	
	2,2-Dichloropropane	594-20-7	0.00200	< 0.00200	
	2-Butanone	78-93-3	0.0100	< 0.0100	
	2-Chloroethyl vinyl ether	110-75-8	0.00500	< 0.00500	
	2-Chlorotoluene	95-49-8	0.00200	< 0.00200	
	2-Hexanone	591-78-6	0.00500	< 0.00500	
	2-Nitropropane	79-46-9	0.00500	< 0.00500	

Report Date: 10/12/2012 Page 30 of 66

Lab Sample ID: 1209452-007A Client Sample ID: U-004A

	Analyzed: 10/2/2012 1208h			SPLP Prep Date:	9/30/2012	1645h
	Units: mg/L	Dilution Factor:	1	Method:	SW8260C	
American West	Compound		CAS Number	Reporting Limit	Analytical Result	Qual
	4-Isopropyltoluene		99-87-6	0.00200	< 0.00200	
	4-Methyl-2-pentanone		108-10-1	0.00500	< 0.00500	
	Acetone		67-64-1	0.0100	< 0.0100	
	Acetonitrile		75-05-8	0.00500	< 0.00500	
463 West 3600 South	Acrolein		107-02-8	0.00500	< 0.00500	
Salt Lake City, UT 84115	Acrylonitrile		107-13-1	0.0100	< 0.0100	
	Allyl chloride		107-05-1	0.00500	< 0.00500	
	Benzene		71-43-2	0.00100	< 0.00100	
Phone: (801) 263-8686	Benzyl chloride		100-44-7	0.00500	< 0.00500	
Toll Free: (888) 263-8686	Bis(2-chloroisopropyl) ether		108-60-1	0.00500	< 0.00500	
Fax: (801) 263-8687	Bromobenzene		108-86-1	0.00200	< 0.00200	
e-mail: awal@awal-labs.com	Bromochloromethane		74-97-5	0.00200	< 0.00200	
	Bromodichloromethane		75-27-4	0.00200	< 0.00200	
web: www.awal-labs.com	Bromoform		75-25-2	0.00200	< 0.00200	
	Bromomethane		74-83-9	0.00500	< 0.00500	
	Butyl acetate		123-86-4	0.00500	< 0.00500	
Kyle F. Gross	Carbon disulfide		75-15-0	0.00200	< 0.00200	
Laboratory Director	Carbon tetrachloride		56-23-5	0.00200	< 0.00200	
Less Desta	Chlorobenzene		108-90-7	0.00200	< 0.00200	
Jose Rocha	Chloroethane		75-00-3	0.00200	< 0.00200	
QA Officer	Chloroform		67-66-3	0.00200	< 0.00200	
	Chloromethane		74-87-3	0.00300	< 0.00300	
	Chloroprene		126-99-8	0.00200	< 0.00200	
	cis-1,2-Dichloroethene		156-59-2	0.00200	< 0.00200	
	cis-1,3-Dichloropropene		10061-01-5	0.00200	< 0.00200	
	Cyclohexane		110-82-7	0.00200	< 0.00200	
	Cyclohexanone		108-94-1	0.0500	< 0.0500	
	Dibromochloromethane		124-48-1	0.00200	< 0.00200	
	Dibromomethane		74-95-3	0.00200	< 0.00200	
	Dichlorodifluoromethane		75-71-8	0.00200	< 0.00200	
	Ethyl acetate		141-78-6	0.0100	< 0.0100	
	Ethyl ether		60-29-7	0.0100	< 0.0100	
	Ethyl methacrylate		97-63-2	0.00200	< 0.00200	
	Ethylbenzene		100-41-4	0.00200	< 0.00200	
	Hexachlorobutadiene		87-68-3	0.00200	< 0.00200	
	Iodomethane		74-88-4	0.00500	< 0.00500	
	Isobutyl alcohol		78-83-1	0.100	< 0.100	


Report Date: 10/12/2012 Page 31 of 66

Lab Sample ID: 1209452-007A Client Sample ID: U-004A

	Analyzed: 10/2/2012 1208h			SPLP Prep Date:	9/30/2012	1645h
	Units: mg/L	Dilution Factor:	1	Method:	SW8260C	
American West	Compound		CAS Number	Reporting Limit	Analytical Result	Qual
	Isopropyl acetate		108-21-4	0.0200	< 0.0200	
	Isopropyl alcohol		67-63-0	0.0250	< 0.0250	
	Isopropylbenzene		98-82-8	0.00200	< 0.00200	
	m,p-Xylene		179601-23-1	0.00200	< 0.00200	
463 West 3600 South	Methacrylonitrile		126-98-7	0.00500	< 0.00500	
Salt Lake City, UT 84115	Methyl Acetate		79-20-9	0.00500	< 0.00500	
	Methyl methacrylate		80-62-6	0.00500	< 0.00500	
	Methyl tert-butyl ether		1634-04-4	0.00200	< 0.00200	
Phone: (801) 263-8686	Methylcyclohexane		108-87-2	0.00200	< 0.00200	
Toll Free: (888) 263-8686	Methylene chloride		75-09-2	0.00200	0.00304	В
Fax: (801) 263-8687	n-Amyl acetate		628-63-7	0.00200	< 0.00200	
e-mail: awal@awal-labs.com	n-Butyl alcohol		71-36-3	0.0500	< 0.0500	
	n-Butylbenzene		104-51-8	0.00200	< 0.00200	
web: www.awal-labs.com	n-Hexane		110-54-3	0.00200	< 0.00200	
	n-Octane		111-65-9	0.00200	< 0.00200	
	n-Propylbenzene		103-65-1	0.00200	< 0.00200	
Kyle F. Gross	Naphthalene		91-20-3	0.00200	< 0.00200	
Laboratory Director	o-Xylene		95-47-6	0.00200	< 0.00200	
	Pentachloroethane		76-01-7	0.00500	< 0.00500	
Jose Rocha	Propionitrile		107-12-0	0.0250	< 0.0250	
QA Officer	Propyl acetate		109-60-4	0.00200	< 0.00200	
	sec-Butylbenzene		135-98-8	0.00200	< 0.00200	
	Styrene		100-42-5	0.00200	< 0.00200	
	tert-Butyl alcohol		76-65-0	0.0200	< 0.0200	
	tert-Butylbenzene		98-06-6	0.00200	< 0.00200	
	Tetrachloroethene		127-18-4	0.00200	< 0.00200	
	Tetrahydrofuran		109-99-9	0.00200	< 0.00200	
	Toluene		108-88-3	0.00200	< 0.00200	
	trans-1,2-Dichloroethene		156-60-5	0.00200	< 0.00200	
	trans-1,3-Dichloropropene		10061-02-6	0.00200	< 0.00200	
	trans-1,4-Dichloro-2-butene		110-57-6	0.00200	< 0.00200	
	Trichloroethene		79-01-6	0.00200	< 0.00200	
	Trichlorofluoromethane		75-69-4	0.00200	< 0.00200	
	Vinyl acetate		108-05-4	0.0100	< 0.0100	
	Vinyl chloride		75-01-4	0.00100	< 0.00100	
	Xylenes, Total		1330-20-7	0.00200	< 0.00200	
	TPH C11-C15 (DRO)			0.0200	< 0.0200	

Report Date: 10/12/2012 Page 32 of 66

9/30/2012 1645h Analyzed: 10/2/2012 1208h **SPLP Prep Date:** Units: mg/L **Dilution Factor:** 1 Method: SW8260C CAS Reporting Analytical Compound Number Limit Result Qual TPH C6-C10 (GRO) 0.0200 < 0.0200 CAS Result % REC Limits Qual Surrogate Amount Spiked Surr: Toluene-d8 2037-26-5 0.0505 0.05000 101 77-129 Surr: Dibromofluoromethane 1868-53-7 0.0571 0.05000 80-124 114 Surr: 4-Bromofluorobenzene 460-00-4 0.0559 0.05000 112 80-128 Surr: 1,2-Dichloroethane-d4 17060-07-0 0.05000 122 72-151 0.0610

463 West 3600 South Salt Lake City, UT 84115

B - This analyte was also detected in MB-SPLP-21377.

Phone: (801) 263-8686 Toll Free: (888) 263-8686 Fax: (801) 263-8687 e-mail: awal@awal-labs.com

web: www.awal-labs.com

Kyle F. Gross Laboratory Director

> Jose Rocha QA Officer

LCS-21399

463 West 3600 South

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

QC SUMMARY REPORT

Contact:

Dept:

Jon Schulman

ME

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

Client:	JBR Environmental Consultants, Inc.
Lab Set ID:	1209452
Project:	American Oil Sands

Thallium

Project:	American Oil Sands	Sands QC Type: LCS											
Sample ID	Analyte	Units	Method	Result	Amount Spiked	Original Amount	%REC	Limits	%RPD	RPD Limit	Qual	Date Analyzed	
LCS-21529	Boron	mg/L	SW6010C	2.28	2.000	0	114	80-120				10/10/2012 1018h	
LCS-21529	Chromium	mg/L	SW6010C	0.438	0.4000	0	109	80-120				10/10/2012 1018h	
LCS-21529	Iron	mg/L	SW6010C	2.18	2.000	0	109	80-120				10/10/2012 1018h	
LCS-21529	Magnesium	mg/L	SW6010C	21.4	20.00	0	107	80-120				10/10/2012 1018h	
LCS-21529	Molybdenum	mg/L	SW6010C	0.422	0.4000	0	105	80-120				10/10/2012 1018h	
LCS-21529	Potassium	mg/L	SW6010C	22.2	20.00	0	111	80-120				10/10/2012 1018h	
LCS-21529	Strontium	mg/L	SW6010C	0.434	0.4000	0	109	80-120				10/10/2012 1018h	
LCS-21529	Tin	mg/L	SW6010C	2.10	2.000	0	105	80-120				10/10/2012 1018h	
LCS-21529	Vanadium	mg/L	SW6010C	0.428	0.4000	0	107	80-120				10/10/2012 1018h	
LCS-21585	Calcium	mg/L	SW6010C	19.2	20.00	0	96.1	80-120				10/11/2012 1356h	
LCS-21585	Sodium	mg/L	SW6010C	20.1	20.00	0	101	80-120				10/11/2012 1356h	
LCS-21399	Antimony	mg/L	SW6020A	0.222	0.2000	0	111	85-115				10/4/2012 1753h	
LCS-21399	Arsenic	mg/L	SW6020A	0.223	0.2000	0	112	85-115				10/4/2012 1753h	
LCS-21399	Barium	mg/L	SW6020A	0.208	0.2000	0	104	85-115				10/4/2012 1753h	
LCS-21399	Beryllium	mg/L	SW6020A	0.190	0.2000	0	95.2	85-115				10/4/2012 1753h	
LCS-21399	Cadmium	mg/L	SW6020A	0.207	0.2000	0	104	85-115				10/4/2012 1753h	
LCS-21399	Copper	mg/L	SW6020A	0.222	0.2000	0	111	85-115				10/4/2012 1753h	
LCS-21399	Lead	mg/L	SW6020A	0.209	0.2000	0	104	85-115				10/4/2012 1753h	
LCS-21399	Manganese	mg/L	SW6020A	0.217	0.2000	0	109	85-115				10/4/2012 1753h	
LCS-21399	Nickel	mg/L	SW6020A	0.209	0.2000	0	105	85-115				10/4/2012 1753h	
LCS-21399	Selenium	mg/L	SW6020A	0.214	0.2000	0	107	85-115				10/4/2012 1753h	
LCS-21399	Silver	mg/L	SW6020A	0.208	0.2000	0	104	85-115				10/4/2012 1753h	

Report Date: 10/12/2012 Page 34 of 66

10/4/2012 1753h

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

0.2000

0

97.9

85-115

0.196

SW6020A

mg/L

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

QC SUMMARY REPORT

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

Client:	JBR Environmental Consultants, Inc.	Contact:	Jon Schulman
Lab Set ID:	1209452	Dept:	ME
Project:	American Oil Sands	QC Type:	LCS
	Amour	t Original	

					Amount	Original				RPD		
Sample ID	Analyte	Units	Method	Result	Spiked	Amount	%REC	Limits	%RPD	Limit	Qual	Date Analyzed
LCS-21399	Zinc	mg/L	SW6020A	1.04	1.000	0	104	85-115				10/4/2012 1753h
LCS-21387	Mercury	mg/L	SW7470A	0.00309	0.003330	0	92.8	80-120				10/2/2012 1106h

Report Date: 10/12/2012 Page 35 of 66

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

QC SUMMARY REPORT

Contact:

Dept:

Jon Schulman

ME

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

Client:JBR Environmental Consultants, Inc.Lab Set ID:1209452Project:American Oil Sands

Project:	American Oil Sands					QC Type: MBLK							
Sample ID	Analyte	Units	Method	Result	Amount Spiked	Original Amount	%REC	Limits	%RPD	RPD Limit	Qual	Date Analyzed	
MB-21529	Boron	mg/L	SW6010C	< 0.500				-				10/10/2012 1014h	
MB-21529	Chromium	mg/L	SW6010C	< 0.0100				-				10/10/2012 1014h	
MB-21529	Iron	mg/L	SW6010C	< 0.100				-				10/10/2012 1014h	
MB-21529	Lithium	mg/L	SW6010C	< 0.100				-				10/10/2012 1443h	
MB-21529	Magnesium	mg/L	SW6010C	< 1.00				-				10/10/2012 1014h	
MB-21529	Molybdenum	mg/L	SW6010C	< 0.0200				-				10/10/2012 1014h	
MB-21529	Potassium	mg/L	SW6010C	< 1.00				-				10/10/2012 1014h	
MB-21529	Strontium	mg/L	SW6010C	< 0.0500				-				10/10/2012 1014h	
MB-21529	Tin	mg/L	SW6010C	< 0.500				-				10/10/2012 1014h	
MB-21529	Vanadium	mg/L	SW6010C	< 0.0500				-				10/10/2012 1014h	
MB-21585	Calcium	mg/L	SW6010C	< 1.00				-				10/11/2012 1352h	
MB-21585	Sodium	mg/L	SW6010C	< 1.00				-				10/11/2012 1352h	
MB-SPLP-213	Boron	mg/L	SW6010C	< 0.500				-				10/10/2012 1022h	
MB-SPLP-213	69 Chromium	mg/L	SW6010C	< 0.0100				-				10/10/2012 1022h	
MB-SPLP-213	Iron	mg/L	SW6010C	< 0.100				-				10/10/2012 1022h	
MB-SPLP-213	69 Lithium	mg/L	SW6010C	< 0.100				-				10/10/2012 1445h	
MB-SPLP-213	69 Magnesium	mg/L	SW6010C	< 1.00				-				10/10/2012 1022h	
MB-SPLP-213	69 Molybdenum	mg/L	SW6010C	< 0.0200				-				10/10/2012 1022h	
MB-SPLP-213	69 Potassium	mg/L	SW6010C	< 1.00				-				10/10/2012 1022h	
MB-SPLP-213	S69 Strontium	mg/L	SW6010C	< 0.0500				-				10/10/2012 1022h	
MB-SPLP-213	69 Tin	mg/L	SW6010C	< 0.500				-				10/10/2012 1022h	
MB-SPLP-213	69 Vanadium	mg/L	SW6010C	< 0.0500				-				10/10/2012 1022h	
MB-SPLP-215	Calcium	mg/L	SW6010C	< 1.00				-				10/11/2012 1348h	

Report Date: 10/12/2012 Page 36 of 66

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

QC SUMMARY REPORT

Contact:

Dept:

Jon Schulman

ME

QC Type: MBLK

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

Client:JBR Environmental Consultants, Inc.Lab Set ID:1209452Project:American Oil Sands

					Amount	Original				RPD		
Sample ID	Analyte	Units	Method	Result	Spiked	Amount	%REC	Limits	%RPD	Limit	Qual	Date Analyzed
MB-SPLP-21575	Sodium	mg/L	SW6010C	< 1.00				-				10/11/2012 1348h
MB-21399	Antimony	mg/L	SW6020A	< 0.00200				-				10/4/2012 1735h
MB-21399	Arsenic	mg/L	SW6020A	< 0.00200				-				10/4/2012 1735h
MB-21399	Barium	mg/L	SW6020A	< 0.0100				-				10/4/2012 1735h
MB-21399	Beryllium	mg/L	SW6020A	< 0.00200				-				10/4/2012 1735h
MB-21399	Cadmium	mg/L	SW6020A	< 0.000500				-				10/4/2012 1735h
MB-21399	Copper	mg/L	SW6020A	< 0.00200				-				10/4/2012 1735h
MB-21399	Lead	mg/L	SW6020A	< 0.0100				-				10/4/2012 1735h
MB-21399	Manganese	mg/L	SW6020A	< 0.00200				-				10/4/2012 1735h
MB-21399	Nickel	mg/L	SW6020A	< 0.00200				-				10/4/2012 1735h
MB-21399	Selenium	mg/L	SW6020A	< 0.00200				-				10/4/2012 1735h
MB-21399	Silver	mg/L	SW6020A	< 0.00200				-				10/4/2012 1735h
MB-21399	Thallium	mg/L	SW6020A	< 0.00200				-				10/4/2012 1735h
MB-21399	Zinc	mg/L	SW6020A	< 0.100				-				10/4/2012 1735h
MB-SPLP-21369	Antimony	mg/L	SW6020A	< 0.00200				-				10/4/2012 1744h
MB-SPLP-21369	Arsenic	mg/L	SW6020A	< 0.00200				-				10/4/2012 1744h
MB-SPLP-21369	Barium	mg/L	SW6020A	< 0.0100				-				10/4/2012 1744h
MB-SPLP-21369	Beryllium	mg/L	SW6020A	< 0.00200				-				10/4/2012 1744h
MB-SPLP-21369	Cadmium	mg/L	SW6020A	< 0.000500				-				10/4/2012 1744h
MB-SPLP-21369	Copper	mg/L	SW6020A	< 0.00200				-				10/4/2012 1744h
MB-SPLP-21369	Lead	mg/L	SW6020A	< 0.0100				-				10/4/2012 1744h
MB-SPLP-21369	Manganese	mg/L	SW6020A	< 0.00200				-				10/4/2012 1744h
MB-SPLP-21369	Nickel	mg/L	SW6020A	< 0.00200				-				10/4/2012 1744h

Report Date: 10/12/2012 Page 37 of 66

463 West 3600 South

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

QC SUMMARY REPORT

Contact:

Dept:

Jon Schulman

ME

Kyle F. Gross Laboratory Director

Jose Rocha **QA** Officer

Client: JBR Environmental Consultants, Inc. Lab Set ID: 1209452 Р

Project: Ameri	can Oil Sands		QC Type: MBLK									
Sample ID	Analyte	Units	Method	Result	Amount Spiked	Original Amount	%REC	Limits	%RPD	RPD Limit	Qual	Date Analyzed
MB-SPLP-21369	Selenium	mg/L	SW6020A	< 0.00200				-				10/4/2012 1744h
MB-SPLP-21369	Silver	mg/L	SW6020A	< 0.00200				-				10/4/2012 1744h
MB-SPLP-21369	Thallium	mg/L	SW6020A	< 0.00200				-				10/4/2012 1744h
MB-SPLP-21369	Zinc	mg/L	SW6020A	< 0.100				-				10/4/2012 1744h
MB-21387	Mercury	mg/L	SW7470A	< 0.00100				-				10/2/2012 1104h
MB-SPLP-21369	Mercury	mg/L	SW7470A	< 0.00100				-				10/2/2012 1126h

Report Date: 10/12/2012 Page 38 of 66

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

QC SUMMARY REPORT

Contact:

QC Type: MS

Dept:

Jon Schulman

ME

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

Client:JBR Environmental Consultants, Inc.Lab Set ID:1209452Project:American Oil Sands

					Amount	Original				RPD		
Sample ID	Analyte	Units	Method	Result	Spiked	Amount	%REC	Limits	%RPD	Limit	Qual	Date Analyzed
1209452-001AMS	Calcium	mg/L	SW6010C	21.7	20.00	2.814	94.4	75-125				10/11/2012 1413h
1209452-001AMS	Sodium	mg/L	SW6010C	20.3	20.00	0.3574	99.9	75-125				10/11/2012 1413h
1209452-003AMS	Boron	mg/L	SW6010C	2.09	2.000	0	104	75-125				10/10/2012 1459h
1209452-003AMS	Chromium	mg/L	SW6010C	0.396	0.4000	0	99.0	75-125				10/10/2012 1459h
1209452-003AMS	Iron	mg/L	SW6010C	3.09	2.000	1.178	95.7	75-125				10/10/2012 1459h
1209452-003AMS	Magnesium	mg/L	SW6010C	20.3	20.00	0.1813	101	75-125				10/10/2012 1459h
1209452-003AMS	Molybdenum	mg/L	SW6010C	0.409	0.4000	0	102	75-125				10/10/2012 1459h
1209452-003AMS	Potassium	mg/L	SW6010C	20.8	20.00	0	104	75-125				10/10/2012 1459h
1209452-003AMS	Strontium	mg/L	SW6010C	0.406	0.4000	0.005999	100	75-125				10/10/2012 1459h
1209452-003AMS	Tin	mg/L	SW6010C	2.01	2.000	0	100	75-125				10/10/2012 1459h
1209452-003AMS	Vanadium	mg/L	SW6010C	0.400	0.4000	0	99.9	75-125				10/10/2012 1459h
1209452-001AMS	Antimony	mg/L	SW6020A	0.221	0.2000	0.0001890	110	75-125				10/4/2012 1830h
1209452-001AMS	Arsenic	mg/L	SW6020A	0.223	0.2000	0.0002160	112	75-125				10/4/2012 1830h
1209452-001AMS	Barium	mg/L	SW6020A	0.245	0.2000	0.04131	102	75-125				10/4/2012 1830h
1209452-001AMS	Beryllium	mg/L	SW6020A	0.188	0.2000	0	93.8	75-125				10/4/2012 1830h
1209452-001AMS	Cadmium	mg/L	SW6020A	0.207	0.2000	0.0001210	104	75-125				10/4/2012 1830h
1209452-001AMS	Copper	mg/L	SW6020A	0.218	0.2000	0.001466	108	75-125				10/4/2012 1830h
1209452-001AMS	Lead	mg/L	SW6020A	0.207	0.2000	0.0003300	103	75-125				10/4/2012 1830h
1209452-001AMS	Manganese	mg/L	SW6020A	0.868	0.2000	0.6838	92.3	75-125				10/4/2012 1830h
1209452-001AMS	Nickel	mg/L	SW6020A	0.233	0.2000	0.02773	102	75-125				10/4/2012 1830h
1209452-001AMS	Selenium	mg/L	SW6020A	0.204	0.2000	0.0009600	101	75-125				10/4/2012 1830h
1209452-001AMS	Silver	mg/L	SW6020A	0.205	0.2000	0	102	75-125				10/4/2012 1830h
1209452-001AMS	Thallium	mg/L	SW6020A	0.191	0.2000	0.00005500	95.3	75-125				10/4/2012 1830h

Report Date: 10/12/2012 Page 39 of 66

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

QC SUMMARY REPORT

Client:	JBR Environmental Consultants, Inc.	Contact:	Jon Schulman
Lab Set ID:	1209452	Dept:	ME
Project:	American Oil Sands	QC Type:	MS

Sample ID	Analyte	Units	Method	Result	Amount Spiked	Original Amount	%REC	Limits	%RPD	RPD Limit	Qual	Date Analyzed
1209452-001AMS	Zinc	mg/L	SW6020A	1.09	1.000	0.07212	101	75-125				10/4/2012 1830h
1209452-001AMS	Mercury	mg/L	SW7470A	0.00309	0.003330	0	92.8	80-120				10/2/2012 1113h

Report Date: 10/12/2012 Page 40 of 66

1209452-001AMSD

1209452-001AMSD

Silver

Thallium

463 West 3600 South

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

QC SUMMARY REPORT

Jon Schulman

ME

103

97.1

75-125

75-125

1.09

1.82

20

20

0

0.00005500

Contact:

Dept:

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

Client:	JBR Environmental Consultants, Inc.
Lab Set ID:	1209452
Project:	American Oil Sands

Project: America	an Oil Sands		QC Type: MSD										
Sample ID	Analyte	Units	Method	Result	Amount Spiked	Original Amount	%REC	Limits	%RPD	RPD Limit	Qual	Date Analyzed	
1209452-001AMSD	Calcium	mg/L	SW6010C	21.2	20.00	2.814	92.2	75-125	2.06	20		10/11/2012 1417h	
1209452-001AMSD	Sodium	mg/L	SW6010C	19.9	20.00	0.3574	97.9	75-125	1.94	20		10/11/2012 1417h	
1209452-003AMSD	Boron	mg/L	SW6010C	2.07	2.000	0	104	75-125	0.587	20		10/10/2012 1503h	
1209452-003AMSD	Chromium	mg/L	SW6010C	0.401	0.4000	0	100	75-125	1.27	20		10/10/2012 1503h	
1209452-003AMSD	Iron	mg/L	SW6010C	3.10	2.000	1.178	96.1	75-125	0.299	20		10/10/2012 1503h	
1209452-003AMSD	Magnesium	mg/L	SW6010C	20.2	20.00	0.1813	100	75-125	0.683	20		10/10/2012 1503h	
1209452-003AMSD	Molybdenum	mg/L	SW6010C	0.398	0.4000	0	99.5	75-125	2.59	20		10/10/2012 1503h	
1209452-003AMSD	Potassium	mg/L	SW6010C	20.7	20.00	0	103	75-125	0.448	20		10/10/2012 1503h	
1209452-003AMSD	Strontium	mg/L	SW6010C	0.404	0.4000	0.005999	99.5	75-125	0.546	20		10/10/2012 1503h	
1209452-003AMSD	Tin	mg/L	SW6010C	1.98	2.000	0	99.2	75-125	1.28	20		10/10/2012 1503h	
1209452-003AMSD	Vanadium	mg/L	SW6010C	0.395	0.4000	0	98.8	75-125	1.15	20		10/10/2012 1503h	
1209452-001AMSD	Antimony	mg/L	SW6020A	0.221	0.2000	0.0001890	111	75-125	0.275	20		10/4/2012 1839h	
1209452-001AMSD	Arsenic	mg/L	SW6020A	0.223	0.2000	0.0002160	111	75-125	0.133	20		10/4/2012 1839h	
1209452-001AMSD	Barium	mg/L	SW6020A	0.247	0.2000	0.04131	103	75-125	1.06	20		10/4/2012 1839h	
1209452-001AMSD	Beryllium	mg/L	SW6020A	0.191	0.2000	0	95.6	75-125	1.88	20		10/4/2012 1839h	
1209452-001AMSD	Cadmium	mg/L	SW6020A	0.208	0.2000	0.0001210	104	75-125	0.119	20		10/4/2012 1839h	
1209452-001AMSD	Copper	mg/L	SW6020A	0.217	0.2000	0.001466	108	75-125	0.393	20		10/4/2012 1839h	
1209452-001AMSD	Lead	mg/L	SW6020A	0.202	0.2000	0.0003300	101	75-125	2.45	20		10/4/2012 1839h	
1209452-001AMSD	Manganese	mg/L	SW6020A	0.897	0.2000	0.6838	107	75-125	3.23	20		10/4/2012 1839h	
1209452-001AMSD	Nickel	mg/L	SW6020A	0.235	0.2000	0.02773	104	75-125	0.991	20		10/4/2012 1839h	
1209452-001AMSD	Selenium	mg/L	SW6020A	0.209	0.2000	0.0009600	104	75-125	2.57	20		10/4/2012 1839h	

Report Date: 10/12/2012 Page 41 of 66

10/4/2012 1839h

10/4/2012 1839h

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

0.2000

0.2000

0.207

0.194

SW6020A

SW6020A

mg/L

mg/L

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

Kyle F. Gross Laboratory Director

e-mail: awal@awal-labs.com, web: www.awal-labs.com

QC SUMMARY REPORT

Client:JBR Environmental Consultants, Inc.Contact:Jon SchulmanLab Set ID:1209452Dept:MEProject:American Oil SandsQC Type:MSD

Jose Rocha QA Officer

Sample ID	Analyte	Units	Method	Result	Amount Spiked	Original Amount	%REC	Limits	%RPD	RPD Limit	Qual	Date Analyzed
1209452-001AMSD	Zinc	mg/L	SW6020A	1.09	1.000	0.07212	102	75-125	0.621	20		10/4/2012 1839h
1209452-001AMSD	Mercury	mg/L	SW7470A	0.00312	0.003330	0	93.7	80-120	0.966	20		10/2/2012 1115h

Report Date: 10/12/2012 Page 42 of 66

Sample ID

463 West 3600 South

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

QC SUMMARY REPORT

Contact.

Ion Schulman

Kyle F. Gross Laboratory Director

Qual Date Analyzed

Jose Rocha **QA** Officer

RPD Limit

JBR Environmental Consultants, Inc. **Client:** Lab Set ID **Project:**

	JDR Environmental Constituitis, me.					Contact	. 5011	Sentannan		
D:	1209452					Dept:	WC			
	American Oil Sands					QC Тур	e: DUI			
					Amount	Original				
	Analyte	Units	Method	Result	Spiked	Amount	%REC	Limits	%RPD	
02 <i>A</i>	ADUP Conductivity	µmhos/cm	SW9050A	169		169.0		-	0	

1209452-002ADUP	Conductivity	µmhos/cm	SW9050A	169	169.0	-	0	10	&	10/1/2012 610h
1209452-008ADUP	Conductivity	µmhos/cm	SW9050A	330	332.0	-	0.604	10	&	10/2/2012 710h
1209452-001ADUP	pH @ 25° C	pH Units	SW9040C	6.24	6.270	-	0.48	10		10/1/2012 1630h
1209452-003ADUP	pH @ 25° C	pH Units	SW9040C	5.89	5.890	-	0	10		10/1/2012 1630h
1209452-005ADUP	pH @ 25° C	pH Units	SW9040C	4.51	4.510	-	0	10		10/1/2012 1630h
1209452-007ADUP	pH @ 25° C	pH Units	SW9040C	3.61	3.600	-	0.277	10		10/1/2012 1630h
1209452-002ADUP	pH @ 25° C	pH Units	SW9045D	4.88	4.900	-	0.409	10	Н	9/28/2012 1720h
1209452-008ADUP	pH @ 25° C	pH Units	SW9045D	4.25	4.240	-	0.236	10	Н	10/1/2012 1625h
1209452-001ADUP	Total Dissolved Solids	mg/L	SM2540C	16.0	14.00	-	13.3	5	#	10/2/2012 1215h

- High RPD due to low analyte concentration. In this range, high RPDs are expected.

H - Sample was received outside of the holding time.

& - Analysis is performed on a 1:1 DI water extract for soils.

Report Date: 10/12/2012 Page 43 of 66

463 West 3600 South

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

QC SUMMARY REPORT

Contact:

Dept:

Jon Schulman

WC

Kyle F. Gross Laboratory Director

Jose Rocha **QA** Officer

Client:	JBR Environmental Consultants, Inc.
Lab Set ID:	1209452
Project:	American Oil Sands

Project: Am	erican Oil Sands		QC Type: LCS									
Sample ID	Analyte	Units	Method	Result	Amount Spiked	Original Amount	%REC	Limits	%RPD	RPD Limit	Qual	Date Analyzed
LCS-R45676	Alkalinity (as CaCO3)	mg/L	SM2320B	51,900	50,000	0	104	90-110				10/2/2012 952h
LCS-R45697	Chloride	mg/L	SM4500-Cl-E	25.3	25.00	0	101	90-110				10/1/2012 1822h
LCS-R45625	Conductivity	µmhos/cm	SW9050A	992	1,000	0	99.2	98-102				10/1/2012 610h
LCS-R45666	Conductivity	µmhos/cm	SW9050A	1,010	1,000	0	101	98-102				10/2/2012 710h
LCS-R45731	Oil & Grease	mg/L	E1664A	38.9	40.00	0	97.3	78-114				10/2/2012 1351h
LCS-R45766	Total Recoverable Petroleum Hydrocarbons	mg/L	E1664A-SGT	15.5	20.00	0	77.5	64-132				10/3/2012 1501h
LCS-R45659	pH @ 25° C	pH Units	SW9040C	9.02	9.000	0	100	98-102				10/1/2012 1630h
LCS-R45605	pH @ 25° C	pH Units	SW9045D	8.96	9.000	0	99.6	98-102				9/28/2012 1720h
LCS-R45658	pH @ 25° C	pH Units	SW9045D	8.98	9.000	0	99.8	98-102				10/1/2012 1625h
LCS-R45667	Sulfate	mg/L	SM4500-SO4-E	996	1,000	0	99.6	90-110				10/2/2012 600h
LCS-R45719	Total Dissolved Solids	mg/L	SM2540C	198	205.0	0	96.6	80-120				10/2/2012 1215h
LCS-R45767	Total Organic Carbon	mg/L	SM5310B	10.1	10.00	0	101	90-110				10/3/2012 1535h

Report Date: 10/12/2012 Page 44 of 66

463 West 3600 South

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

OC SUMMARY REPORT

Contact:

Dept:

Jon Schulman

WC

Kyle F. Gross Laboratory Director

Jose Rocha **QA** Officer

JBR Environmental Consultants, Inc. **Client:** Lab Set ID: 1209452 **Project:** American Oil Sande

Project: Americ	an Oil Sands					QC Ty	pe: MBLK	<u>C</u>				
Sample ID	Analyte	Units	Method	Result	Amount Spiked	Original Amount	%REC	Limits	%RPD	RPD Limit	Qual	Date Analyzed
MB-R45676	Alkalinity (as CaCO3)	mg/L	SM2320B	< 10.0				-				10/2/2012 952h
MB-SPLP-21369	Alkalinity (as CaCO3)	mg/L	SM2320B	< 10.0				-				10/2/2012 952h
MB-R45697	Chloride	mg/L	SM4500-Cl-E	< 5.00				-				10/1/2012 1821h
MB-SPLP-21369	Chloride	mg/L	SM4500-Cl-E	< 5.00				-				10/1/2012 1823h
MB-R45625	Conductivity	µmhos/cm	SW9050A	< 10.0				-				10/1/2012 610h
MB-R45666	Conductivity	µmhos/cm	SW9050A	< 10.0				-				10/2/2012 710h
MB-R45731	Oil & Grease	mg/L	E1664A	< 3.00				-				10/2/2012 1351h
MB-SPLP-21369	Oil & Grease	mg/L	E1664A	< 3.00				-				10/2/2012 1351h
MB-R45766	Total Recoverable Petroleum Hydrocarbons	mg/L	E1664A-SGT	< 3.00				-				10/3/2012 1501h
MB-SPLP-21369	Total Recoverable Petroleum Hydrocarbons	mg/L	E1664A-SGT	< 3.00				-				10/3/2012 1501h
MB-R45667	Sulfate	mg/L	SM4500-SO4-E	< 5.00				-				10/2/2012 600h
MB-SPLP-21369	Sulfate	mg/L	SM4500-SO4-E	< 5.00				-				10/2/2012 600h
MB-R45719	Total Dissolved Solids	mg/L	SM2540C	< 10.0				-				10/2/2012 1215h
MB-SPLP-21369	Total Dissolved Solids	mg/L	SM2540C	< 10.0				-				10/2/2012 1215h
MB-R45767	Total Organic Carbon	mg/L	SM5310B	< 1.00				-				10/3/2012 1512h
MB-SPLP-21369	Total Organic Carbon	mg/L	SM5310B	1.01				-				10/3/2012 1815h

Report Date: 10/12/2012 Page 45 of 66

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

QC SUMMARY REPORT

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

Client:	JBR Environmental Consultants, Inc.	Contact:	Jon Schulman
Lab Set ID:	1209452	Dept:	WC
Project:	American Oil Sands	QC Type:	MS

					Amount	Original				RPD		
Sample ID	Analyte	Units	Method	Result	Spiked	Amount	%REC	Limits	%RPD	Limit	Qual	Date Analyzed
1209452-007AMS	Alkalinity (as CaCO3)	mg/L	SM2320B	49.2	50.00	0	98.4	80-120				10/2/2012 952h
1209452-001AMS	Sulfate	mg/L	SM4500-SO4-E	29.7	20.00	11.21	92.5	80-120				10/2/2012 600h
1209452-001AMS	Total Organic Carbon	mg/L	SM5310B	11.3	5.000	6.687	92.7	80-120				10/3/2012 1621h

Analysis performed on an SPLP extract by method 1312.

Report Date: 10/12/2012 Page 46 of 66

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

QC SUMMARY REPORT

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

Client:	JBR Environmental Consultants, Inc.	Contact:	Jon Schulman
Lab Set ID	: 1209452	Dept:	WC
Project:	American Oil Sands	QC Type:	MSD

					Amount	Original				RPD		
Sample ID	Analyte	Units	Method	Result	Spiked	Amount	%REC	Limits	%RPD	Limit	Qual	Date Analyzed
1209452-007AMSD	Alkalinity (as CaCO3)	mg/L	SM2320B	51.0	50.00	0	102	80-120	3.59	10		10/2/2012 952h
1209452-001AMSD	Sulfate	mg/L	SM4500-SO4-E	28.6	20.00	11.21	87.1	80-120	3.74	10		10/2/2012 600h
1209452-001AMSD	Total Organic Carbon	mg/L	SM5310B	11.3	5.000	6.687	92.5	80-120	0.0998	20		10/3/2012 1644h

Analysis performed on an SPLP extract by method 1312.

Report Date: 10/12/2012 Page 47 of 66

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

Kyle F. Gross Laboratory Director

e-mail: awal@awal-labs.com, web: www.awal-labs.com

QC SUMMARY REPORT

Contact:

Dept:

Jon Schulman

WC

Client:JBR Environmental Consultants, Inc.Lab Set ID:1209452Project:American Oil Sands

Jose Rocha QA Officer

Project: A	American Oil Sands					QC Ty	ype: QCS					
Sample ID	Analyte	Units	Method	Result	Amount Spiked	Original Amount	%REC	Limits	%RPD	RPD Limit	Qual	Date Analyzed
QCS-R45731	Oil & Grease	mg/L	E1664A	44.1	40.00	1.900	106	78-114				10/2/2012 1351h
QCS-R45766	Total Recoverable Petroleum Hydrocarbons	mg/L	E1664A-SGT	15.9	20.00	0	79.5	64-132				10/3/2012 1501h

Report Date: 10/12/2012 Page 48 of 66

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

Kyle F. Gross Laboratory Director

e-mail: awal@awal-labs.com, web: www.awal-labs.com

QC SUMMARY REPORT

Client:JBR Environmental Consultants, Inc.Contact:Jon SchulmanLab Set ID:1209452Dept:WCProject:American Oil SandsQC Type:QCSD

Jose Rocha QA Officer

Sample ID	Analyte	Units	Method	Result	Amount Spiked	Original Amount	%REC	Limits	%RPD	RPD Limit	Qual	Date Analyzed
QCSD-R45731	Oil & Grease	mg/L	E1664A	44.3	40.00	1.900	106	78-114	0.452	18		10/2/2012 1351h
QCSD-R45766	Total Recoverable Petroleum Hydrocarbons	mg/L	E1664A-SGT	18.8	20.00	0	94.0	64-132	16.7	34		10/3/2012 1501h

Report Date: 10/12/2012 Page 49 of 66

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

Kyle F. Gross Laboratory Director

e-mail: awal@awal-labs.com, web: www.awal-labs.com

QC SUMMARY REPORT

Client:JBR Environmental Consultants, Inc.Contact:Jon SchulmanLab Set ID:1209452Dept:GCProject:American Oil SandsQC Type:LCS

Jose Rocha QA Officer

Sample ID	Analyte	Units	Method	Result	Amount Spiked	Original Amount	%REC	Limits	%RPD	RPD Limit	Qual	Date Analyzed
LCS-21396	Diesel Range Organics (DRO) (C10-C28)	mg/L	SW8015D	1.51	2.000	0	75.5	48-118				10/2/2012 1409h
LCS-21396	Surr: 4-Bromofluorobenzene	%REC	SW8015D	0.158	0.4000		39.5	18-95				10/2/2012 1409h

Report Date: 10/12/2012 Page 50 of 66

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

QC SUMMARY REPORT

Contact:

Dept:

Jon Schulman

GC

QC Type: MBLK

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

Client:JBR Environmental Consultants, Inc.Lab Set ID:1209452Project:American Oil Sands

Sample ID	Analyte	Units	Method	Result	Amount Spiked	Original Amount	%REC	Limits	%RPD	RPD Limit	Qual	Date Analyzed
MB-21396	Diesel Range Organics (DRO) (C10-C28)	mg/L	SW8015D	< 0.500				-				10/2/2012 1350h
MB-21396	Surr: 4-Bromofluorobenzene	%REC	SW8015D	0.126	0.4000		31.4	18-95				10/2/2012 1350h
MB-SPLP-21369	Diesel Range Organics (DRO) (C10-C28)	mg/L	SW8015D	< 0.500				-				10/2/2012 1624h
MB-SPLP-21369	Surr: 4-Bromofluorobenzene	%REC	SW8015D	0.151	0.4000		37.7	18-95				10/2/2012 1624h

Report Date: 10/12/2012 Page 51 of 66

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

Kyle F. Gross Laboratory Director

e-mail: awal@awal-labs.com, web: www.awal-labs.com

QC SUMMARY REPORT

Contact:

QC Type: MS

Dept:

Jon Schulman

GC

Client:JBR Environmental Consultants, Inc.Lab Set ID:1209452Project:American Oil Sands

Jose Rocha QA Officer

	A	T I • 4		Densk	Amount Spiked	Original	A/ DEC	T		RPD Limit	0	Dete Andread
Sample ID	Analyte	Units	Method	Result	Spiked	Amount	%REC	Limits	%RPD	Linnt	Qual	Date Analyzed
1209452-001AMS	Diesel Range Organics (DRO) (C10-C28)	mg/L	SW8015D	2.21	2.000	0.6755	76.6	60-161				10/2/2012 1448h
1209452-001AMS	Surr: 4-Bromofluorobenzene	%REC	SW8015D	0.180	0.4000		45.0	10-190				10/2/2012 1448h

Analysis performed on an SPLP extract by method 1312.

Report Date: 10/12/2012 Page 52 of 66

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

Kyle F. Gross Laboratory Director

e-mail: awal@awal-labs.com, web: www.awal-labs.com

Jose Rocha QA Officer

QC SUMMARY REPORT

Client:JBR Environmental Consultants, Inc.Contact:Jon SchulmanLab Set ID:1209452Dept:GCProject:American Oil SandsQC Type:MSD

Sample ID	Analyte	Units	Method	Result	Amount Spiked	Original Amount	%REC	Limits	%RPD	RPD Limit	Qual	Date Analyzed
1209452-001AMSD	Diesel Range Organics (DRO) (C10-C28)	mg/L	SW8015D	2.10	2.000	0.6755	71.1	60-161	5.12	25		10/2/2012 1507h
1209452-001AMSD	Surr: 4-Bromofluorobenzene	%REC	SW8015D	0.164	0.4000		40.9	10-190				10/2/2012 1507h

Analysis performed on an SPLP extract by method 1312.

Report Date: 10/12/2012 Page 53 of 66

LCS VOC 100212A

Surr: Toluene-d8

%REC

SW8260C

463 West 3600 South

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

QC SUMMARY REPORT

Contact:

Dept:

Jon Schulman

MSVOA

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

Client: JBR Environmental Consultants, Inc. Lab Set ID: 1209452 Project: American Oil Sands

Project: America	an Oil Sands					QC Ty	pe: LCS					
Sample ID	Analyte	Units	Method	Result	Amount Spiked	Original Amount	%REC	Limits	%RPD	RPD Limit	Qual	Date Analyzed
LCS VOC 100212A	1,1,1-Trichloroethane	mg/L	SW8260C	0.0271	0.02000	0	136	49.9-140				10/2/2012 703h
LCS VOC 100212A	1,1-Dichloroethene	mg/L	SW8260C	0.0266	0.02000	0	133	46-171				10/2/2012 703h
LCS VOC 100212A	1,2-Dichlorobenzene	mg/L	SW8260C	0.0205	0.02000	0	103	67-135				10/2/2012 703h
LCS VOC 100212A	1,2-Dichloroethane	mg/L	SW8260C	0.0250	0.02000	0	125	60-137				10/2/2012 703h
LCS VOC 100212A	1,2-Dichloropropane	mg/L	SW8260C	0.0198	0.02000	0	99.0	59-135				10/2/2012 703h
LCS VOC 100212A	Benzene	mg/L	SW8260C	0.0214	0.02000	0	107	62-127				10/2/2012 703h
LCS VOC 100212A	Chlorobenzene	mg/L	SW8260C	0.0208	0.02000	0	104	63-140				10/2/2012 703h
LCS VOC 100212A	Chloroform	mg/L	SW8260C	0.0241	0.02000	0	120	67-132				10/2/2012 703h
LCS VOC 100212A	Ethylbenzene	mg/L	SW8260C	0.0218	0.02000	0	109	55-133				10/2/2012 703h
LCS VOC 100212A	Isopropylbenzene	mg/L	SW8260C	0.0207	0.02000	0	104	60-147				10/2/2012 703h
LCS VOC 100212A	Methyl tert-butyl ether	mg/L	SW8260C	0.0282	0.02000	0	141	37-189				10/2/2012 703h
LCS VOC 100212A	Methylene chloride	mg/L	SW8260C	0.0248	0.02000	0	124	32-185				10/2/2012 703h
LCS VOC 100212A	Naphthalene	mg/L	SW8260C	0.0125	0.02000	0	62.4	28-136				10/2/2012 703h
LCS VOC 100212A	Tetrahydrofuran	mg/L	SW8260C	0.0146	0.02000	0	73.0	43-146				10/2/2012 703h
LCS VOC 100212A	Toluene	mg/L	SW8260C	0.0209	0.02000	0	105	64-128				10/2/2012 703h
LCS VOC 100212A	Trichloroethene	mg/L	SW8260C	0.0226	0.02000	0	113	54-152				10/2/2012 703h
LCS VOC 100212A	Xylenes, Total	mg/L	SW8260C	0.0656	0.06000	0	109	52-134				10/2/2012 703h
LCS VOC 100212A	Surr: 1,2-Dichloroethane-d4	%REC	SW8260C	0.0619	0.05000		124	76-138				10/2/2012 703h
LCS VOC 100212A	Surr: 4-Bromofluorobenzene	%REC	SW8260C	0.0489	0.05000		97.8	77-121				10/2/2012 703h
LCS VOC 100212A	Surr: Dibromofluoromethane	%REC	SW8260C	0.0569	0.05000		114	67-128				10/2/2012 703h

Report Date: 10/12/2012 Page 54 of 66

10/2/2012 703h

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

0.05000

95.0

81-135

0.0475

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

QC SUMMARY REPORT

Contact:

QC Type: MBLK

Dept:

Jon Schulman

MSVOA

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

Client: JBR Environmental Consultants, Inc. Lab Set ID: 1209452 Project: American Oil Sands

					Amount	Original				RPD		
Sample ID	Analyte	Units	Method	Result	Spiked	Amount	%REC	Limits	%RPD	Limit	Qual	Date Analyzed
MB VOC 100212A	1,1,1,2-Tetrachloroethane	mg/L	SW8260C	< 0.00200				-				10/2/2012 741h
MB VOC 100212A	1,1,1-Trichloroethane	mg/L	SW8260C	< 0.00200				-				10/2/2012 741h
MB VOC 100212A	1,1,2,2-Tetrachloroethane	mg/L	SW8260C	< 0.00200				-				10/2/2012 741h
MB VOC 100212A	1,1,2-Trichloro-1,2,2- trifluoroethane	mg/L	SW8260C	< 0.00200				-				10/2/2012 741h
MB VOC 100212A	1,1,2-Trichloroethane	mg/L	SW8260C	< 0.00200				-				10/2/2012 741h
MB VOC 100212A	1,1-Dichloropropene	mg/L	SW8260C	< 0.00200				-				10/2/2012 741h
MB VOC 100212A	1,1-Dichloroethane	mg/L	SW8260C	< 0.00200				-				10/2/2012 741h
MB VOC 100212A	1,1-Dichloroethene	mg/L	SW8260C	< 0.00200				-				10/2/2012 741h
MB VOC 100212A	1,2,3-Trichlorobenzene	mg/L	SW8260C	< 0.00200				-				10/2/2012 741h
MB VOC 100212A	1,2,3-Trichloropropane	mg/L	SW8260C	< 0.00200				-				10/2/2012 741h
MB VOC 100212A	1,2,3-Trimethylbenzene	mg/L	SW8260C	< 0.00200				-				10/2/2012 741h
MB VOC 100212A	1,2,4-Trichlorobenzene	mg/L	SW8260C	< 0.00200				-				10/2/2012 741h
MB VOC 100212A	1,2,4-Trimethylbenzene	mg/L	SW8260C	< 0.00200				-				10/2/2012 741h
MB VOC 100212A	1,2-Dibromo-3-chloropropane	mg/L	SW8260C	< 0.00500				-				10/2/2012 741h
MB VOC 100212A	1,2-Dibromoethane	mg/L	SW8260C	< 0.00200				-				10/2/2012 741h
MB VOC 100212A	1,2-Dichlorobenzene	mg/L	SW8260C	< 0.00200				-				10/2/2012 741h
MB VOC 100212A	1,2-Dichloroethane	mg/L	SW8260C	< 0.00200				-				10/2/2012 741h
MB VOC 100212A	1,2-Dichloropropane	mg/L	SW8260C	< 0.00200				-				10/2/2012 741h
MB VOC 100212A	1,3,5-Trimethylbenzene	mg/L	SW8260C	< 0.00200				-				10/2/2012 741h
MB VOC 100212A	1,3-Dichlorobenzene	mg/L	SW8260C	< 0.00200				-				10/2/2012 741h
MB VOC 100212A	1,3-Dichloropropane	mg/L	SW8260C	< 0.00200				-				10/2/2012 741h
MB VOC 100212A	1,4-Dichlorobenzene	mg/L	SW8260C	< 0.00200				-				10/2/2012 741h

Report Date: 10/12/2012 Page 55 of 66

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

QC SUMMARY REPORT

Contact:

QC Type: MBLK

Dept:

Jon Schulman

MSVOA

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

Client: JBR Environmental Consultants, Inc. Lab Set ID: 1209452 Project: American Oil Sands

					Amount	Original				RPD		
Sample ID	Analyte	Units	Method	Result	Spiked	Amount	%REC	Limits	%RPD	Limit	Qual	Date Analyzed
MB VOC 100212A	1,4-Dioxane	mg/L	SW8260C	< 0.0500				-				10/2/2012 741h
MB VOC 100212A	2,2-Dichloropropane	mg/L	SW8260C	< 0.00200				-				10/2/2012 741h
MB VOC 100212A	2-Butanone	mg/L	SW8260C	< 0.0100				-				10/2/2012 741h
MB VOC 100212A	2-Chloroethyl vinyl ether	mg/L	SW8260C	< 0.00500				-				10/2/2012 741h
MB VOC 100212A	2-Chlorotoluene	mg/L	SW8260C	< 0.00200				-				10/2/2012 741h
MB VOC 100212A	2-Hexanone	mg/L	SW8260C	< 0.00500				-				10/2/2012 741h
MB VOC 100212A	2-Nitropropane	mg/L	SW8260C	< 0.00500				-				10/2/2012 741h
MB VOC 100212A	4-Chlorotoluene	mg/L	SW8260C	< 0.00200				-				10/2/2012 741h
MB VOC 100212A	4-Isopropyltoluene	mg/L	SW8260C	< 0.00200				-				10/2/2012 741h
MB VOC 100212A	4-Methyl-2-pentanone	mg/L	SW8260C	< 0.00500				-				10/2/2012 741h
MB VOC 100212A	Acetone	mg/L	SW8260C	< 0.0100				-				10/2/2012 741h
MB VOC 100212A	Acetonitrile	mg/L	SW8260C	< 0.00500				-				10/2/2012 741h
MB VOC 100212A	Acrolein	mg/L	SW8260C	< 0.00500				-				10/2/2012 741h
MB VOC 100212A	Acrylonitrile	mg/L	SW8260C	< 0.0100				-				10/2/2012 741h
MB VOC 100212A	Allyl chloride	mg/L	SW8260C	< 0.00500				-				10/2/2012 741h
MB VOC 100212A	Benzene	mg/L	SW8260C	< 0.00200				-				10/2/2012 741h
MB VOC 100212A	Benzyl chloride	mg/L	SW8260C	< 0.00500				-				10/2/2012 741h
MB VOC 100212A	Bis(2-chloroisopropyl) ether	mg/L	SW8260C	< 0.00500				-				10/2/2012 741h
MB VOC 100212A	Bromobenzene	mg/L	SW8260C	< 0.00200				-				10/2/2012 741h
MB VOC 100212A	Bromochloromethane	mg/L	SW8260C	< 0.00200				-				10/2/2012 741h
MB VOC 100212A	Bromodichloromethane	mg/L	SW8260C	< 0.00200				-				10/2/2012 741h
MB VOC 100212A	Bromoform	mg/L	SW8260C	< 0.00200				-				10/2/2012 741h
MB VOC 100212A	Bromomethane	mg/L	SW8260C	< 0.00500				-				10/2/2012 741h

Report Date: 10/12/2012 Page 56 of 66

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

QC SUMMARY REPORT

Contact:

QC Type: MBLK

Dept:

Jon Schulman

MSVOA

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

Client: JBR Environmental Consultants, Inc. Lab Set ID: 1209452 Project: American Oil Sands

					Amount	Original				RPD		
Sample ID	Analyte	Units	Method	Result	Spiked	Amount	%REC	Limits	%RPD	Limit	Qual	Date Analyzed
MB VOC 100212A	Butyl acetate	mg/L	SW8260C	< 0.0100				-				10/2/2012 741h
MB VOC 100212A	Carbon disulfide	mg/L	SW8260C	< 0.00200				-				10/2/2012 741h
MB VOC 100212A	Carbon tetrachloride	mg/L	SW8260C	< 0.00200				-				10/2/2012 741h
MB VOC 100212A	Chlorobenzene	mg/L	SW8260C	< 0.00200				-				10/2/2012 741h
MB VOC 100212A	Chloroethane	mg/L	SW8260C	< 0.00200				-				10/2/2012 741h
MB VOC 100212A	Chloroform	mg/L	SW8260C	< 0.00200				-				10/2/2012 741h
MB VOC 100212A	Chloromethane	mg/L	SW8260C	< 0.00300				-				10/2/2012 741h
MB VOC 100212A	Chloroprene	mg/L	SW8260C	< 0.00200				-				10/2/2012 741h
MB VOC 100212A	cis-1,2-Dichloroethene	mg/L	SW8260C	< 0.00200				-				10/2/2012 741h
MB VOC 100212A	cis-1,3-Dichloropropene	mg/L	SW8260C	< 0.00200				-				10/2/2012 741h
MB VOC 100212A	Cyclohexane	mg/L	SW8260C	< 0.00200				-				10/2/2012 741h
MB VOC 100212A	Cyclohexanone	mg/L	SW8260C	< 0.0500				-				10/2/2012 741h
MB VOC 100212A	Dibromochloromethane	mg/L	SW8260C	< 0.00200				-				10/2/2012 741h
MB VOC 100212A	Dibromomethane	mg/L	SW8260C	< 0.00200				-				10/2/2012 741h
MB VOC 100212A	Dichlorodifluoromethane	mg/L	SW8260C	< 0.00200				-				10/2/2012 741h
MB VOC 100212A	Ethyl acetate	mg/L	SW8260C	< 0.0100				-				10/2/2012 741h
MB VOC 100212A	Ethyl ether	mg/L	SW8260C	< 0.0100				-				10/2/2012 741h
MB VOC 100212A	Ethyl methacrylate	mg/L	SW8260C	< 0.00200				-				10/2/2012 741h
MB VOC 100212A	Ethylbenzene	mg/L	SW8260C	< 0.00200				-				10/2/2012 741h
MB VOC 100212A	Hexachlorobutadiene	mg/L	SW8260C	< 0.00200				-				10/2/2012 741h
MB VOC 100212A	Iodomethane	mg/L	SW8260C	< 0.00500				-				10/2/2012 741h
MB VOC 100212A	Isobutyl alcohol	mg/L	SW8260C	< 0.100				-				10/2/2012 741h
MB VOC 100212A	Isopropyl acetate	mg/L	SW8260C	< 0.0100				-				10/2/2012 741h

Report Date: 10/12/2012 Page 57 of 66

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

QC SUMMARY REPORT

Contact:

QC Type: MBLK

Dept:

Jon Schulman

MSVOA

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

Client: JBR Environmental Consultants, Inc. Lab Set ID: 1209452 Project: American Oil Sands

					Amount	Original				RPD		
Sample ID	Analyte	Units	Method	Result	Spiked	Amount	%REC	Limits	%RPD	Limit	Qual	Date Analyzed
MB VOC 100212A	Isopropyl alcohol	mg/L	SW8260C	< 0.0400				-				10/2/2012 741h
MB VOC 100212A	Isopropylbenzene	mg/L	SW8260C	< 0.00200				-				10/2/2012 741h
MB VOC 100212A	m,p-Xylene	mg/L	SW8260C	< 0.00200				-				10/2/2012 741h
MB VOC 100212A	Methacrylonitrile	mg/L	SW8260C	< 0.00500				-				10/2/2012 741h
MB VOC 100212A	Methyl Acetate	mg/L	SW8260C	< 0.00500				-				10/2/2012 741h
MB VOC 100212A	Methyl methacrylate	mg/L	SW8260C	< 0.00500				-				10/2/2012 741h
MB VOC 100212A	Methyl tert-butyl ether	mg/L	SW8260C	< 0.00200				-				10/2/2012 741h
MB VOC 100212A	Methylcyclohexane	mg/L	SW8260C	< 0.00200				-				10/2/2012 741h
MB VOC 100212A	Methylene chloride	mg/L	SW8260C	< 0.00200				-				10/2/2012 741h
MB VOC 100212A	n-Amyl acetate	mg/L	SW8260C	< 0.0100				-				10/2/2012 741h
MB VOC 100212A	Naphthalene	mg/L	SW8260C	< 0.00200				-				10/2/2012 741h
MB VOC 100212A	n-Butyl alcohol	mg/L	SW8260C	< 0.100				-				10/2/2012 741h
MB VOC 100212A	n-Butylbenzene	mg/L	SW8260C	< 0.00200				-				10/2/2012 741h
MB VOC 100212A	n-Hexane	mg/L	SW8260C	< 0.00200				-				10/2/2012 741h
MB VOC 100212A	n-Octane	mg/L	SW8260C	< 0.00200				-				10/2/2012 741h
MB VOC 100212A	n-Propylbenzene	mg/L	SW8260C	< 0.00200				-				10/2/2012 741h
MB VOC 100212A	o-Xylene	mg/L	SW8260C	< 0.00200				-				10/2/2012 741h
MB VOC 100212A	Pentachloroethane	mg/L	SW8260C	< 0.00500				-				10/2/2012 741h
MB VOC 100212A	Propionitrile	mg/L	SW8260C	< 0.0250				-				10/2/2012 741h
MB VOC 100212A	Propyl acetate	mg/L	SW8260C	< 0.0100				-				10/2/2012 741h
MB VOC 100212A	sec-Butylbenzene	mg/L	SW8260C	< 0.00200				-				10/2/2012 741h
MB VOC 100212A	Styrene	mg/L	SW8260C	< 0.00200				-				10/2/2012 741h
MB VOC 100212A	tert-Butyl alcohol	mg/L	SW8260C	< 0.0200				-				10/2/2012 741h

Report Date: 10/12/2012 Page 58 of 66

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

QC SUMMARY REPORT

Contact:

QC Type: MBLK

Dept:

Jon Schulman

MSVOA

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

Client: JBR Environmental Consultants, Inc. Lab Set ID: 1209452 Project: American Oil Sands

					Amount	Original				RPD		
Sample ID	Analyte	Units	Method	Result	Spiked	Amount	%REC	Limits	%RPD	Limit	Qual	Date Analyzed
MB VOC 100212A	tert-Butylbenzene	mg/L	SW8260C	< 0.00200				-				10/2/2012 741h
MB VOC 100212A	Tetrachloroethene	mg/L	SW8260C	< 0.00200				-				10/2/2012 741h
MB VOC 100212A	Tetrahydrofuran	mg/L	SW8260C	< 0.00200				-				10/2/2012 741h
MB VOC 100212A	Toluene	mg/L	SW8260C	< 0.00200				-				10/2/2012 741h
MB VOC 100212A	TPH C11-C15 (DRO)	mg/L	SW8260C	< 0.0200				-				10/2/2012 741h
MB VOC 100212A	TPH C6-C10 (GRO)	mg/L	SW8260C	< 0.0200				-				10/2/2012 741h
MB VOC 100212A	trans-1,2-Dichloroethene	mg/L	SW8260C	< 0.00200				-				10/2/2012 741h
MB VOC 100212A	trans-1,3-Dichloropropene	mg/L	SW8260C	< 0.00200				-				10/2/2012 741h
MB VOC 100212A	trans-1,4-Dichloro-2-butene	mg/L	SW8260C	< 0.00200				-				10/2/2012 741h
MB VOC 100212A	Trichloroethene	mg/L	SW8260C	< 0.00200				-				10/2/2012 741h
MB VOC 100212A	Trichlorofluoromethane	mg/L	SW8260C	< 0.00200				-				10/2/2012 741h
MB VOC 100212A	Vinyl acetate	mg/L	SW8260C	< 0.0100				-				10/2/2012 741h
MB VOC 100212A	Vinyl chloride	mg/L	SW8260C	< 0.00100				-				10/2/2012 741h
MB VOC 100212A	Xylenes, Total	mg/L	SW8260C	< 0.00200				-				10/2/2012 741h
MB VOC 100212A	Surr: 1,2-Dichloroethane-d4	%REC	SW8260C	0.0620	0.05000		124	76-138				10/2/2012 741h
MB VOC 100212A	Surr: 4-Bromofluorobenzene	%REC	SW8260C	0.0557	0.05000		111	77-121				10/2/2012 741h
MB VOC 100212A	Surr: Dibromofluoromethane	%REC	SW8260C	0.0559	0.05000		112	67-128				10/2/2012 741h
MB VOC 100212A	Surr: Toluene-d8	%REC	SW8260C	0.0496	0.05000		99.2	81-135				10/2/2012 741h
MB-SPLP-21377	1,1,1,2-Tetrachloroethane	mg/L	SW8260C	< 0.00200				-				10/2/2012 1051h
MB-SPLP-21377	1,1,1-Trichloroethane	mg/L	SW8260C	< 0.00200				-				10/2/2012 1051h
MB-SPLP-21377	1,1,2,2-Tetrachloroethane	mg/L	SW8260C	< 0.00200				-				10/2/2012 1051h
MB-SPLP-21377	1,1,2-Trichloro-1,2,2- trifluoroethane	mg/L	SW8260C	< 0.00200				-				10/2/2012 1051h

Report Date: 10/12/2012 Page 59 of 66

MB-SPLP-21377

2-Chlorotoluene

463 West 3600 South

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

QC SUMMARY REPORT

Jon Schulman

MSVOA

Contact:

Dept:

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

Client: JBR Environmental Consultants, Inc. Lab Set ID: 1209452 Project: American Oil Sands

Project: Americ	can Oil Sands					QC Ty	pe: MBL	X				
Sample ID	Analyte	Units	Method	Result	Amount Spiked	Original Amount	%REC	Limits	%RPD	RPD Limit	Qual	Date Analyzed
MB-SPLP-21377	1,1,2-Trichloroethane	mg/L	SW8260C	< 0.00200				-				10/2/2012 1051h
MB-SPLP-21377	1,1-Dichloropropene	mg/L	SW8260C	< 0.00200				-				10/2/2012 1051h
MB-SPLP-21377	1,1-Dichloroethane	mg/L	SW8260C	< 0.00200				-				10/2/2012 1051h
MB-SPLP-21377	1,1-Dichloroethene	mg/L	SW8260C	< 0.00200				-				10/2/2012 1051h
MB-SPLP-21377	1,2,3-Trichlorobenzene	mg/L	SW8260C	< 0.00200				-				10/2/2012 1051h
MB-SPLP-21377	1,2,3-Trichloropropane	mg/L	SW8260C	< 0.00200				-				10/2/2012 1051h
MB-SPLP-21377	1,2,3-Trimethylbenzene	mg/L	SW8260C	< 0.00200				-				10/2/2012 1051h
MB-SPLP-21377	1,2,4-Trichlorobenzene	mg/L	SW8260C	< 0.00200				-				10/2/2012 1051h
MB-SPLP-21377	1,2,4-Trimethylbenzene	mg/L	SW8260C	< 0.00200				-				10/2/2012 1051h
MB-SPLP-21377	1,2-Dibromo-3-chloropropane	mg/L	SW8260C	< 0.00500				-				10/2/2012 1051h
MB-SPLP-21377	1,2-Dibromoethane	mg/L	SW8260C	< 0.00200				-				10/2/2012 1051h
MB-SPLP-21377	1,2-Dichlorobenzene	mg/L	SW8260C	< 0.00200				-				10/2/2012 1051h
MB-SPLP-21377	1,2-Dichloroethane	mg/L	SW8260C	< 0.00200				-				10/2/2012 1051h
MB-SPLP-21377	1,2-Dichloropropane	mg/L	SW8260C	< 0.00200				-				10/2/2012 1051h
MB-SPLP-21377	1,3,5-Trimethylbenzene	mg/L	SW8260C	< 0.00200				-				10/2/2012 1051h
MB-SPLP-21377	1,3-Dichlorobenzene	mg/L	SW8260C	< 0.00200				-				10/2/2012 1051h
MB-SPLP-21377	1,3-Dichloropropane	mg/L	SW8260C	< 0.00200				-				10/2/2012 1051h
MB-SPLP-21377	1,4-Dichlorobenzene	mg/L	SW8260C	< 0.00200				-				10/2/2012 1051h
MB-SPLP-21377	1,4-Dioxane	mg/L	SW8260C	< 0.0500				-				10/2/2012 1051h
MB-SPLP-21377	2,2-Dichloropropane	mg/L	SW8260C	< 0.00200				-				10/2/2012 1051h
MB-SPLP-21377	2-Butanone	mg/L	SW8260C	< 0.0100				-				10/2/2012 1051h
MB-SPLP-21377	2-Chloroethyl vinyl ether	mg/L	SW8260C	< 0.00500				-				10/2/2012 1051h

Report Date: 10/12/2012 Page 60 of 66

10/2/2012 1051h

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

< 0.00200

SW8260C

mg/L

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

QC SUMMARY REPORT

Contact:

QC Type: MBLK

Dept:

Jon Schulman

MSVOA

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

Client: JBR Environmental Consultants, Inc. Lab Set ID: 1209452 Project: American Oil Sands

Sample ID	Analyte	Units	Method	Result	Amount Spiked	Original Amount	%REC	Limits	%RPD	RPD Limit	Qual	Date Analyzed
MB-SPLP-21377	2-Hexanone	mg/L	SW8260C	< 0.00500				-				10/2/2012 1051h
MB-SPLP-21377	2-Nitropropane	mg/L	SW8260C	< 0.00500				-				10/2/2012 1051h
MB-SPLP-21377	4-Chlorotoluene	mg/L	SW8260C	< 0.00200				-				10/2/2012 1051h
MB-SPLP-21377	4-Isopropyltoluene	mg/L	SW8260C	< 0.00200				-				10/2/2012 1051h
MB-SPLP-21377	4-Methyl-2-pentanone	mg/L	SW8260C	< 0.00500				-				10/2/2012 1051h
MB-SPLP-21377	Acetone	mg/L	SW8260C	< 0.0100				-				10/2/2012 1051h
MB-SPLP-21377	Acetonitrile	mg/L	SW8260C	< 0.00500				-				10/2/2012 1051h
MB-SPLP-21377	Acrolein	mg/L	SW8260C	< 0.00500				-				10/2/2012 1051h
MB-SPLP-21377	Acrylonitrile	mg/L	SW8260C	< 0.0100				-				10/2/2012 1051h
MB-SPLP-21377	Allyl chloride	mg/L	SW8260C	< 0.00500				-				10/2/2012 1051h
MB-SPLP-21377	Benzene	mg/L	SW8260C	< 0.00200				-				10/2/2012 1051h
MB-SPLP-21377	Benzyl chloride	mg/L	SW8260C	< 0.00500				-				10/2/2012 1051h
MB-SPLP-21377	Bis(2-chloroisopropyl) ether	mg/L	SW8260C	< 0.00500				-				10/2/2012 1051h
MB-SPLP-21377	Bromobenzene	mg/L	SW8260C	< 0.00200				-				10/2/2012 1051h
MB-SPLP-21377	Bromochloromethane	mg/L	SW8260C	< 0.00200				-				10/2/2012 1051h
MB-SPLP-21377	Bromodichloromethane	mg/L	SW8260C	< 0.00200				-				10/2/2012 1051h
MB-SPLP-21377	Bromoform	mg/L	SW8260C	< 0.00200				-				10/2/2012 1051h
MB-SPLP-21377	Bromomethane	mg/L	SW8260C	< 0.00500				-				10/2/2012 1051h
MB-SPLP-21377	Butyl acetate	mg/L	SW8260C	< 0.0100				-				10/2/2012 1051h
MB-SPLP-21377	Carbon disulfide	mg/L	SW8260C	< 0.00200				-				10/2/2012 1051h
MB-SPLP-21377	Carbon tetrachloride	mg/L	SW8260C	< 0.00200				-				10/2/2012 1051h
MB-SPLP-21377	Chlorobenzene	mg/L	SW8260C	< 0.00200				-				10/2/2012 1051h
MB-SPLP-21377	Chloroethane	mg/L	SW8260C	< 0.00200				-				10/2/2012 1051h

Report Date: 10/12/2012 Page 61 of 66

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

QC SUMMARY REPORT

Contact:

QC Type: MBLK

Dept:

Jon Schulman

MSVOA

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

Client: JBR Environmental Consultants, Inc. Lab Set ID: 1209452 Project: American Oil Sands

Sample ID	Analyte	Units	Method	Result	Amount Spiked	Original Amount	%REC	Limits	%RPD	RPD Limit	Qual	Date Analyzed
MB-SPLP-21377	Chloroform	mg/L	SW8260C	< 0.00200				-				10/2/2012 1051h
MB-SPLP-21377	Chloromethane	mg/L	SW8260C	< 0.00300				-				10/2/2012 1051h
MB-SPLP-21377	Chloroprene	mg/L	SW8260C	< 0.00200				-				10/2/2012 1051h
MB-SPLP-21377	cis-1,2-Dichloroethene	mg/L	SW8260C	< 0.00200				-				10/2/2012 1051h
MB-SPLP-21377	cis-1,3-Dichloropropene	mg/L	SW8260C	< 0.00200				-				10/2/2012 1051h
MB-SPLP-21377	Cyclohexane	mg/L	SW8260C	< 0.00200				-				10/2/2012 1051h
MB-SPLP-21377	Cyclohexanone	mg/L	SW8260C	< 0.0500				-				10/2/2012 1051h
MB-SPLP-21377	Dibromochloromethane	mg/L	SW8260C	< 0.00200				-				10/2/2012 1051h
MB-SPLP-21377	Dibromomethane	mg/L	SW8260C	< 0.00200				-				10/2/2012 1051h
MB-SPLP-21377	Dichlorodifluoromethane	mg/L	SW8260C	< 0.00200				-				10/2/2012 1051h
MB-SPLP-21377	Ethyl acetate	mg/L	SW8260C	< 0.0100				-				10/2/2012 1051h
MB-SPLP-21377	Ethyl ether	mg/L	SW8260C	< 0.0100				-				10/2/2012 1051h
MB-SPLP-21377	Ethyl methacrylate	mg/L	SW8260C	< 0.00200				-				10/2/2012 1051h
MB-SPLP-21377	Ethylbenzene	mg/L	SW8260C	< 0.00200				-				10/2/2012 1051h
MB-SPLP-21377	Hexachlorobutadiene	mg/L	SW8260C	< 0.00200				-				10/2/2012 1051h
MB-SPLP-21377	Iodomethane	mg/L	SW8260C	< 0.00500				-				10/2/2012 1051h
MB-SPLP-21377	Isobutyl alcohol	mg/L	SW8260C	< 0.100				-				10/2/2012 1051h
MB-SPLP-21377	Isopropyl acetate	mg/L	SW8260C	< 0.0100				-				10/2/2012 1051h
MB-SPLP-21377	Isopropyl alcohol	mg/L	SW8260C	< 0.0400				-				10/2/2012 1051h
MB-SPLP-21377	Isopropylbenzene	mg/L	SW8260C	< 0.00200				-				10/2/2012 1051h
MB-SPLP-21377	m,p-Xylene	mg/L	SW8260C	0.00781				-				10/2/2012 1051h
MB-SPLP-21377	Methacrylonitrile	mg/L	SW8260C	< 0.00500				-				10/2/2012 1051h
MB-SPLP-21377	Methyl Acetate	mg/L	SW8260C	< 0.00500				-				10/2/2012 1051h

Report Date: 10/12/2012 Page 62 of 66

MB-SPLP-21377

MB-SPLP-21377

MB-SPLP-21377

Tetrahydrofuran

TPH C11-C15 (DRO)

Toluene

463 West 3600 South

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

QC SUMMARY REPORT

Contact:

QC Type: MBLK

Dept:

Jon Schulman

MSVOA

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

Client: JBR Environmental Consultants, Inc. Lab Set ID: 1209452 Project: American Oil Sands

0						C <i>v</i>	-					
Sample ID	Analyte	Units	Method	Result	Amount Spiked	Original Amount	%REC	Limits	%RPD	RPD Limit	Qual	Date Analyzed
MB-SPLP-21377	Methyl methacrylate	mg/L	SW8260C	< 0.00500				-				10/2/2012 1051h
MB-SPLP-21377	Methyl tert-butyl ether	mg/L	SW8260C	< 0.00200				-				10/2/2012 1051h
MB-SPLP-21377	Methylcyclohexane	mg/L	SW8260C	0.00434				-				10/2/2012 1051h
MB-SPLP-21377	Methylene chloride	mg/L	SW8260C	0.00365				-				10/2/2012 1051h
MB-SPLP-21377	n-Amyl acetate	mg/L	SW8260C	< 0.0100				-				10/2/2012 1051h
MB-SPLP-21377	Naphthalene	mg/L	SW8260C	< 0.00200				-				10/2/2012 1051h
MB-SPLP-21377	n-Butyl alcohol	mg/L	SW8260C	< 0.100				-				10/2/2012 1051h
MB-SPLP-21377	n-Butylbenzene	mg/L	SW8260C	< 0.00200				-				10/2/2012 1051h
MB-SPLP-21377	n-Hexane	mg/L	SW8260C	< 0.00200				-				10/2/2012 1051h
MB-SPLP-21377	n-Octane	mg/L	SW8260C	< 0.00200				-				10/2/2012 1051h
MB-SPLP-21377	n-Propylbenzene	mg/L	SW8260C	< 0.00200				-				10/2/2012 1051h
MB-SPLP-21377	o-Xylene	mg/L	SW8260C	< 0.00200				-				10/2/2012 1051h
MB-SPLP-21377	Pentachloroethane	mg/L	SW8260C	< 0.00500				-				10/2/2012 1051h
MB-SPLP-21377	Propionitrile	mg/L	SW8260C	< 0.0250				-				10/2/2012 1051h
MB-SPLP-21377	Propyl acetate	mg/L	SW8260C	< 0.0100				-				10/2/2012 1051h
MB-SPLP-21377	sec-Butylbenzene	mg/L	SW8260C	< 0.00200				-				10/2/2012 1051h
MB-SPLP-21377	Styrene	mg/L	SW8260C	< 0.00200				-				10/2/2012 1051h
MB-SPLP-21377	tert-Butyl alcohol	mg/L	SW8260C	< 0.0200				-				10/2/2012 1051h
MB-SPLP-21377	tert-Butylbenzene	mg/L	SW8260C	< 0.00200				-				10/2/2012 1051h
MB-SPLP-21377	Tetrachloroethene	mg/L	SW8260C	< 0.00200				-				10/2/2012 1051h
		-										

Report Date: 10/12/2012 Page 63 of 66

10/2/2012 1051h

10/2/2012 1051h

10/2/2012 1051h

All analyses applicable to the CWA, SDWA, and RCRA are performed in accordance to NELAC protocols. Pertinent sampling information is located on the attached COC. This report is provided for the exclusive use of the addressee. Privileges of subsequent use of the name of this company or any member of its staff, or reproduction of this report in connection with the advertisement, promotion or sale of any product or process, or in connection with the re-publication of this report for any purpose other than for the addressee will be granted only on contact. This company accepts no responsibility except for the due performance of inspection and/or analysis in good faith and according to the rules of the trade and of science.

< 0.00200

< 0.00200

< 0.0200

SW8260C

SW8260C

SW8260C

mg/L

mg/L

mg/L

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

QC SUMMARY REPORT

Contact:

Dept:

Jon Schulman

MSVOA

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

Client: JBR Environmental Consultants, Inc. Lab Set ID: 1209452 Project: American Oil Sands

Project: Americ	an Oil Sands					QC Ty	pe: MBLK	í.				
Sample ID	Analyte	Units	Method	Result	Amount Spiked	Original Amount	%REC	Limits	%RPD	RPD Limit	Qual	Date Analyzed
MB-SPLP-21377	TPH C6-C10 (GRO)	mg/L	SW8260C	< 0.0200				-				10/2/2012 1051h
MB-SPLP-21377	trans-1,2-Dichloroethene	mg/L	SW8260C	< 0.00200				-				10/2/2012 1051h
MB-SPLP-21377	trans-1,3-Dichloropropene	mg/L	SW8260C	< 0.00200				-				10/2/2012 1051h
MB-SPLP-21377	trans-1,4-Dichloro-2-butene	mg/L	SW8260C	< 0.00200				-				10/2/2012 1051h
MB-SPLP-21377	Trichloroethene	mg/L	SW8260C	< 0.00200				-				10/2/2012 1051h
MB-SPLP-21377	Trichlorofluoromethane	mg/L	SW8260C	< 0.00200				-				10/2/2012 1051h
MB-SPLP-21377	Vinyl acetate	mg/L	SW8260C	< 0.0100				-				10/2/2012 1051h
MB-SPLP-21377	Vinyl chloride	mg/L	SW8260C	< 0.00100				-				10/2/2012 1051h
MB-SPLP-21377	Xylenes, Total	mg/L	SW8260C	0.00915				-				10/2/2012 1051h
MB-SPLP-21377	Surr: 1,2-Dichloroethane-d4	%REC	SW8260C	0.0636	0.05000		127	76-138				10/2/2012 1051h
MB-SPLP-21377	Surr: 4-Bromofluorobenzene	%REC	SW8260C	0.0561	0.05000		112	77-121				10/2/2012 1051h
MB-SPLP-21377	Surr: Dibromofluoromethane	%REC	SW8260C	0.0577	0.05000		115	67-128				10/2/2012 1051h
MB-SPLP-21377	Surr: Toluene-d8	%REC	SW8260C	0.0504	0.05000		101	81-135				10/2/2012 1051h

Report Date: 10/12/2012 Page 64 of 66

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

QC SUMMARY REPORT

Contact:

QC Type: MS

Dept:

Jon Schulman

MSVOA

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

Client:JBR Environmental Consultants, Inc.Lab Set ID:1209452Project:American Oil Sands

					Amount	Original				RPD		
Sample ID	Analyte	Units	Method	Result	Spiked	Amount	%REC	Limits	%RPD	Limit	Qual	Date Analyzed
1209495-035AMS	1,1,1-Trichloroethane	mg/L	SW8260C	4.90	4.000	0	122	67-147				10/2/2012 819h
1209495-035AMS	1,1-Dichloroethene	mg/L	SW8260C	4.63	4.000	0	116	51-152				10/2/2012 819h
1209495-035AMS	1,2-Dichlorobenzene	mg/L	SW8260C	3.86	4.000	0	96.4	70-130				10/2/2012 819h
1209495-035AMS	1,2-Dichloroethane	mg/L	SW8260C	4.77	4.000	0	119	39-162				10/2/2012 819h
1209495-035AMS	1,2-Dichloropropane	mg/L	SW8260C	3.67	4.000	0	91.8	59-135				10/2/2012 819h
1209495-035AMS	Benzene	mg/L	SW8260C	3.89	4.000	0	97.4	66-145				10/2/2012 819h
1209495-035AMS	Chlorobenzene	mg/L	SW8260C	3.84	4.000	0	96.0	63-140				10/2/2012 819h
1209495-035AMS	Chloroform	mg/L	SW8260C	4.52	4.000	0	113	50-146				10/2/2012 819h
1209495-035AMS	Ethylbenzene	mg/L	SW8260C	6.74	4.000	2.744	99.9	69-133				10/2/2012 819h
1209495-035AMS	Isopropylbenzene	mg/L	SW8260C	3.80	4.000	0	95.1	60-147				10/2/2012 819h
1209495-035AMS	Methyl tert-butyl ether	mg/L	SW8260C	5.51	4.000	0	138	37-189				10/2/2012 819h
1209495-035AMS	Methylene chloride	mg/L	SW8260C	4.66	4.000	0	116	30-192				10/2/2012 819h
1209495-035AMS	Naphthalene	mg/L	SW8260C	2.67	4.000	0	66.8	41-131				10/2/2012 819h
1209495-035AMS	Tetrahydrofuran	mg/L	SW8260C	3.34	4.000	0	83.4	43-146				10/2/2012 819h
1209495-035AMS	Toluene	mg/L	SW8260C	3.90	4.000	0	97.6	18-192				10/2/2012 819h
1209495-035AMS	Trichloroethene	mg/L	SW8260C	4.14	4.000	0	103	61-153				10/2/2012 819h
1209495-035AMS	Xylenes, Total	mg/L	SW8260C	21.4	12.00	8.988	103	42-167				10/2/2012 819h
1209495-035AMS	Surr: 1,2-Dichloroethane-d4	%REC	SW8260C	12.2	10.00		122	72-151				10/2/2012 819h
1209495-035AMS	Surr: 4-Bromofluorobenzene	%REC	SW8260C	9.70	10.00		97.0	80-128				10/2/2012 819h
1209495-035AMS	Surr: Dibromofluoromethane	%REC	SW8260C	11.1	10.00		111	80-124				10/2/2012 819h
1209495-035AMS	Surr: Toluene-d8	%REC	SW8260C	9.26	10.00		92.6	77-129				10/2/2012 819h

Report Date: 10/12/2012 Page 65 of 66

Salt Lake City, UT 84115

Phone: (801) 263-8686, Toll Free: (888) 263-8686, Fax: (801) 263-8687

e-mail: awal@awal-labs.com, web: www.awal-labs.com

QC SUMMARY REPORT

Contact:

QC Type: MSD

Dept:

Jon Schulman

MSVOA

Kyle F. Gross Laboratory Director

Jose Rocha QA Officer

Client:JBR Environmental Consultants, Inc.Lab Set ID:1209452Project:American Oil Sands

Seconda ID	A 1 4	T T	Mahal	D	Amount	Original	A/DEC	T ••4		RPD	0	Defe Andrea 1
Sample ID	Analyte	Units	Method	Result	Spiked	Amount	%REC	Limits	%RPD	Limit	Qual	Date Analyzed
1209495-035AMSD	1,1,1-Trichloroethane	mg/L	SW8260C	5.22	4.000	0	130	67-147	6.37	25		10/2/2012 838h
1209495-035AMSD	1,1-Dichloroethene	mg/L	SW8260C	4.94	4.000	0	123	51-152	6.44	25		10/2/2012 838h
1209495-035AMSD	1,2-Dichlorobenzene	mg/L	SW8260C	3.99	4.000	0	99.6	70-130	3.26	25		10/2/2012 838h
1209495-035AMSD	1,2-Dichloroethane	mg/L	SW8260C	4.89	4.000	0	122	39-162	2.44	25		10/2/2012 838h
1209495-035AMSD	1,2-Dichloropropane	mg/L	SW8260C	3.79	4.000	0	94.8	59-135	3.32	25		10/2/2012 838h
1209495-035AMSD	Benzene	mg/L	SW8260C	4.06	4.000	0	102	66-145	4.27	25		10/2/2012 838h
1209495-035AMSD	Chlorobenzene	mg/L	SW8260C	4.04	4.000	0	101	63-140	4.97	25		10/2/2012 838h
1209495-035AMSD	Chloroform	mg/L	SW8260C	4.63	4.000	0	116	50-146	2.27	25		10/2/2012 838h
1209495-035AMSD	Ethylbenzene	mg/L	SW8260C	7.30	4.000	2.744	114	69-133	8.03	25		10/2/2012 838h
1209495-035AMSD	Isopropylbenzene	mg/L	SW8260C	4.18	4.000	0	105	60-147	9.47	25		10/2/2012 838h
1209495-035AMSD	Methyl tert-butyl ether	mg/L	SW8260C	5.66	4.000	0	141	37-189	2.61	25		10/2/2012 838h
1209495-035AMSD	Methylene chloride	mg/L	SW8260C	4.84	4.000	0	121	30-192	3.87	25		10/2/2012 838h
1209495-035AMSD	Naphthalene	mg/L	SW8260C	2.90	4.000	0	72.5	41-131	8.18	25		10/2/2012 838h
1209495-035AMSD	Tetrahydrofuran	mg/L	SW8260C	3.63	4.000	0	90.7	43-146	8.33	25		10/2/2012 838h
1209495-035AMSD	Toluene	mg/L	SW8260C	4.22	4.000	0	106	18-192	7.93	25		10/2/2012 838h
1209495-035AMSD	Trichloroethene	mg/L	SW8260C	4.34	4.000	0	108	61-153	4.67	25		10/2/2012 838h
1209495-035AMSD	Xylenes, Total	mg/L	SW8260C	22.9	12.00	8.988	116	42-167	6.76	25		10/2/2012 838h
1209495-035AMSD	Surr: 1,2-Dichloroethane-d4	%REC	SW8260C	12.3	10.00		123	72-151				10/2/2012 838h
1209495-035AMSD	Surr: 4-Bromofluorobenzene	%REC	SW8260C	9.97	10.00		99.7	80-128				10/2/2012 838h
1209495-035AMSD	Surr: Dibromofluoromethane	%REC	SW8260C	11.2	10.00		112	80-124				10/2/2012 838h
1209495-035AMSD	Surr: Toluene-d8	%REC	SW8260C	9.67	10.00		96.7	77-129				10/2/2012 838h

Report Date: 10/12/2012 Page 66 of 66

America	n West Analytical Labora	tories	10/5/12 W updated t					1
WORK O	RDER Summary		QCZ.			Work Order	r:	1209452
Client:	JBR Environmental Consultants, Inc.					Page 1 of 3	•	10/12/2012
Client ID:	JBR400		Contact:	Jon Schulman				10/12/2012
roject:	American Oil Sands		QC Level:	LEVEL II		WO Туре:		Standard
Comments:	All analysis to be performed on the SPLI of hold. Email 3 people: John Schulmar	P extract, for samples # n, Linda Matthews, and	\$1, #3, #5, #7. For		#8 run on a 1:1		I rec	
ample ID	Client Sample ID	Collected Date	Received Date	Date Due	Matrix	Test Code	Sel	Storage
209452-001A	U-001A	9/25/2012 0945h	9/26/2012 1100	n 10/12/2012	Leachate	1312LM-PR		SPLP
						1312ZHE-PR		SPLP
						3005A-SPLP-PR		SPLP
· • • • •						3510-TPH-PR		SPLP
	SEL Analytes: B CA CR FE LI MG MO K	NA SR SN V				6010C-SPLP	✓	SPLP
	SEL Analytes: SB AS BA BE CD CU PB M					6020-SPLP	✓	SPLP
						8015-W-TPH(1L)		SPLP
						8260-W-SPLP		SPLP
	SEL Analytes: ALK					ALK-W-2320B	✓	SPLP
						CL-W-4500CLE		SPLP
						HG-SPLP-7470A		SPLP
						HG-SPLP-PR		SPLP
						OGB-W-1664A		SPLP
						OGF-W-1664SGT		SPLP
						PH-9040C		SPLP
						SO4-W-4500SO4E		SPLP
						TDS-W-2540C		SPLP
						TOC-W-5310B		SPLP
209452-002A	U-001B				Solid	COND-S-9050A		df/wc
						PH-9045D		df/wc
						SAR-S		df / wc
						SOIL-PR		df / wc
209452-003A	U-002A	9/25/2012 1055h			Leachate	1312LM-PR		SPLP
						1312ZHE-PR		SPLP
						3005A-SPLP-PR		SPLP
						3510-TPH-PR		SPLP

WORK O Client:	RDER Summary JBR Environmental Consultants, Inc.		~			Work Order	::	1209452
·				· · · · · · · · · · · · · · · · · · ·		Page 2 of 3	•····	10/12/2012
Sample ID	Client Sample ID	Collected Date	Received Date	Date Due	Matrix	Test Code	Sel	Storage
1209452-003A	U-002A	9/25/2012 1055h	9/26/2012 1100h	10/12/2012	Leachate	6010C-SPLP	✓	SPLP
	SEL Analytes: B CA CR FE LI MG MO K	NA SR SN V						
	SEL Analytes: SB AS BA BE CD CU PB M	N NI SE AG TL ZN				6020-SPLP	\checkmark	SPLP
						8015-W-TPH(1L)	~	SPLP
						8260-W-SPLP	~	SPLP
						ALK-W-2320B	✓	SPLP
	SEL Analytes: ALK							
						CL-W-4500CLE		SPLP
						HG-SPLP-7470A		SPLP
						HG-SPLP-PR		SPLP
						OGB-W-1664A		SPLP
						OGF-W-1664SGT		SPLP
						PH-9040C		SPLP
						SO4-W-4500SO4E		SPLP
						TDS-W-2540C		SPLP
1209452-004A	U-002B				~	TOC-W-5310B		SPLP
1209452-004A	U-002B				Solid	COND-S-9050A		df / wc
						PH-9045D		df / wc
						SAR-S		df / wc
1200452 0054						SOIL-PR		df / wc
1209452-005A	U-003A	9/25/2012 1240h			Leachate	1312LM-PR		SPLP
	· · · · · · · · · · · · · · · · · · ·					1312ZHE-PR		SPLP
						3005A-SPLP-PR		SPLP
						3510-TPH-PR		SPLP
	SEL Analytes: B CA CR FE LI MG MO K	NA SR SN V				6010C-SPLP	\checkmark	SPLP
						6020-SPLP	\checkmark	SPLP
	SEL Analytes: SB AS BA BE CD CU PB M	N NI SE AG TL ZN						
						8015-W-TPH(1L)	\checkmark	SPLP
						8260-W-SPLP		SPLP
	SEL Analytes: ALK					ALK-W-2320B	\checkmark	SPLP
						CL-W-4500CLE		SPLP
						HG-SPLP-7470A		SPLP
						HG-SPLP-PR	$\overline{\Box}$	SPLP

FOR LABORATORY USE ONLY [fill out on page 1]: %M 🗌 RT 🗍 CN 🗌 TAT 🔲 QC 🗌

НОК____ НОК____ НОК____ НОК____

WORK O Client:	RDER Summary JBR Environmental Consultants, Inc.					Work Order:	1209452
Sample ID	Client Sample ID	Collected Date	Received Date	Date Due	Madula	Page 3 of 3	10/12/2012
	·	Confected Date	Keceiveu Date	Date Due	Matrix	Test Code Se	I Storage
209452-005A	U-003A	9/25/2012 1240h	9/26/2012 1100h	10/12/2012	Leachate	OGB-W-1664A	SPLP
1						OGF-W-1664SGT	SPLP
						PH-9040C	SPLP
						SO4-W-4500SO4E	SPLP
						TDS-W-2540C	SPLP
						TOC-W-5310B	SPLP
209452-006A	U-003B				Solid	COND-S-9050A	df/wc
						PH-9045D	df / wc
						SAR-S	df/wc
						SOIL-PR	df/wc
209452-007A	U-004A	9/25/2012			Leachate	1312LM-PR	SPLP
						1312ZHE-PR	SPLP
						3005A-SPLP-PR	SPLP
						3510-TPH-PR	SPLP
	SEL Analytes: B CA CR FE LI MG MO K	NA SR SN V				6010C-SPLP	SPLP
	SEL Analytes: SB AS BA BE CD CU PB M	N NI SE AG TL ZN				6020-SPLP	SPLP
						8015-W-TPH(1L)	SPLP
				· · · · · · · · · · · · · · · · · · ·		8260-W-SPLP	SPLP
	SEL Analytes: ALK					ALK-W-2320B	SPLP
						CL-W-4500CLE	SPLP
	······································					HG-SPLP-7470A	SPLP
						HG-SPLP-PR	SPLP
						OGB-W-1664A	SPLP
						OGF-W-1664SGT	SPLP
						PH-9040C	SPLP
	· · · · · · · · · · · · · · · · · · ·					SO4-W-4500SO4E	
						TDS-W-2540C	SPLP
						TOC-W-5310B	SPLP
209452-008A	U-004B		·····		Solid	COND-S-9050A	df/wc
						PH-9045D	df/wc
						SAR-S	df/wc
						SOIL-PR	df/wc

JBR					In.	010	47 '	7								
JBR Client <u>American</u> Oil Address <u>City</u> State Phone <u>801-277-7888</u> Fax Contact <u>Ur, 11 Sibbs</u>	Zip			1		4	/ LAI 163 W	AMEI	WEST FICAL ORIES South y, Utab	S I I Fax	CU (801) (888) (801)		DDY 586 586 586		Lab Sample Set # ^{Page} <i>Turn Around Time</i> 1 day 2 day 3 day	of
E-mail wgibbsa Americ	mands	20-494.0	ion						TEST	S RE	QUI	RED			QC LEVEL	LABORATORY USE ONLY
Project Name						Number of Containers (Total)	Lee									SAMPLES WERE: 1 Shipped or hand delivered
Project Number/P.O.#			Date/	Time		iners ()	the								1 (2) 2+	Notes: Fed X
Sampler Name R. G. M. Ginn			Colle			Conta	ß								3 3+ 4	2 Ambient or Chilled Notes:
	-239-77	20			atrix	nber of	2									3 Temperature 2.9
Sample ID					Σ	N ^{UI}	5								COMMENTS	4 Received Broken/Leaking
*1 U-00(A)			Septes	9:45			ſ									(Improperly Sealed).
2 <u>U-001B</u>	!		*	9:45												Notes:
3 U-002A	[L.	10:55												5 Properly Preserved Y N Checked at Bench
$\frac{4}{10028}$			۲	12:55												Y N Notes:
$\begin{array}{c c} 5 & \cup - 003 \text{ A} \\ \hline 6 & \cup - 003 \text{ B} \end{array}$	ľ		•	12:40										\square		
7 U-004Al	and the system of the system of the second		* 6	12:40										+		6 Received Within
8 U-004B)	+		Septe						-			_		+-		Holding Times
<u> </u>			Sept2		\square		╧╋				_			+		pH vec. outside
					\square						<u> </u>			┼╌┨		of hold.
					\square					+			+	+		COC Tape Was:
													+	+		1 Present on Outer
Relinquished By Signature	Date Just 25	Received B	y: Signature				Dat	è~	Spe	cial Ir	nstruc	tions	~			Package Y N NA
PRINT NAME		PRINT NAM	ЛЕ			\sim	Tim	e	K	ne	ta lj	ti	57 1	wa	provious sch:	2 Unbroken on Outer
Relinquished By: Signature	Date		y: Signature,				Dat	A	Ag 10	· . /	15 ,4	3. B	s,E	e,c	d, Cr, Cu, Fe,	Package Y N (NA
PRINT NAME	Time	PRINT NAM				tin the second	Tim			54	1	<u>pb</u> Fl	mn	$\frac{N}{2n}$	along with	3 Present on Sample
	1		*****						Ca	tills	۲ ۰	· / ·		i. <i>k</i> .,	<u> </u>	Y N NA
Relinquished By: Signature	Date		y: Signature				Dat	8			A					4 Unbroken on Sample 1 Y N NA
PRINT NAME	Time	PRINTNAM	<i>I</i> E				Tim	e	*	Der	To	1 Sr	-hu	Ima	n. 10/5/12 mt	Discrepancies Between Sample Labels and COC
Relinquished By: Signature	Date	Received B	y: Signature Mu 4	7			Date	26-1		+~~		<u> </u>	100			Record?
PRINT NAME	Time	PRINTINAN	ΛE.	X		7	Tim	2001	—		Phrosecula	kodan) in generation				Notes:
L	J	Len	ye 1	tylic_	Ź		1//	00	IL						an ang kalawa ang kanalan ang kanalan ang kanalan ng kanalang kanalang kanalan ng kanalan ng kanang kanalan ng	

Parameters for Tailings Analyses

These are the analyses required for the tailings samples:

1) Use the Synthetic Precipitation Leachate Procedure (SPLP) extraction (EPA Method SW-846 1312)

The leachate must be analyzed for the following:

- Residual solvents used in the bitumen extraction process (the actual, proprietary solvent) that you will use or the closest available proxy),
- Benzene, toluene, ethylbenzene, xylenes, naphthalene (BTEXN),----
- Volatile organic compounds (VOCs), •
- Hazardous air pollutants (HAPs),
- Oil and grease, •
- Total petroleum hydrocarbon-diesel range (TPH-DRO), •
- Total petroleum hydrocarbon-gasoline range (TPH-GRO), •
- Total recoverable petroleum hydrocarbon (TRPH),
- Total organic carbon (TOC), •
- Total dissolved solids (TDS), ~ •
- рНи

Z

- pH/
 Metals, and from previous set (1201439)
- Major ions (Na, Ca, K, Mg, Cl, SO₄, alkalinity). •

2) Use either a saturated paste extract or a 1:1 (liquid:solid) extract: the extract should be analyzed for pH, conductivity and SAR.

Laboratory minimum detection limits must be equal to or less than Utah ground water standards or other applicable standards to enable meaningful comparisons with the laboratory analytical results. Some of these are for groundwater permitting, others are for air quality permitting, and others are for the engineers.

3) In addition to these chemical characteristics, Mine Engineers need to have physical tests performed. Eldon has a lab he uses in Cheyenne that he uses for these, so please send a fivegallon bucket or two of tailings sample to him. Those tests include the following:

Relative Density (ASTM D253 & D4254) Direct Shear (ASTM D3080) Sieve Analysis (ASTM C136 & C117) Proctored Density